Дислокационная электрическая проводимость пластически деформированных природных алмазов

© С.Н. Самсоненко[¶], Н.Д. Самсоненко, В.И. Тимченко

Донбасская национальная академия строительства и архитектуры, 86123 Макеевка, Украина

(Получена 17 февраля 2009 г. Принята к печати 17 февраля 2010 г.)

Приведены результаты изучения температурной зависимости электропроводности природных полупроводниковых алмазов типа Ic. Определены энергии активации дислокационных акцепторных центров $\varepsilon_3 = 0.29 - 0.36$ эВ, связанных с пластической деформацией. Для доказательства появления уровней с энергией активации ε_3 в полупроводниковых алмазах была проведена пластическая деформация четырех природных алмазов типа IIa с удельным сопротивлением $10^{15} - 10^{16}$ Ом · см. В результате деформации удельное сопротивление уменьшилось примерно на один–два порядка, и появился новый уровень с энергией $\varepsilon_3 = 0.29$ эВ, характерный для полупроводниковых алмазов. Мы полагаем, что деформация производит дислокационные центры не только в алмазах типа Ic, но и в природных полупроводниковых алмазах типа IIb.

1. Введение

Открытие природных полупроводниковых алмазов типа IIb [1,2] в одном из месторождений ЮАР обусловило возникновение нового направления в физике твердого тела. Ведутся интенсивные поиски условий управления электронными свойствами алмаза и формирования их полупроводниковых свойств.

Алмаз привлекает исследователей тем, что он обладает наибольшей теплопроводностью (почти в 5 раз выше, чем у меди), высокой радиационной стойкостью (выше на 1–2 порядка, чем у известных полупроводниковых материалов Ge, Si и др.), химически инертен в водных растворах солей, кислот и щелочей, для него характерны самые низкие коэффициенты диффузии и самодиффузии, высокая электрическая прочность, высокая прозрачность и др. На природных полупроводниковых алмазах создан экспериментальный вариант выпрямителя, который работает почти до 773 К.

Однако алмаз — изолятор с удельным сопротивлением $10^{14}-10^{17}$ Ом · см и большой шириной запрещенной зоны, ~ 5.6 эВ. На данном этапе главной задачей исследований является объяснение того, как алмаз становится полупроводником и как управлять формированием его электронных свойств. Для этих целей используются традиционные методы: легирование изолирующих природных алмазов путем ионного внедрения [3], легирование исскуственных алмазов путем введения в исходную шихту легирующих элементов [4] и другие. Однако окончательных ответов на поставленные задачи пока не получено.

Иным направлением, на наш взгляд, является исследование влияния на электронные свойства алмазов не примесных, а структурных дефектов. Аналогичные исследования проводятся применительно к традиционным полупроводниковым материалам [5,6].

В работах [7,8] Ланг с коллегами, изучая структуру полупроводниковых алмазов, установили, что они имеют

внутреннюю мозаичную структуру с дислокационными границами между блоками мозаики [7,8], образовавшуюся в результате пластической деформации "безазотных" алмазов типа IIа в естественных условиях. Как известно [9,10], дислокации в изоляторах создают свою систему энергетических уровней электронов, которая располагается в запрещенной зоне кристаллической матрицы. При этом авторы [9] теоретически установили, что вдоль дислокаций возможно движение носителей тока по разрешенным дислокационным полосам энергии электронов. Таким образом, дислокации могут влиять на формирование электронных свойств кристаллов, особенно изолирующих. В работе [11] Шокли предсказал, что ненасыщенные химические связи в ядре частичных дислокаций с краевой компонентой в структурах типа алмаза образуют дислокационные акцепторные центры. Таким образом, дислокации приводят к дырочной проводимости, а полупроводниковые алмазы типа IIb имеют все без исключения только дырочную проводимость.

Настоящая работа посвящена исследованию влияния пластической деформации на формирование электронных свойств природных "азотных" (содержащих азот) алмазов типа I.

2. Пластически деформированные "азотные" алмазы типа I в естественных условиях

В нашем сообщении [12] мы отметили, что пластически деформированные в естественных условиях "азотные"(с примесью азота) природные алмазы типа I обладают полупроводниковыми свойствами, как и алмазы типа IIb. Поскольку эти алмазы содержат азот, мы их выделили в отдельную малочисленную группу алмазов типа Ic [12]. Качественно эти алмазы имеют все особенности электронных свойств, характерные для алмазов типа IIb. Однако количественно эти свойства в алмазах типа Ic отличаются. Следует отметить, что алмазы типа Ic имеют коричневый цвет, а интенсивность

[¶] E-mail: snsamsonenko@mail.ru

Характеристики природных полупроводниковых алмазов типа Ic и образцов типа IIa, пластически деформированных в лабораторных условиях

Образец	Окраска	Степень деформации	Удельное сопротивление ρ , Ом \cdot см	Энергии активации в интервале температур 300-700 К			Источник
				ε1, эВ	€3, эВ	€5, ЭВ	
АП-4	Темно-коричневая	Сильная	$2\cdot 10^{12}$	_	0.3	-	Данная работа и [13]
АП-7	Коричневая	»	$8\cdot 10^{14}$	0.15	0.29	2.15	То же
АП-6	Светло-коричневая	Слабая	$1\cdot 10^{15}$	_	0.36	2.17	» »
АП-9	Тип IIa, прозрачный	До деформации	$3.3\cdot10^{15}$	0.2	_	2.2	» »
	То же	После деформации	$3.4\cdot10^{13}$	0.2	0.29	2.2	Данная работа и [14]

коричневой окраски, согласно [13], соответствует степени пластической деформации этих алмазов.

Характеристики исследованных нами образцов приведены в таблице. Из таблицы видно, что при увеличении интенсивности окраски, т.е. при увеличении степени деформации, удельное сопротивление алмазов уменьшается.

В рассматриваемых образцах нами исследована температурная зависимость электропроводности в диапазоне от комнатной температуры до температуры T = 673 K, не превосходящей температуру окисления алмаза 773 K.

Температурная зависимость электропроводности $\sigma(T)$ образцов алмаза приведена на рис. 1. Омические контакты были приготовлены на основе аквадага. Из прямолинейных участков зависимости $\sigma(T)$ в координатах рис. 1 были определены энергии активации электрически активных центров. Особенностью этих алмазов оказалось появление уровней с энергией активации ε_3 , что

Рис. 1. Температурные зависимости электропроводности образцов полупроводниковых алмазов типа Ic: АП-4 (1), АП-7 (2), АП-6 (3).

характерно для полупроводниковых алмазов типа IIb (см. таблицу).

По эффекту выпрямления установлено, что эти алмазы имеют так же дырочную проводимость, как и алмазы типа IIb. Знак носителей заряда определялся следующим образом. Измерялся ток между точечным контактом из вольфрама и алмазом. Ток носителей заряда увеличивался, когда отрицательный электрод источника питания присоединялся к зонду, и уменьшался, когда к нему присоединялся положительный электрод. Такая ситуация указывает на дырочный характер носителей заряда. Знак носителей заряда в пластически деформированных алмазах был также подтвержден положительным знаком термоэдс, который определялся на холодной стороне образца.

3. Пластическая деформация природных алмазов в лабораторных условиях

Для достоверности результатов, полученных при изучении электрических свойств алмазов типа Ic, были поставлены специальные эксперименты. Из "безазотных" изолирующих алмазов типа IIa с удельным сопротивлением $\rho = 10^{15} - 10^{16}$ Ом · см были отобраны четыре кристалла DN-3, DN-13, DN-39 и DN-40. Эти образцы были пластически деформированы при больших давлениях и высоких температурах в установке Ю.А. Литвина (Институт экспериментальной минералогии PAH) [14].

Деформация осуществлялась следущим образом. Кристаллы природного алмаза в специальной капсуле погружались в среду из мелких синтетических алмазов со средним размером зерна 0.2 мм. Эта капсула, в свою очередь, помещалась в камеру высокого давления и нагревалась до температур $\sim (1773-1873)$ К при давлениях $\sim (50-60)$ кбар. Каждый кристаллик вдавливался как индентор в алмазные грани исследуемого образца. Таким образом, в гранях алмаза типа На создавался пластически деформированный слой толщиной 10–50 мкм.

В результате такой обработки общее сопротивление образцов уменьшилось на 1-2 порядка. Удель-

Рис. 2. Температурные зависимости электропроводности одного из образцов алмазов типа Па АП-9 до (1) и после (2) деформации в лабораторных условиях. Участок a-b появился в результате деформации, энергия активации $\varepsilon_3 = 0.29$ эВ.

ное сопротивление деформированного слоя составляло $10^8 - 10^9$ Ом \cdot см.

Типичная температурная зависимость удельной электропроводности этих образцов в логарифмическом масштабе приведена на рис. 2. Она состоит из 3 прямолинейных участков, которые определяют энергии активации электрически активных центров: $\varepsilon_1 \approx 0.2$ эВ, $\varepsilon_3 \approx 2.9$ эВ и $\varepsilon_5 \approx 2.2$ эВ, На этом рисунке кривая 1 соответствует зависимости $\rho(T)$ образца до деформации, кривая 2 — после деформации. Участку a-b соответствует энергия ε_3 , проявившаяся в результате пластической деформации.

В соответствии с вышеприведенными соображениями об образовании дислокациями своей подзонной системы энергии электронов в запрещенной зоне алмазной матрицы за счет удлинения связей, в ядре ниже плоскости скольжения дислокаций образуются дислокационные заполненные и свободные полосы энергий.

Согласно нашим экспериментальным исследованиям дислокационных акцепторных центров, методом электронного парамагнитного резонанса (ЭПР) было установлено, что эти центры одновременно являются и парамагнитными. С одной стороны, было установлено, что концентрация ЭПР-центров убывает синхронно с ростом температуры и электропроводности с энергией активации $\varepsilon_3 \approx 0.29$ эВ. С другой стороны, при освещении образцов с длиной волны $\lambda \approx 0.6$ мкм (~ 2.0 эВ) в резонаторе ЭПР-спектрометра концентрация ЭПР-центров синхронно убывает с ростом фотопроводимости.

Эти эксперименты показали, что энергия ε_3 соответствует тепловым переходам электронов из ближайшей дислокационной заполненной полосы энергий на уровни дислокационных акцепторных центров, а энергия фотовозбуждения ~ 2 эВ соответствует переходам электронов из валентной зоны алмазной матрицы на те же уровни.

Полученные данные позволили уточнить положение как уровней дислокационых акцепторных центров в запрещенной зоне алмазной матрицы относительно потолка валентной зоны, так и ближайшей дислокационной заполненной полосы энергий, по которой осуществляется одномерная электрическая проводимость.

4. Обсуждение результатов

Экспериментальные результаты настоящего сообщения свидетельствуют о том, что именно пластическая деформация в природных и в лабораторных условиях переводит алмазы-изоляторы в алмазы-полупроводники.

Этот процесс справедлив как для "безазотных" алмазов типа IIa, так и для "азотных" алмазов типа I. Алмазы типа IIa переходят в полупроводниковые алмазы типа IIb, а алмазы с примесью азота типа I переходят в полупроводниковые алмазы типа Iс.

Нами экспериментально показано, что дислокации, возникшие в процессе пластической деформации алмаза, переводят монолитные монокристаллы в монокристаллы с мозаичной структурой. Блоки мозаики слегка разориентируются, между ними возникают дислокации, а дислокации образуют в запрещенной зоне алмазной матрицы свою энергетическую структуру [9,10]. Энергетическая дислокационная структура представляет собой разрешенные заполненные и свободные полосы энергий. Эти полосы локализованы вдоль осей дислокаций и, согласно [9], по этим полосам возможно движение носителей заряда. В соответствии с этими же работами дислокации придают кристаллу, который исходно является изолятором, свойства полупроводникового материала [15]. Это происходит, если ненасыщенные углеродные связи в ядре дислокаций с краевой компонентой, согласно представлениям Шокли [9], образуют дислокационные акцепторные уровни, которые и обеспечивают всем полупроводниковым алмазам (типа IIb и типа Ic) только дырочную проводимость.

К этому следует добавить, что удельное сопротивление алмазов типа Ic $(10^9-10^{15} \text{ Om} \cdot \text{сm})$ выше, чем полупроводниковых алмазов типа IIb $(50-10^8 \text{ Om} \cdot \text{сm})$. Этот результат может быть объяснен внутренней структурой алмазов типа I и особенностями их пластической деформации в природных условиях. С одной стороны, алмазы типа I содержат пластинчатые сегрегаты с включениями примесного азота [16]. Их линейные размеры колеблются от нескольких сот до ~ 1000 Å. Эти пластинчатые сегрегаты представляют собой барьеры для движения дислокаций, которые возникают при

пластической деформации. С другой стороны, анализ лауэграмм указывает на то, что пластически деформированные области в алмазах типа Іс изолированы друг от друга недеформированными, т. е. изолирующими, прослойками алмаза [13]. Дополнительно к этому наши наблюдения двулучепреломления в алмазах типа Іс в инфракрасных лучах также указывают на присутствие в этих алмазах пластически деформированных областей с разной степенью напряжения [17], отделенных друг от друга слоями ненапряженного алмаза с его обычными физическими свойствами.

Поэтому большая часть дислокаций и их дислокационная проводимость в алмазах типа Іс терпят разрывы на пластинчатых сегрегатах и на ненапряженных областях кристаллов. Именно эти основные факторы определяют достаточно высокое удельное сопротивление природных полупроводниковых алмазов типа Іс.

Более интенсивная пластическая деформация алмазов всех типов с удельным сопротивлением $10^{12} - 10^{14}$ Ом · см лазерным импульсным излучением приводит к образованию в них полупроводниобластей удельным сопротивлением ковых с $10^2 - 10^3$ Ом · см [18,19]. Полученный нами в [18,19] результат находится в соответствии с результатами работы [20], в которой было показано, что лазерное импульсное воздействие на монокристаллические пластины алмаза и кремния, имеющего структуру типа алмаза, производит следующие эффекты. При условии, что L < R (L — длина пробега дислокаций, R — радиус кратера), вокруг кратера образуется слой сильно деформированного кристалла. Его толщина равна ~ 0.3*R*. Если $L \approx R$, то вокруг кратера образуется дефектная структура из 6 сходящихся пучков дислокаций в направлениях (112). Если $L \gg R$, то образуются пучки дислокаций, расходящиеся от кратера по осям (110) алмазной решетки. Именно эти области алмаза с пучками дислокаций и были исследованы нами. Они обладают полупроводниковыми свойствами с указанными выше параметрами.

Энергии активации дислокационных акцепторных центров (0.29–0.35 эВ) практически близки и не зависят от типа алмазов, от степени и способа их деформации.

Из рис. 1 и таблицы следует, что с увеличением интенсивности пластической деформации в алмазах типа Іс протяженность участка температурной зависимости электропроводности, который описывается дислокационной энергией активации ε_3 , увеличивается. Последнее достаточно хорошо согласуется с температурной зависимостью проводимости полупроводниковых алмазов типа IIb.

Кроме этого известно, что в кристаллах дислокации извиваются между плоскостями скольжения. Это приводит к образованию порогов и ступенек, на которых носители заряда непременно испытывают скачки при своем движении. Следовательно, в случае переноса заряда по дислокационным полосам энергии температурная зависимость концентрации носителей будет описываться выражением Мотта, справедливым для неупорядоченных

Физика и техника полупроводников, 2010, том 44, вып. 9

полупроводников. Это позволяет отказаться от идеи компенсации акцепторных центров донорными. В природе полупроводниковых природных алмазов с электронной проводимостью *n*-типа при комнатных температурах не было обнаружено.

5. Основные выводы и заключение

Представленные результаты работы позволяют сделать следующие выводы.

— Исследование температурной зависимости электропроводности природных полупроводниковых алмазов типа Ic (алмазы типа I с примесью азота после пластической деформации их в природных условиях) позволило определить энергию активации электрически активных центров ε_3 ; ее значения для различных образцов лежат в интервале от 0.29 до 0.36 эВ.

— Уровни акцепторных центров с энергией активации ε_3 в полупроводниковых природных алмазах типа IIb и в полупроводниковых алмазах типа Ic возникают в результате пластической деформации в природных условиях.

— Так как пластическая деформация предполагает появление в алмазах обоих типов дислокаций, которые представляют собой протяженные структурные дефекты, образующие полосы энергий электронов и дислокационные акцепторные центры, полупроводниковая проводимость в этих алмазах имеет дислокационную природу.

— Пластическая деформация изолирующих алмазов в лабораторных условиях привела к уменьшению их удельного электрического сопротивления и к энергии активации дислокационных акцепторных центров 0.29 эВ, как и в полупроводниковых алмазах типа IIb и типа Ic.

— Экспериментальные исследования влияния деформации в лабораторных условиях на формирование электронных свойств алмаза показали, что пластическая деформация при больших давлениях и высоких температурах приводит к тем же свойствам алмаза, которые выявлены в природных полупроводниковых алмазах типа IIb и типа Ic.

Мы полагаем, что дислокационная концепция формирования электронных свойств широкозонных веществ, в том числе и алмаза, позволит создавать принципиально новые электронные устройства современной и будущей электроники.

Авторы выражают благодарность Ю.А. Литвину за помощь в работе.

Список литературы

- [1] I.F.H. Custers. Physica, 18, 489 (1952).
- [2] I.F.H. Custers. Physica, 20, 181 (1954).
- [3] В.С. Вавилов, Е.А. Конорова. УФН, **118** (4), 611 (1976).
- [4] В.К. Баженов, И.М. Викулин, А.Г. Гонтарь. ФТП, 19, 1345 (1985).

- [5] Г. Матаре. Электроника дефектов в полупроводниках (М., Мир, 1974).
- [6] Электронные свойства дислокаций в полупроводниках, под ред. Ю.А. Осипьяна (М., Эдиториал, УРСС, 2000).
- [7] A.R. Lang. In: *The Properties of Diamond*, ed. by J.E.Field (London – N.Y.–San Francisco, Academic Press, 1979) p. 425.
- [8] P.L. Hanley, I. Kiflawi, A.R. Lang. Phil. Trans. R. Soc. London A, 284, 329 (1977).
- [9] В.Л. Бонч-Бруевич, В.Б. Гласко. ФТТ, 3, 36 (1961).
- [10] В.Л. Бонч-Бруевич. ФТТ, **31**, 47 (1961).
- [11] W. Shockley. Phys. Rev., 91, 228 (1953).
- [12] Н.Д. Самсоненко, Г.Б. Бокий, В.И. Тимченко и др. ДАН СССР, **218**, 1336 (1974).
- [13] А.А. Урусовская, Ю.Л. Орлов. ДАН СССР, 154, 1099 (1964).
- [14] Н.Д. Самсоненко, Г.Б. Бокий, Ю.А. Литвин и др. ДАН СССР, 242, 826 (1978).
- [15] Н.Д. Самсоненко, В.И. Тимченко. Оптическая спектроскопия и электронный парамагнитный резонанс примесей и дефектов в алмазе (Кнев, ИСМ АН УССР, 1986) с. 8.
- [16] T. Evans, R.K. Wild. Phil. Mag., 12 (117), 479 (1965).
- [17] В.Н. Варюхин, Н.Д. Самсоненко, С.Н. Самсоненко, И.В. Сельская. Физика и техника высоких давлений, 11 (2), 7 (2001).
- [18] Н.Д. Самсоненко, В.И. Тимченко, В.А. Емец, Г.Б. Бокий. Кристаллография, **25**, 1300 (1980).
- [19] В.Н. Варюхин, Н.Д. Самсоненко, С.Н. Самсоненко, В.И. Тимченко, И.В. Сельская. Физика и техника высоких давлений, **11** (4), 30 (2001).
- [20] Л.И. Иванов, В.А. Янушкевич. Физика и химия обраб. материалов, № 6, 3 (1977).

Редактор Л.В. Шаронова

Dislocation electrical conductivity of plastic deformed natural diamonds

S.N. Samsonenko, N.D. Samsonenko, V.I. Timchenko

Donbass National Academy of Civil Engineering and Architecture, 86123 Makeevka, Ukraine

Abstract In this paper it was studied the temperature dependence of electrical conductivity in natural semiconducting Ic type diamonds. Activation energyies of dislocation acceptor centers $\varepsilon_3 = 0.29 - 0.36 \text{ eV}$ are obtained, directly related to plastic deformation. The plastic deformation of four natural IIa-type diamonds was carried out for proof of appearance of levels with the activation energy ε_3 in semiconductor diamonds, which had initial specific resistance about $10^{15} - 10^{16} \Omega \cdot \text{cm}$. As a result of the deformation, specific resistance diminished approximately one–two orders, and a new level typical for semiconductor diamonds, with energy $\varepsilon_3 = 0.29 \text{ eV}$ appeared. We suppose, that deformation induced dislocation centers not only in the type Ic diamonds, but also in the natural semiconductors type IIb diamonds.