Двухэлектронные центры олова, образующиеся в стеклообразных халькогенидах мышьяка в результате ядерных превращений

© Г.А. Бордовский, П.В. Гладких, М.Ю. Кожокарь, А.В. Марченко, П.П. Серегин[¶], Е.И. Теруков*

Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия * Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 20 января 2010 г. Принята к печати 27 января 2010 г.)

Примесные атомы ^{119m}Sn, образующиеся после радиоактивного превращения материнских атомов ^{119mm}Sn в структуре стекол As_2S_3 , As_2Se_3 и As_2Te_3 , входят в состав стекла в виде структурных единиц, отвечающих четырехвалентному олову. Примесные атомы ^{119m}Sn, образующиеся после радиоактивного распада атомов ¹¹⁹Sb в структуре стекол As_2S_3 и As_2Se_3 , локализуются в узлах мышьяка и играют роль двухэлектронных центров с отрицательной корреляционной энергией. Для стекла As_2Te_3 аналогичным образом образующиеся атомы ^{119m}Sn электрически неактивны. Бо́льшая часть дочерних атомов ^{119m}Sn, образующихся после радиоактивного распада материнских атомов ^{119m}Te в стеклах As_2S_3 , As_2Se_3 и As_2Te_3 , находится в узлах халькогенидов, и они электрически неактивны. Значительная энергия отдачи дочерних атомов в случае распада ^{119m}Te приводит к появлению смещенных атомов ^{119m}Sn.

1. Введение

Если точечный дефект при взаимодействии с кристаллической решеткой полупроводника способен отдавать (принимать) два электрона, то в запрещенной зоне полупроводника образуются две полосы локализованных состояний, разделенных величиной энергии

$$U = E_2 - E_1, \tag{1}$$

где E_1 и E_2 — первая и вторая энергии ионизации центра.

Если U < 0, то возникает схема уровней, для обозначения которой приняты термины "двухэлектронные центры с отрицательной корреляционной энергией" (или U^- -центры). U^- -центры могут существовать в трех зарядовых состояниях, которые обозначаются для донорных дефектов как M^{2+} , M^+ и M^0 и соответствуют наличию 0, 1 и 2 электронов на центре соответственно.

Существенной особенностью U^- -центров является нестабильность их промежуточного (однократно ионизованного) зарядового состояния. Каждой паре однократно ионизованных центров энергетически выгодно распасться на один нейтральный и один двукратно ионизованный центры:

$$2M^+ \to M^0 + M^{2+}.$$
 (2)

Идеология U^- -центров в общем виде была использована Андерсеном [1] для объяснения электрических, термических и магнитных свойств халькогенидных стеклообразных полупроводников (ХСП). Детально механизмы влияния U^- -центров на электрические и оптические свойства ХСП были рассмотрены в монографии [2]. Однако попытки ообнаружить U^- -центры в ХСП экспериментальными методами, позволяющими идентифицировать зарядовое и координационное состояния иссле-

дуемого атома, не были успешными [3], хотя для примесных атомов олова в халькогенидах свинца методом мессбауэровской спектроскопии на изотопе ¹¹⁹Sn такие центры были идентифицированы [4].

В настоящей работе для исследования состояния примесных атомов олова в стеклообразных халькогенидах мышьяка используется эмиссионный вариант мессбауэровской спектроскопии на изотопе ¹¹⁹Sn, когда в исследуемое стекло вводится радиоактивный материнский изотоп, после распада которого образуется дочерний атом ^{119m}Sn. Эмиссионный вариант спектроскопии позволяет исследовать примесные атомы с предельной концентрацией ~ 10^{17} см⁻³, что является принципиально важным из-за малой растворимости олова в халькогенидах мышьяка [5]. Схемы распада материнских атомов ^{119mm}Sn, ¹¹⁹Sb и ^{119m}Te приведены на рис. 1, и видно,

Рис. 1. Схемы распада ^{119*mm*}Sn, ¹¹⁹Sb и ^{119*m*}Te.

[¶] E-mail: ppseregin@mail.ru

Образец	Состояние	Спектр Sn ⁴⁺			Спектр Sn-IV			Спектр Sn ²⁺				Спектр Sn ⁰		
		IS	G	S	IS	G	S	IS	QS	G	S	IS	G	S
As_2S_3 : ^{119mm} Sn	Стекло	1.53	1.15	1.00										
As_2Se_3 : ^{119mm} Sn	»	1.83	1.16	1.00										
As ₂ Te ₃ : ^{119mm} Sn	»				2.10	1.15	1.00							
As_2S_3 : ¹¹⁹ Sb	»	1.44	1.17	0.74				3.95	0.72	0.95	0.26			
As ₂ Se ₃ : ¹¹⁹ Sb	»	1.75	1.18	0.72				3.81	0.55	0.96	0.28			
As ₂ Te ₃ : ¹¹⁹ Sb	»							3.65	0.20	0.98	1.00			
As_2S_3 : ^{119m} Te	»	1.47	1.42	0.72								2.65	1.35	0.28
As_2Se_3 : ^{119m} Te	»	1.72	1.35	0.81								2.67	1.33	0.19
As_2Te_3 : ^{119m} Te	»							3.45	0.20	0.95	0.84	2.61	1.28	0.16
SnS	Кристалл							3.44	0.90	0.80	1.00			
SnS_2	»	1.30	0.80	1.00										
SnSe	»							3.45	0.65	0.80	1.00			
SnSe ₂	»	1.65	0.80	1.00										
SnTe	»							3.55	0.20	0.95	1.00			
SnAs	»											2.70	1.20	1.00
β -Sn	»											2.70	0.85	1.00
α -Sn	»				2.00	0.85	1.00							
Ge _{19.5} Sn _{0.5} Te ₈₀	Стекло				2.07	1.03	1.00							

Параметры мессбауэровских спектров A_2X_3 : ^{119*mm*}Sn, A_2X_3 : ¹¹⁹Sb, A_2X_3 : ^{119*m*}Te и соединений олова

Примечание. Изомерный сдвиг IS, квадрупольное расщепление QS, ширина спектральной линии G приведены в мм/с, площадь под нормированным мессбауэровским спектром S в отн. ед. Погрешности измерения этих величин составляли ±0.02 мм/с, ±0.03 мм/с, ±0.03 мм/с и ±0.03 отн. ед. соответственно.

что в зависимости от химический природы материнского изотопа возможно введение дочернего атома либо в структурную сетку, образованную атомами мышьяка (материнские атомы 119 Sb), либо в структурную сетку, образованную атомами халькогена (материнские атомы 119m Te). При использовании материнских атомов 119mm Sn место локализации дочерних атомов заранее не очевидно.

2. Методика эксперимента

Объектами исследований служили стеклообразные соединения As_2X_3 (X = S, Se, Te). Мессбаэровские источники готовили путем сплавления готовых стеклообразных образцов с металлическим оловом, меченым изотопом ^{119mm}Sn, и безносительными препаратами ¹⁹⁹Sb и ^{119m}Te, так что оценочная концентрация примесных атомов олова в образцах не превышала 10¹⁸ см⁻³, а сурьмы и теллура — 10^{17} см⁻³. Для перевода As₂Te₃, легированного ^{119mm}Sn, ¹¹⁹Sb и ^{119m}Te, в стеклообразное состояние расплав выливался на полированную металлическую плиту, охлажденную жидким азотом. Стеклообразные As_2S_3 и As_2Se_3 , легированные ^{119mm}Sn, ¹¹⁹Sb и ^{119m}Te, получали закалкой расплава на воздухе. Критериями стеклообразного состояния служили раковистый излом, отсутствие линий на дебаеграммах, отсутствие включений и неоднородностей при просмотре полированных поверхностей в металлографическом микроскопе МИМ-7 и инфракрасном микроскопе МИК-1. Рентгенофазовый анализ не показал в стеклообразных образцах присутствия кристаллической фазы. Состав стекол контролировался методом рентгенофлуоресцентного анализа. [6].

Эмиссионные массбауэровские спектры снимались при 80 К. В качестве стандартного поглотителя использовался CaSnO₃ с поверхностной плотностью 0.1 мг/см² по изотопу ¹¹⁹Sn. Мессбауэровский спектр указанного поглотителя с источником Ca^{119mm}SnO₃ представляет собой одиночную линию с шириной на полувысоте $G = (0.80 \pm 0.02)$ мм/с, которая принималась за аппаратурную ширину спектральной линии. Исследуемые образцы халькогенидов мышьяка, легированные материнскими атомами ^{119mm}Sn, ¹¹⁹Sb и ^{119m}Te, служили источниками.

Для идентификации зарядового состояния олова в стеклообразных халькогенидах мышьяка были измерены абсорбционные мессбауэровские спектры $^{119} \mathrm{Sn}$ соединений четырехвалентного (Sn^{4+}) и двухвалентного олова (Sn^{2+}) , а также соединений олова с металлической (Sn^{0}) и ковалентной тетраэдрической связью (Sn–IV). Спектры измерялись при 80 K с источником Ca $^{119mm} \mathrm{SnO}_3$.

Изомерные сдвиги мессбауэровских спектров ^{119m}Sn и ¹¹⁹Sn приводятся относительно поглотителя ^{119m}SnO₂.

3. Экспериментальные результаты и их обсуждение

3.1. Материнские атомы ^{119mm}Sn

Мессбауэровские спектры образцов As_2X_3 : ^{119*mm*}Sn (рис. 2) представляли собой одиночные несколько уширенные линии, изомерные сдвиги которых сведены

Рис. 2. Мессбауэровские спектры As_2S_3 :^{119*mm*}Sn (*a*), As_2Se_3 :^{119*mm*}Sn (*b*) и As_2Te_3 :^{119*mm*}Sn (*c*). Показано положение линий, отвечающих центрам ^{119*m*}Sn⁴⁺ и ^{119*m*}Sn–IV.

в таблицу. В таблице приведены также параметры мессбауэровских спектров бинарных соединений олова с мышьяком и халькогенами, и видно, что мессбауэровские спектры As_2S_3 : ^{119mm}Sn и As_2Se_3 : ^{119mm}Sn отвечают атомам ^{119m}Sn⁴⁺, образующим структурные единицы, характерные для соединений SnS₂ и SnSe₂. В бинарной системе Sn-Te отсутствуют соединения четырехвалентного олова, и поэтому можно заключить, что олово в структурные единицы, не отвечающие традиционным соединениям олова и теллура (такие же структурные единицы, не отвечающие традиционным соединениям олово образует в стекле Ge_{19,5}Sn_{0.5}Te₈₀ [7]).

Конвертированный изомерный переход 65 кэВ в материнском изотопе ^{119mm}Sn сопровождается оже-процессом и приводит к возникновению высокозаряженных ионов дочерних атомов ^{119m}Sn. Эти ионы за время, много меньшее времени жизни мессбауэровского уровня ^{119m}Sn $\tau_0 \approx 18$ нс, переходят в зарядовое состояние, отвечающее зарядовому состоянию материнских атомов ^{119mm}Sn [8]. Иными словами, материнские атомы олова в структуре стекол As₂X₃ стабилизируются в состоянии ^{119mm}Sn⁴⁺.

3.2. Материнские атомы ¹¹⁹Sb

Мессбауэровские спектры As_2S_3 :¹¹⁹Sb и As_2Se_3 :¹¹⁹Sb представляют собой наложение одиночной уширенной линии, изомерный сдвиг которой отвечает ^{119m}Sn⁴⁺ (и близок к изомерному сдвигу соединений SnS₂ и SnSe₂ соответственно), и плохо разрешенного квадрупольного

дублета, изомерный сдвиг которого типичен для соединений Sn^{2+} (см. рис. 3, *a*, *b* и таблицу).

Спектр As_2Te_3 :¹¹⁹Sb представляет собой одиночную несколько уширенную линию, изомерный сдвиг которой отвечает ^{119m}Sn²⁺ и близок к изомерному сдвигу соединения SnTe (см. таблицу).

интерпретации мессбауэровских спектров При As₂X₃:¹¹⁹Sb мы исходили из предположения изовалентного замещения атомами трехвалентной сурьмы атомов трехвалентного мышьяка в структурной сетке стекла. Методом ядерного квадрупольного резонанса (ЯКР) на изотопе 75 As в структуре кристаллических As₂S₃ и As₂Se₃ идентифицированы две структурно неэквивалентные позиции атомов мышьяка, тогда как в спектрах ЯКР ⁷⁵Аs стеклообразных соединений наблюдается одна широкая линия [9,10]. Таким образом, и в мессбауэровских спектрах As₂S₃:¹¹⁹Sb и As₂Se₃:¹¹⁹Sb следовало ожидать появления одного состояния атомов ^{119m}Sn. Однако следует иметь в виду, что в случае материнских ядер ¹¹⁹Sb образованию мессбауэровского уровня ^{119m}Sn предшествует электронный захват, сопровождаемый испусканием нейтрино. Таким образом, при указанном радиоактивном распаде возможно появление смещенных дочерних атомов ^{119m}Sn, причем вероятность появления таких атомов зависит от соотношения энергии отдачи

Рис. 3. Мессбауэровские спектры As_2S_3 :¹¹⁹Sb (*a*), As_2Se_3 :¹¹⁹Sb (*b*) и As_2Te_3 :¹¹⁹Sb (*c*). Показано положение линий, отвечающих центрам ^{119m}Sn²⁺ и ^{119m}Sn⁴⁺.

Физика и техника полупроводников, 2010, том 44, вып. 8

дочернего ядра и пороговой энергии смещения атмов ~ 25 эВ. Максимальная энергия отдачи для дочернего зонда при распаде $^{119}{\rm Sb} \rightarrow ^{119m}{\rm Sn}$ составляет ~ 1.4 эВ и, следовательно, параметры эмиссионных мессбауэровских спектров $As_2X_3:^{119}{\rm Sb}$ отражают зарядовое состояние и симметрию локального окружения атомов $^{119m}{\rm Sn}$, локализованных в узлах атомов мышьяка. Именно этим объясняется некоторое различие в параметрах мессбауэровских спектров $As_2X_3:^{119}{\rm Sb}$ и халькогенидов олова.

Электронный распад ¹¹⁹Sb сопровождается также ожепроцессом и появлением высокозаряженных дочерних атомов ^{119m}Sn. Эти ионы за время, много меньшее $\tau_0 \approx 18$ нс, переходят в зарядовое состояние, отвечающее зарядовому состоянию материнских атомов ¹¹⁹Sb. Поскольку трехвалентное состояние не характерно для соединений олова, протекает процесс диспропорционирования

$$2\mathrm{Sn}^{3+} \to \mathrm{Sn}^{2+} + \mathrm{Sn}^{4+},$$
 (3)

который проявляется в мессбауэровских спектрах As_2S_3 :¹¹⁹Sb и As_2Se_3 :¹¹⁹Sb в виде появления линий, отвечающих состояниям ^{119m}Sn²⁺ и ^{119m}Sn⁴⁺.

Сравнивая уравнения (2) и (3), можно заключить, что состояния Sn^{2+} и Sn^{4+} в мессбауэровских спектрах $\mathrm{As_2S_3:}^{119}\mathrm{Sb}$ и $\mathrm{As_2Se_3:}^{119}\mathrm{Sb}$ отвечают нейтральному и двукратно ионизованному состояниям двухэлектронных центров олова, находящихся в узлах структурной сетки, образованной атомами мышьяка. Отсутствие в указанных спектрах линий, отвечающих Sn^{3+} (однократно ионизованное состояние центров олова), указывает на то, что корреляционная энергия (1) для этих центров отрицательна.

Отсутствие в мессбауэровском спектре As_2Te_3 :¹¹⁹Sb линии Sn⁴⁺ указывает на электрическую неактивность примесных центров олова. Отметим, что аналогичное поведение примесных атомов олова наблюдается и для халькогенидов свинца [4].

3.3. Материнские атомы ^{119m}Те

Типичные спектры образцов As_2X_3 :^{119*m*}Те приведены на рис. 4. Видно, что экспериментальные спектры представляют собой наложение двух уширенных линий. Интенсивная линия (площадь под ней составляет ~ 85% от площади всего спектра) имеет изомерный сдвиг, практически одинаковый для всех стекол, который отвечает атомам олова, имеющим в своем окружении атомы мышьяка. Этот спектр следует приписать центрам олова, образовавшимся после распада материнских атомов ^{119*m*}Те, находящихся в структурной сетке, образованной атомами халькогенида.

Образованию мессбауэровского уровня 119m Sn предшествует двойной электронный захват, причем максимальная энергия отдачи для дочернего зонда составляет ~ 24 эВ. Это позволяет ожидать в мессбауэровских спектрах $As_2X_3:^{119m}$ Те появления как состояний, отвечающих атомам 119m Sn в узлах структурной сетки, образованной атомами халькогена, так и состояний,

Рис. 4. Мессбауэровские спектры As_2S_3 :^{119m}Te (*a*), As_2Se_3 :^{119m}Te (*b*) и As_2Te_3 :^{119m}Te (*c*). Показано положение линий, отвечающих центрам ^{119m}Sn²⁺, ^{119m}Sn⁴⁺ и ^{119m}Sn⁰.

отвечающих атомам олова, смещенным из этих узлов. Менее интенсивная линия имеет измерный сдвиг, зависящий от химической природы халькогена, и она отвечает центрам 119m Sn⁴⁺, сместившимся за счет энергии отдачи из структурной сетки, образованной атомами халькогена.

4. Заключение

Примесные атомы ^{119m}Sn, образующиеся после радиоактивного превращения материнских атомов ^{119mm}Sn в структуре стекол As_2S_3 , As_2Se_3 и As_2Te_3 , входят в состав стекла в виде структурных единиц, отвечающих четырехвалентному олову. Примесные атомы ^{119m}Sn, образующиеся после радиоактивного распада атомов ¹¹⁹Sb в структуре стекол As_2S_3 и As_2Se_3 , локализуются в узлах мышьяка и играют роль двухэлектронных центров с отрицательной корреляционной энергией. Для стекла As_2Te_3 аналогичными образом образующиеся атомы ^{119m}Sn электрически неактивны. Бо́лышая часть дочерних атомов ^{119m}Sn, образующихся после радиоактивного распада материнских атомов ^{119m}Te в стеклах As_2S_3 , As_2Se_3 и As_2Te_3 , находится в узлах халькогенов, и они электрически неактивны. Значительная энергия отдачи дочерних атомов в случае распада ^{119m}Te приводит к появлению смещенных атомов ^{119m}Sn.

Работа финансировалась в рамках федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" (гос. контракт 02.740.11.0544)

Список литературы

- [1] P.W. Anderson. Phys. Rev. Lett., 34 (15), 953 (1975).
- [2] Электронные явления в халькогенидных стеклообразных полупроводниках (СПб., Наука, 1996).
- [3] Г.А. Бордовский, А.В. Марченко, П.П. Серегин, Е.И. Теруков. ФТП, 43 (1), 7 (2009).
- [4] Г.А. Бордовский, С.А. Немов, А.В. Марченко, П.П. Серегин, А.В. Зайцева. ФТП, 42 (10), 1172 (2008).
- [5] N.P. Seregin, P.P. Seregin, S.A. Nemov, A.Yu. Yanvareva. J. Phys.: Condens. Matter, 15, 7591 (2003).
- [6] Г.А. Бордовский, А.В. Марченко, П.П. Серегин, Н.Н. Смирнова, Е.И. Теруков. ФТП, 44 (1), 26 (2010).
- [7] Г.А. Бордовский, Е.И. Теруков, Н.И. Анисимова, А.В. Марченко, П.П. Серегин. ФТП, **43** (9), 1232 (2009).
- [8] П.П. Серегин. Физические основы мессбауэровской спектроскопии (СПб., Изд-во СПбГПУ, 2002).
- [9] T. Su, P. Hari, E. Ahn, P.C. Taylor, P.L. Kuhns, W.G. Moulton, N.S. Sullivan. Phys. Rev. B, 67, 085 201 (2003).
- [10] И.П. Корнева, Н.Я. Синявский, М. Ostafin, В. Nogaj. ФТП, 40 (9), 1120 (2006).

Редактор Л.В. Шаронова

Two-electron tin centres arising in glassy chalcogenides of arsenic due to nuclear reactions

G.A. Bordovsky, P.V. Gladkikh, M.Yu. Kozhokar, A.V. Marchenko, P.P. Seregin, E.I. Terukov*

Alexander Herzen State Pedagogical University, 191186 St. Petersburg, Russia * loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Impurity atoms ^{119m}Sn, arising after radioactive decay of parent atoms ^{119mm}Sn in the structure of the glasses As₂S₃, As₂Se₃ and As₂Te₃ are a part of glass in the form of the structural units adequating to tetravalent tin. Impurity atoms ^{119m}Sn formed as a result of radioactive decay of atoms ¹¹⁹Sb in the structure of the glasses As₂S₃ and As₂Se₃ are localized in sites of arsenic and play a role of two-electronic centers with negative correlation energy. For the glass As₂Te₃ similarly formed atoms ^{119m}Sb are electrically inactive. The most part of daughter atoms ^{119m}Sn, arising after radioactive decay of ^{119m}Te in the glasses As₂S₃, As₂Se₃ and As₂Te₃, are in chalcogene sites and they are electrically inactive. Significant recoil energy of daughter atoms in the case of radioactive decay ^{119m}Te leads to occurrence of the displaced atoms ^{119m}Sn.