Закон дисперсии и механизм рассеяния носителей заряда в *p*-ln_{0.5}Ga_{0.5}Sb, легированных Zn

© С.А. Зейналов, Ф.Ф. Алиев[¶], С.З. Дамирова, Б.А. Таиров

Институт физики Национальной академии наук Азербайджана, Az-1143 Баку, Азербайджан

(Получена 13 января 2010 г. Принята к печати 17 февраля 2010 г.)

Исследованы температурные зависимости электропроводности, коэффициента Холла, термоэдс твердых растворов эквимолярного состава In_{0.5}Ga_{0.5}Sb, легированных Zn. Определены концентрационная и температурная зависимости эффективной массы дырок. Установлено, что дисперсия дырок в In_{0.5}Ga_{0.5}Sb подчиняется квадратичному закону. Показано, что во всех легированных образцах при температурах T < 200 K носители заряда рассеиваются на ионах примеси, а при T > 200 K значительный вклад вносит и рассеяние на колебаниях решетки.

1. Введение

Легирование полупроводников и их твердых растворов донорными и акцепторными прмесями широко применяется для исследования энергетического спектра, закона дисперсии, механизма рассеяния носителей заряда вблизи дна зоны проводимости и потолка валентной зоны, так как смещая легированием уровень Ферми, можно заполнить преимущественно либо электронные, либо дырочные состояния, тем самым упростить расчет зонных параметров.

Малые значения теплопроводности и эффективной массы электронов в твердых растворах $A^{III}B^V$ (в том числе $In_{1-x}Ga_xSb$) позволяют применять их в датчиках инфракрасного излучения, термоэлектрогенераторах, генераторах Ганна и в датчиках Холла, характеристики которых непосредственно связаны с энергетическим спектром, законом дисперсии и механизмом рассеяния носителей заряда.

Поэтому в данной работе проводилось исследование кинетических эффектов в In_{0.5}Ga_{0.5}Sb для установления закона дисперсии и механизма рассеяния дырок.

2. Экспериментальная часть

Исследованные образцы были получены прямым синтезом исходных материалов In (99.999%), Ga (99.999%), Sb (0000) и Zn (ч.д.а. — чистый для анализа) в стехиометрическом составе в кварцевой ампуле, вакуумированной и заполненной спектрально чистым аргоном при давлении 10^5 Па. Сплавление материалов осуществлялось при 600–700°С, затем проводилось зонное выравнивание с последовательностью проходов расплавленной зоны шириной 3–4 мм со скоростью 5.2 и 1 мм/ч при температуре 700°С.

По описанной методике были получены крупноблочные поликристаллические образцы, концентрации дырок в которых были определены из эффекта Холла как p = 1/eR, и эти значения представлены в таблице. Были проведены исследования электрических и термоэлектрических свойств твердых растворов $In_{1-x}Ga_xSb$ (x = 0.5), легированных цинком до 1 ат%, в интервале температур T = 80-500 К.

На рис. 1 представлена зависимость концентрации дырок *p* от концентрации атомов примеси, которая определялась согласно выражению

$$N = \frac{N_{\rm A} m_{\rm im} \rho_{\rm im}}{m M_{\rm im}},$$

где N_A — число Авогадро, $m_{\rm im}$ — масса вещества примеси, $\rho_{\rm im}$ — плотность, $M_{\rm im}$ — молярная масса примеси, m — масса легированного образца вместе с примесью.

Из рис. 1 видно, что зависимость p(N) в интервале концентраций примеси $N = 4.4 \cdot 10^{16} - 1.4 \cdot 10^{20}$ см⁻³ растет, что свидетельствует о возможности растворения цинка в широком интервале концентраций.

На рис. 2 представлены температурные зависимости коэффициента Холла R(T) для всех образцов. Отметим, что в образцах при $p < 5 \cdot 10^{17}$ см⁻³ коэффициент Холла в интервале 80-340 К слабо зависит от температуры. Далее, с ростом T в этих образцах при 340 К наблюдается инверсия знака R, причем точка инверсии знака с ростом концентрации примеси смещается в область высоких T. Такая же температурная зависимость характерна и для коэффициента термоэдс α_0 (рис. 3). В исследованном интервале температур образцы обладают p-типом проводимости, причем в каждом из них концентрация p от температуры практически не зависит.

Зависимости концентрации дырок p от концентрации атомов примеси Zn N в $In_{0.5}Ga_{0.5}Sb$ при 300 K

№ образца	Состав	<i>р</i> , см ⁻³	N, cm^{-3}
1	$In_{0.5}Ga_{0.5}Sb$	$4.41\cdot 10^{16}$	
2	In _{0.5} Ga _{0.5} Sb + 0.001 at% Zn	$3.01\cdot 10^{17}$	$3.19\cdot 10^{17}$
3	$In_{0.5}Ga_{0.5}Sb + 0.01 \text{ at\% Zn}$	$2.91\cdot 10^{18}$	$3.19\cdot10^{18}$
4	$In_{0.5}Ga_{0.5}Sb + 0.1 \text{ at\% Zn}$	$2.21\cdot 10^{19}$	$3.19\cdot 10^{19}$
5	In _{0.5} Ga _{0.5} Sb+1 ат% Zn	$1.4\cdot 10^{20}$	$3.19\cdot 10^{20}$

[¶] E-mail: farzali@physics.ab.az

Рис. 1. Зависимость концентрации носителей заряда p от расчетной концентрации примесей атомов цинка N в In_{0.5}Ga_{0.5}Sb. Точки — экспериментальные значения p, определенные из эффекта Холла.

Рис. 2. Температурные зависимости коэффициента Холла в In_{0.5}Ga_{0.5}Sb.

Рис. 3. Температурные зависимости коэффициента термоэде в $In_{0.5}Ga_{0.5}Sb$.

3. Результаты и их обсуждение

Исследование кинетических эффектов является одним из методов получения сведений о структуре соответствующих зон, а также об эффективной массе носителей заряда. Этот метод был использован нами для вычисления эффективной массы дырок m_p^* в широком интервале концентраций. В области, где справедливо $p\mu_p^2 \gg n\mu_n^2$ (p, n и μ_p, μ_n — концентрации и подвижности дырок и электронов соответственно), по температурной зависимости $\alpha_0(T)$ было найдено значение приведенного химического потенциала η^* .

Как известно, для вырожденных и невырожденных носителей заряда коэффициент термоэдс представляется в виде [1]

$$\alpha_0 = \frac{k_0}{e} \left[\frac{F_{r+2}(\eta^*)}{F_{r+1}(\eta^*)} - \eta^* \right],$$
(1)

где $F_r(\eta^*)$ — однопараметрический интеграл Ферми, $\eta^* = \eta/k_0T$ — приведенный химический потенциал, r параметр механизма рассеяния носителей заряда, в данном случае за r принята эффективная величина $r_{\rm eff}$ для \ln_{1-x} Ga_xSb, равная 0.6 (см. далее рис. 5), k_0 постоянная Больцмана, e — заряд электрона.

Формула (1) была использована для определения η^* при высоких концентрациях ($p > 5 \cdot 10^{17} \,\mathrm{cm}^{-3}$), а при малых концентрациях носителей заряда η^* определяется по формуле

$$\alpha_0 = \frac{k_0}{e} \, (r + 2 - \eta^*). \tag{2}$$

При малых концентрациях при вычислении η^* в α_0 была внесена поправка. Известно, что $\alpha_{\infty} = \alpha_0 + \Delta \alpha_{\infty}$, где $\Delta \alpha_{\infty}$ — магнитотермоэдс в классически сильных магнитных полях. В узкозонных полупроводниках $\Delta \alpha_{\infty}$ составляет ~ (10–15)% от α_0 [2,3]. Полученные величины η^* были использованы для расчета эффективной массы дырок m_p^* , которая связана с концентрацией носителей заряда выражением [1]

$$p = \frac{4}{\sqrt{\pi}} \left(\frac{2\pi m_p^* k_0 T}{\eta^2}\right)^{3/2} F_{3/2}(\eta^*).$$
(3)

В области проводимости с одним типом носителей расчеты $m_p^*(T)$ произведены для всех концентраций, указанных в таблице. На рис. 4, а представлены температурные зависимости эффективной массы дырок для In_{0.5}Ga_{0.5}Sb с $p = (3-24) \cdot 10^{18}$ см⁻³. Концентрационные зависимости эффективной массы дырок при 150, 300 и 500 К приведены на рис. 4, b. Из рис. 4, а и b видно, что эффективная масса дырок равна 0.356m0 и не зависит от p и T. Это значение m_p^* для $In_{0.5}Ga_{0.5}Sb$ значительно отличается от данных работ [4,5] и согласуется с данными [6]. Видно, что эффективная масса дырок остается практически постоянной в широком интервале концентраций $(4.4 \cdot 10^{16} - 1.4 \cdot 10^{20} \text{ см}^{-3})$ и температур (80-500 К). Это позволяет заключить, что носители заряда в валентной зоне In_{0.5}Ga_{0.5}Sb (дырки) подчиняются квадратичному закону дисперсии.

Для выяснения механизма рассеяния дырок были произведены расчеты температурной зависимости по-

Рис. 4. Температурные зависимости эффективной массы дырок для образцов с концентрацией $p = 3 \cdot 10^{18}$ (*I*) и 2.36 $\cdot 10^{19}$ см⁻³ (*2*) в *p*-In_{0.5}Ga_{0.5}Sb (*a*) и концентрационные зависимосит эффективной массы дырок при различных температурах (*b*).

движности $\mu(T)$ с учетом значения $m_p^* = 0.356m_0$. При расчетах μ некоторые параметры для In_{0.5}Ga_{0.5}Sb определялись методом интерполяции между соответствующими данными исходных бинарных соединений InSb и GaSb [7]. Далее приведены выражения, определяющие времена релаксации носителей заряда для различных механизмов рассеяния. При рассеянии носителей заряда на акустических колебаниях решетки подвижность есть

$$\mu_{\rm ac} = \frac{9\pi}{2} \frac{\rho v^2 \hbar^4}{c^2 (2m_p^* k_0 T)^{3/2}} \left(\frac{\varepsilon}{k_0 T}\right)^{-1/2},\tag{4}$$

где *с* — константа взаимодействия носителей заряда с колебаниями решетки, *v* — скорость звука в кристалле, ρ — плотность. Известно, что *c* связана с константой деформационного потенциала E_0 : $E_0 = (2/3)c$; ε — ширина запрещенной зоны кристалла. При 300 К $E_0 = 7.375$, $\varepsilon = 0.33$ эВ [7].

При рассеянии носителей заряда на оптических колебаниях решетки подвижность есть

$$\mu_{\rm op} = \frac{\sqrt{2}}{4\pi} \, \frac{M^* \Omega_0 (\hbar \omega_0)^2}{e^4 (m_p^* k_0 T)^{1/2}} \left(\frac{\varepsilon}{k_0 T}\right)^{1/2},\tag{5}$$

где $M^* = \frac{m_{\mathrm{In}}m_{\mathrm{Ga}}m_{\mathrm{Sb}}}{m_{\mathrm{Ga}}m_{\mathrm{Sb}}+m_{\mathrm{In}}m_{\mathrm{Ga}}}$ — приведенная масса ионов компонент в элементарной ячейке, Ω_0 — объем элементарной ячейки, ω_0 — предельная частота продольного оптического фонона. При рассеянии на ионах примеси с концентрацией N_i подвижность есть

$$\mu_i = \frac{\varkappa (2m_p^*)^{1/2} (k_0 T)^{3/2}}{\pi e^4 N_i F},\tag{6}$$

где \varkappa — диэлектрическая проницаемость кристалла, $F = \ln(1+\xi) - \frac{\xi}{1+\xi}$; $\xi = 4k^2 r_s^2$, r_s — радиус экранирования, $k = (6k_0 m_p^* T)^{1/2} / \hbar$, $r_s^2 = \varkappa k_0 T / 4\pi e^2 p$.

Результаты расчетов $\mu_{ac}(T)$, $\mu_{op}(T)$ и $\mu_i(T)$ представлены на рис. 5 и сопоставлены с экпериментальными значениями подвижности $\mu_{ex}(T)$ для образца с концентрацией $p = 3 \cdot 10^{18}$ см⁻³. Из рисунка видно, что носители заряда при T < 200 К рассеиваются на ионах примеси, а при T > 200 К существенный вклад вносит также и рассеяние носителей заряда на акустических и оптических колебаниях решетки.

Результаты вычислений $\mu_{ac}(T)$, $\mu_{op}(T)$, $\mu_i(T)$ в сопоставлении с $\mu_{ex}(T)$ позволяют сделать вывод о смешанном характере механизма рассеяния носителей заряда в In_{0.5}Ga_{0.5}Sb, особенно при T > 200 К. При смешанном механизме рассеяния имеем для подвижности

$$\mu_{\rm mix} = \left(\frac{1}{\mu_{\rm ac}} + \frac{1}{\mu_{\rm op}} + \frac{1}{\mu_i}\right)^{-1}.$$
 (7)

Таким образом, расчеты показали, что в $p-In_{0.5}Ga_{0.5}Sb$ носители заряда при T < 200 K рассеиваются в основ-

Рис. 5. Температурные зависимости подвижности дырок в образце $In_{0.5}Ga_{0.5}Sb$ с концентрацией $p = 3 \cdot 10^{18}$ см⁻³ и эффективной массой $m_p^* = 0.356m_0$: μ_{ac} , μ_{op} , μ_i и μ_{mix} — расчет; точки — эксперимент, значения определены из проводимости σ и коэффициента Холла *R* как $\mu_{ex} = R\sigma$.

ном на ионах примеси, а при $T > 200 \,\text{K}$ они эффективно рассеиваются и на колебаниях решетки.

Удовлетворительное согласие между экспериментальными и расчетными значениями подвижности показывает, что имеет место смешанный механизм рассеяния дырок.

Список литературы

- [1] Б.М. Аскров. Электронные явления переноса в полупроводниках (М., Наука, 1985).
- [2] Ф.Ф. Алиев, Г.Г. Гусейнов, Г.П. Пашаев, Г.М. Агамирзоева, А.Б. Магеррамов. Неорг. матер., 44 (2), 156 (2008).
- [3] S.A. Zeynalov, S.A. Aliyev. Turk. J. Phys., 20 (5), 477 (1996).
- [4] W.M. Coderre, J.C. Woolley. Canadian J. Phys., 47 (22), 2553 (1969).
- [5] M.J. Aubin, M.B. Tomas, E.H. Van Tongerloo, J.C. Wolley. Canadian J. Phys., 47, 631 (1969).
- [6] D. Auvergne, J. Camassel, H. Mathien, A. Joullie. J. Phys. Chem. Sol., 35 (2), 133 (1974).
- [7] П.И. Баранский, В.П. Клочков, И.В. Потыкевич. Полупроводниковая электроника. Справочник (Киев, Наук. думка, 1975).

Редактор Л.В. Шаронова

Dispersion law and scattering mechanism of charge carriers in $p-\ln_{0.5}Ga_{0.5}Sb$ doped with Zn

C.A. Zeynalov, F.F. Aliev, S.Z. Damirova, B.A. Tairov

Institute of Physics, National Academy of Sciences of Azerbaijan, Az-1143 Baku, Azerbaijan

Abstract Temperature dependences of Hall coefficient, termoelectromotive and electrical conductivity of equimolar composition solid solutions $In_{0.5}Ga_{0.5}Sb$ doped with Zn, have been investigated. Concentration and temperature dependencies of the hole effective mass have been determined. It was found that the hole dispersion in $In_{0.5}Ga_{0.5}Sb$ obeys the quadratic law. We show that in the all doped samples at T < 200 K charge carriers are scattered on impurity ions, while at T > 200 K lattice vibrations give significant contribution in the scattering of holes.