Эффективные фотоэлектрические преобразователи ультрафиолетового излучения на основе ZnS и CdS с низкоомными поверхностными слоями

© Ю.Н. Бобренко, С.Ю. Павелец[¶], А.М. Павелец, М.П. Киселюк, Н.В. Ярошенко

Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины, 03028 Киев, Украина

(Получена 15 декабря 2009 г. Принята к печати 21 декабря 2009 г.)

Формирование в области пространственного заряда поверхностно-барьерных фотопреобразователей Cu_{1.8}S-CdS и Cu_{1.8}S-ZnS тонких высокоомного и низкоомного слоев приводит к существенному увеличению фоточувствительности и снижению темновых туннельно-рекомбинационных токов. Получены высокоэффективные и стабильные фотопреобразователи ультрафиолетового излучения на основе CdS и ZnS. Исследованы электрические и фотоэлектрические свойства и приведены основные эксплуатационные параметры фотопреобразователей ультрафиолетового излучения.

1. Введение

Эффективными структурами ультрафиолетовой (УФ) фотоэлектроники являются поверхностно-барьерные структуры — диоды Шоттки [1–4] и контакты двух полупроводников, один из которых сильно вырожден, например p-Cu_{1.8}S-n-A^{II}B^{VI} [5–11].

В случае фотопреобразователей (ФП) $Cu_{1.8}S - A^{II}B^{VI}$ при освещении со стороны $Cu_{1.8}S$ высокая чувствительность в УФ области спектра определяется как собственно поверхностно-барьерной структурой, для которой при используемых толщинах пленки $Cu_{1.8}S$ менее 10 нм реализуются условия максимального поглощения УФ излучения в области тянущего электрического поля, так и заметным вкладом в фототок горячих электронов, генерированных высокоэнергетическим излучением в слое $Cu_{1.8}S$ [5].

Для уменьшения характерных для ФП $Cu_{1.8}S-A^{II}B^{VI}$ темновых туннельно-рекомбинационных токов [12,13], ограничивающих возможности их практического применения, в работе [7] предлагается встраивать в CdS в область пространственного заряда (ОПЗ) тонкие высокоомные малодефектные прослойки. Указанная процедура приводит к уменьшению темновых токов на 3–4 порядка величины. Однако тонкий высокоомный слой, граничащий с $Cu_{1.8}S$, уменьшает тянущее электрическое поле в фотоактивной приповерхностной области, что приводит к снижению эффективности ФП.

Оказывается, что сохранение высокой квантовой эффективности возможно при дополнительном последовательном выращивании низкоомного поверхностного слоя. В настоящей работе исследуются свойства $\Phi\Pi$ на основе ZnS и CdS, в которых формируется низкоомная область, способствующая сохранению достаточной величины тянущего поля на границе раздела у освещаемой поверхности фоточувствительного полупроводника ZnS или CdS.

Для получения базовых фоточувствительных слоев ZnS и CdS применялся метод термического испарения с конденсацией в квазизамкнутом объеме [14]. Поликристаллические слои CdS толщиной 5-7 мкм с концентрацией основных носителей тока (электронов) $n = 10^{14} - 10^{15} \,\mathrm{cm}^{-3}$ выращивались на металлизированных диэлектрических подложках. Далее осаждался высокоомный слой CdS $(n = 10^{13} \text{ см}^{-3})$ толщиной $\sim 100 \text{ нм.}$ На высокоомный слой наращивался низкоомный слой CdS толщиной $t \approx 50$ нм с концентрацией электронов $n = 10^{15} - 10^{16} \text{ см}^{-3}$. Высокоомная прослойка, блокирующая туннельно-рекомбинационную компоненту темнового тока, может быть изготовлена также из селенида цинка [7]. Аналогичная структура изготавливалась и при использовании в качестве фоточувствительной составляющей ZnS. В этом случае концентрация носителей в низкоомном слое ZnS толшиной $t \approx 50$ нм была $n = 10^{13} - 10^{15} \,\mathrm{cm}^{-3}$, а в высокоомном слое толщиной $\sim 200 \text{ hm } n = 10^{11} - 10^{12} \text{ cm}^{-3}.$

Для создания ФП на указанные базовые слои с низкоомными поверхностными областями осаждался барьерообразующий слой сульфида меди *p*-типа проводимости, его стабильная модификация соответствует Cu_{1.8}S. Структура обладает определяющими признаками поверхностно-барьерной: электрическое поле из-за резкой асимметрии проводимостей контактирующих материалов (концентрация дырок в Cu_{1.8}S $p = 5 \cdot 10^{21}$ см⁻³) практически полностью сосредоточено в базовых слоях.

Общим для указанных структур ФП является наличие низкоомного слоя, который способствует оптимальному пространственному перераспределению поля контактной разности потенциалов с локализацией его максимальных значений в приповерхностной области, в которой происходит максимальное поглощение УФ излучения. Указанную ситуацию отражает качественная энергетическая диаграмма ФП Cu_{1.8}S-CdS, представленная на рис. 1.

^{2.} Структура фотопреобразователей и энергетическая зонная диаграмма *p*-*n*-гетероперехода

[¶] E-mail: pavelets@voliacable.com

Рис. 1. Энергетическая зонная диаграмма гетероперехода $Cu_{1.8}S-CdS$ с низкоомным поверхностным слоем. Штриховая кривая — ход зоны проводимости CdS до нанесения $Cu_{1.8}S$. F — уровень Фреми, c — зона проводимости, v — валентная зона, t — ширина низкоомной области.

Штриховая кривая на диаграмме указывает на то, что до нанесения Cu_{1.8}S в базовом слое в равновесном состоянии существует ОПЗ n-n-перехода. Величина барьера $e\varphi_1 = -eU_{d1}$ равняется разности энергий уровней Ферми высокоомной и низкоомной частей CdS.

После нанесения Cu_{1.8}S контактная разность потенциалов φ_k компенсирует потенциальный барьер φ_1 и, поскольку $\varphi_k > \varphi_1$, происходит образование противоположного по знаку потенциального барьера $\varphi = -U_d$. Очевидно, что величина $e\varphi$ будет равняться разности работ выхода Cu_{1.8}S и высокоомной части CdS. На диаграмме (рис. 1) низкоомной части соответствует более крутой ход $\varphi(x)$ и, следовательно, бо́лышие значения тянущего электрического поля $E = d\varphi/dx$ в приповерхностной области CdS толщиной *t*.

Энергетическая зонная диаграмма для $\Phi\Pi$ Cu_{1.8}S–ZnS качественно соответствует приведенной на рис. 1.

3. Экспериментальные результаты и их обсуждение

На рис. 2 приведены спектры фототока ФП. Кривые 4 и 3 соответствуют ФП $Cu_{1.8}S$ -ZnS соответственно с низкоомным слоем и без него. Заметно увеличение

чувствительности во всей области спектра при введении низкоомного слоя. Более существенное повышение фоточувствительности при наращивании низкоомного слоя в приповерхностной области получено для ФП Cu_{1.8}S-CdS. Этот случай иллюстрирует кривая 2 на рис. 2. Наблюдаемые абсолютные значения фототока соответствуют лучшим показателям для известных УФ датчиков. Так, чувствительность в бактерицидной области солнечного излучения при длине волны $\lambda = 254$ нм достигает значений 120 мА/Вт.

Обратные ветви вольт-амперных характеристик (ВАХ) всех исследованных структур не обнаруживают отклонений от ранее наблюдавшихся ВАХ переходов Cu_{1.8}S-A^{II}B^{VI} [7,12,13]. Необычные ВАХ структур с низкоомными поверхностными слоями наблюдаются при прямых смещающих напряжениях.

На рис. 3 представлены прямые ветви ВАХ исследуемых ФП с фотоактивной площадью, равной 10 мм². Кривая 1 — типичная ВАХ для переходов Cu_{1.8}S–CdS с неоптимизированной ОПЗ. Значительное уменьшение темновых токов (на 2.5–3 порядка величины) при введении высокоомной прослойки иллюстрируется кривой 2 (рис. 3). Зависимость тока от напряжения всегда экспоненциальная. Дифференциальное сопротивление составляет $R_d > 10^9$ Ом (при внешнем смещающем напряжении 10 мВ).

Введение высокоомного слоя, как указывалось выше, приводит к уменьшению фоточувствительности и требует дополнительного наращивания низкоомного слоя. ВАХ ФП Cu_{1.8}S–CdS с низкоомным слоем соответствует кривая *3* на рис. 3. Видно, что при низких значениях *U* ВАХ практически совпадает с кривой *2*. Однако в отличие от ФП, не имеющего низкоомной прослойки (кривая *2*), при U > 0.3 В экспоненциальный участок зависимости тока от напряжения сменяется участком, на котором ток с увеличением напряжения стремится к насыщению. Аналогичная ВАХ наблюдается и для ФП

Рис. 2. Спектры фототока преобразователей $Cu_{1.8}S-CdS$ (1,2) и $Cu_{1.8}S-ZnS$ (3,4) без низкоомного слоя (1,3) и с низкоомным слоем (2,4).

Рис. 3. Прямые ветви ВАХ преобразователей: $Cu_{1.8}S-CdS$ без прослоек (1), с высокоомным слоем (2), последовательно расположенными высокоомным и низкоомным слоями (3, 5) и $Cu_{1.8}S-ZnS$ с высокоомным и низкоомным слоями (4). (1-4) — логарифмический масштаб токов (левая шкала), 5 — линейный масштаб токов (правая шкала).

 $Cu_{1.8}S-ZnS$ (кривая 4). Стремление тока к насыщению при увеличении положительного напряжения наглядно иллюстрирует также BAX ФП $Cu_{1.8}S-CdS$, представленная в линейном масштабе (кривая 5).

Рассмотренные особенности прямых ветвей ВАХ структур с низкоомным поверхностным слоем могут быть интерпретированы с помощью модели диода с двойным насыщением [1]; существование такого диода возможно, например, при наличии тыльного запорного контакта. Однако, как следует из приведенных далее вольт-фарадных (ВФХ) и нагрузочных характеристик, указанная модель не реализуется.

Для модели диода с двойным насыщением (или двух включенных последовательно с противоположной полярностью диодов Шоттки) емкость *C* будет уменьшаться с увеличением напряжения *U*, приложенного как в прямом, так и в обратном направлении. Как видно из рис. 4, для исследованных структур наблюдается иная картина. Емкость при отрицательных смещающих напряжениях уменьшается, а при положительных увеличивается. Необычным для данных ВФХ является наблюдаемое уменьшение емкости при прямых смещающих напряжениях U > 0.3 В для ФП Cu_{1.8}S–CdS и при *U* > 0.5 В для ФП Cu_{1.8}S–ZnS, т.е. при тех же напряжениях, при которых наблюдаются "искажения" ВАХ.

Кроме того, очевидно, что диод с двойным насыщением не может быть эффективным фотопреобразователем из-за большого последовательного сопротивления структуры. Для нашего случая это не так, что следует из высокой спектральной чувствительности ФП (рис. 2). Последнее подтверждается и экспериментальными нагрузочными ВАХ, представленными на рис. 5.

Отличительной особенностью структур с низкоомными поверхностными слоями является наличие изгиба на ВАХ около точек U_{oc1} и U_{oc2} соответственно для ФП Cu_{1.8}S–CdS и Cu_{1.8}S–ZnS (рис. 5). Указанное поведение согласуется с темновыми ВАХ (рис. 3). Изгиб, очевидно, приводит к уменьшению коэффициента заполнения ВАХ, однако, как видно из рисунка, при малых сопротивлениях нагрузки (в режиме, близком к режиму тока короткого замыкания) "искажения" темновых ВАХ не сказываются на работе УФ датчика, что подтверждается высокой ампер-ваттной чувствительностью и динамическим диапазоном детектируемых мощностей: не менее 6 порядков величины.

Рис. 4. Вольт-фарадные характеристики преобразователей с низкоомными поверхностными слоями: *1* — Cu_{1.8}S–CdS, *2* — Cu_{1.8}S–ZnS. Частота переменного сигнала 3 кГц; площадь ФП 10 мм².

Рис. 5. Нагрузочные ВАХ с низкоомными поверхностными слоями: $I - Cu_{1.8}S-CdS$, $2 - Cu_{1.8}S-ZnS$. U_{oc1} и U_{oc2} — напряжения холостого хода. Условия освещения: ртутная лампа с эквивалентной мощностью 1 мВт/см²; площадь ФП 10 мм².

Физика и техника полупроводников, 2010, том 44, вып. 8

Рассмотренные выше закономерности, наиболее вероятно, связаны с существованием скрытого n-n-гомоперехода, который начинает проявляться при положительных смещениях $U > \varphi$. При этом происходит увеличение ОПЗ, которая существует между низкоомной и высокоомной частями базового слоя. Последнее и приводит при увеличении внешнего положительного смещения к ограничению темнового тока (кривые 3, 4, 5 на рис. 3) и уменьшению емкости структуры (рис. 4).

4. Заключение

Проведенные исследования показывают, что последовательное наращивание высокоомного и низкоомного слоев, расположенных в ОПЗ поверхностно-барьерных структур Cu_{1.8}S-CdS и Cu_{1.8}S-ZnS, позволяет значительно улучшить электрические и фотоэлектрические характеристики УФ фотопреобразователей на их основе. Высокоомные прослойки снижают туннельнорекомбинационные токи более чем на 3 порядка величины. Следует отметить, что достигнутые параметры ВАХ для исследуемых тонкопленочных поликристаллических структур не уступают таковым, характерным для лучших аналогов в монокристаллическом исполнении [7]. Низкоомный поверхностный слой способствует перераспределению тянущего электрического поля с локализацией его максимальных значений в области ФП, в которой происходит максимальное поглощение УФ излучения. Наблюдаемые закономерности электрических характеристик при больших прямых смещающих напряжениях объясняются наличием скрытого *n*-*n*-перехода и не мешают достижению высоких эксплуатационных параметров ФП. Высокая фоточувствительность, близкие к предельным оптимальные электрические характеристики и стабильность эксплуатационных параметров делают разработанные структуры одними из лучших среди известных сенсоров УФ излучения. Высокая стабильность параметров структур *p*-Cu_{1 8}S-*n*-A^{II}B^{VI} при жестком УФ излучении подтверждена измерениями на синхротроне (метрологическая организация ГНМЦ ВНИИО ФИ, Москва).

Список литературы

- [1] А. Милнс, Д. Фойхт. Гетеропереходы и переходы металл-полупроводник (М., Мир, 1975).
- [2] С.С. Кильчицкая, В.И. Стриха. В сб.: Оптоэлектроника и полупроводниковая техника (Киев, Наук. думка, 1986) вып. 10, с. 3.
- [3] Т.В. Бланк, Ю.А. Гольдберг. ФТП, 37, 1025 (2003).
- [4] K. Hiramatsu, Motogatio. Phys. Status Solidi A, 195, 496 (2003).
- [5] Ю.Н. Бобренко, А.М. Павелец, С.Ю. Павелец, В.М. Ткаченко. Письма ЖТФ, 20 (12), 9 (1994).
- [6] Ю.Н. Бобренко, А.М. Павелец, С.Ю. Павелец, Т.Е. Шенгелия. ФТП, 29, 750 (1995).
- [7] С.Ю. Павелец, Ю.Н. Бобренко, А.В. Комащенко, Т.Е. Шенгелия. ФТП, 35, 626 (2001).

- [8] С.Ю. Павелец, Ю.Н. Бобренко, А.М. Павелец, М.Н. Кретулис. В сб.: Оптоэлектроника и полупроводниковая техника (Киев, Наук. думка, 2002) вып. 37, с. 106.
- [9] Ю.Н. Бобренко, С.Ю. Павелец, А.М. Павелец. Приборы и техника эксперимента, № 6, 107 (2007).
- [10] С.Ю. Павелец, А.А. Стадник, О.А. Мишук, А.М. Павелец. В сб.: Оптоэлектроника и полупроводниковая техника (Киев, Наук. думка, 2005) вып. 40, с. 149.
- [11] Ю.Н. Бобренко, С.Ю. Павелец, А.М. Павелец. ФТП, 43, 830 (2009).
- [12] С.Ю. Павелец, Т.М. Сванидзе, В.П. Тарасенко. ФТП, 17, 1330 (1983).
- [13] С.Ю. Павелец, Т.М. Сванидзе, В.П. Тарасенко. Укр. физ. журн., 18, 581 (1983).
- [14] Ю.З. Зубнов, М.С. Лурье, Ф.Г. Старх, Г.А. Филаретов. Вакуумное нанесение пленок в квазизамкнутом объеме (М., Сов. радио, 1975).

Редактор Л.В. Шаронова

Efficient photoelectric converters of ultraviolet radiation based on ZnS and CdS with low-resistance surface layers

Yu. N. Bobrenko, S.Yu. Pavelets, A.M. Pavelets, M.P. Kiselyuk, N.V. Yaroshenko

V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kiev, Ukraine

Abstract Formation of thin high- and low-resistance layers in the space-charge region of $Cu_{1.8}S-CdS$ and $Cu_{1.8}S-ZnS$ surface barrier photoconverters results in essential increase of photosensitivity and reduction of dark tunnel-recombination currents. We obtained highly efficient and stable ultraviolet photoconverters based on CdS and ZnS and studied their electrical and photoelectrical properties. The main operational parameters of photoconverters are presented.