Двухканальные псевдоморфные HEMT-гетероструктуры InGaAs/AIGaAs/GaAs с импульсным легированием

© А.Ю. Егоров[¶], А.Г. Гладышев, Е.В. Никитина, Д.В. Денисов, Н.К. Поляков, Е.В. Пирогов, А.А. Горбацевич

Санкт-Петербургский физико-технический научно-образовательный центр Российской академии наук, 195220 Санкт-Петербург, Россия

(Получена 23 ноября 2009 г. Принята к печати 27 ноября 2009 г.)

Двухканальные псевдоморфные HEMT-гетероструктуры InGaAs/AlGaAs/GaAs с импульсным легированием (δ -легированием) реализованы методом молекулярно-пучковой эпитаксии на многоподложечной промышленной установке. Подвижность электронов при комнатной температуре, определенная методом Холла, составляет 6550 и 6000 см²/В · с при концентрации электронов в канале $3.00 \cdot 10^{12}$ и $3.36 \cdot 10^{12}$ см⁻² соответственно. Гетероструктуры HEMT-гранзисторов, изготавливаемые в одном процессе, имеют высокую однородность структурных и электрофизических характеристик по всей площади пластин диаметром 76.2 мм и высокую воспроизводимость характеристик от процессе к процессу.

1. Введение

Полупроводниковые сверхвысокочастотные (СВЧ) приборы составляют основу элементной базы современных систем связи и радиолокации. Прогресс в направлении создания мощных и малошумящих СВЧ транзисторов на основе полупроводниковых структур $A^{III}B^V$, достигнутый за последние годы, позволил реализовать и начать широкое внедрение целого ряда электронных систем общего и специального применения (сотовая связь, спутниковое телевидение, активные фазированные антенные решетки — АФАР). Это стало возможным благодаря развитию технологии получения сложных полупроводниковых гетероструктур, в первую очередь методом молекулярно-пучковой эпитаксии (МПЭ), совершенствованию процессов проектирования, изготовления и диагностики приборных микрочипов (компьютерное моделирование, субмикронная литография, измерение высокочастотных характеристик непосредственно на полупроводниковой подложке, корпусирование и др.).

Одним из ярких примеров, иллюстрирующих современный уровень развития технологии СВЧ приборов на основе полупроводниковых гетероструктур А^{III}В^V, являются гетероструктурные полевые транзисторы (HEMT — high electron mobility transistor, или MODFET — modulated-doped field-effect transistor). В настоящее время в области частот единиц-десятков ГГц они существенно превосходят как кремниевые приборы, в том числе SiGe-приборы, так и полевые транзисторы с барьером Шоттки на арсениде галлия по уровню шумов, пробойному напряжению, максимальной выходной мощности в СВЧ диапзоне. В более высокочастотной области (миллиметровый диапазон) НЕМТ практически являются основной элементной базой для создания радиотехнических систем.

Основным критерием качества транзисторной гетероструктуры является максимальная проводимость канала, характеризующаяся в области низких полей произведением подвижности электронов μ на их поверхностную концентрацию N_s . Важно отметить, что перечисленные характеристики зависят и от конструкции гетероструктуры, и от технологии изготовления. Оптимизация параметров гетероструктуры подразумевает как выбор определенного сочетания слоев профилей состава и легирования, так и оптимизацию режимов эпитаксиального выращивания с учетом особенностей используемого оборудования.

Увеличение максимальной проводимости канала транзистора достигается при использовании конструкции двухканальной псевдоморфной HEMT-гетероструктуры InGaAs/AlGaAs/GaAs [1]. Дополнительное увеличение проводимости канала в двухканальных псевдоморфных гетероструктурах может быть достигнуто посредством использования специфического способа легирования — импульсного легирования, или дельта-легирования [2]. Успехи в реализации двухканальных псевдоморфных HEMT-гетероструктур InGaAs/AlGaAs/GaAs с импульсным легированием и результаты исследовния их электрофизических свойств обсуждаются в настоящей статье.

Синтез гетероструктур с дельта-легированием методом молекулярно-пучковой эпитаксии

Экспериментальные образцы двухканальных псевдоморфных гетероструктур были выращены на многоподложечной промышленной установке МПЭ на поверхности GaAs с кристаллографической ориентацией (100). Использовались полуизолирующие пластины арсенида галлия с поверхностной плотностью дислокаций 5000 см⁻². Для создания потоков элементов третьей группы In, Ga и Al, использовались традиционные эффузионные источники с двумя зонами нагрева. Для создания потока As использовался эффузионный источ-

[¶] E-mail: anton@beam.ioffe.ru

<i>n</i> ⁺ -GaAs:Si, 50–80 nm					
AlGaAs undoped, 30–50 nm					
δ-Si (2.3−2.5) ·10 ¹² cm ⁻²					
AlGaAs undoped, 2–4 nm					
GaAs undoped, 1–2 nm					
InGaAs undoped, 11–15 nm					
GaAs undoped, 2–4 nm					
AlGaAs undoped, 2–4 nm					
δ -Si (0.7–1.0) · 10 ¹² cm ⁻²					
AlGaAs undoped, 100 nm					

Рис. 1. Базовая конструкция двухканальных псевдоморфных НЕМТ-гетероструктур InGaAs/AlGaAs/GaAs с импульсным легированием.

ник с резервуаром, в который загружался металлический мышьяк, и с крекинговой зоной. Поток мышьяка регулировался автоматически управляемым клапаном. Гетероструктуры выращивались со скоростью осаждения в диапазоне 0.17-0.21 нм/с. Базовая конструкция гетероструктур приведена на рис. 1. Гетероструктуры состояли из слоев GaAs, $Al_xGa_{1-x}As$ (x = 0.21-0.23) и $In_yGa_{1-y}As$ (y = 0.16-0.18). Импульсное легирование (δ -легирование) осуществлялось посредством осаждения на поверхность AlGaAs доли монослоя кремния. Одновременно на поверхность подавался поток As.

3. Характеризация гетероструктур

Для измерения спектров фотолюминесценции (ФЛ) использовалась установка RPM Sigma компании Accent. В ходе выполнения данной работы метод ФЛ применялся для калибровки скоростей роста бинарных соединений (GaAs, AlAs, InAs), а также для контроля толщины и состава проводящего канала InGaAs в образцах НЕМТ-транзисторов. Положение максимума пика ФЛ чувствительно к толщине и элементному составу квантово-размерного слоя, что позволяет контролировать данные параметры транзисторной гетероструктуры. Установка RPM Sigma позволяет измерять длину волны максимума ФЛ, пиковую и интегральную интенсивности ФЛ, ширину пика ФЛ в различных точках образца с шагом от 2 до 0.1 мм, давая возможность получать карту распределения этих параметров по пластине и судить о степени однородности. Фотолюминесценция возбуждалась лазером с длиной волны излучения 780 нм и мощностью 10 мВт.

Результаты измерения ФЛ экспериментальных образцов приведены на рис. 2. На рисунке показаны спектры фотолюминесценции для двух гетероструктур с различной поверхностной концентрацией электронов в канале (импульсное легирование). Увеличение концентрации электронов в канале сопровождается увеличением заселенности второго уровня квантовой ямы In_vGa_{1-v}As, что отчетливо проявляется в спектре ФЛ в виде увеличения интенсивности сигнала [3] в области длин волн вблизи 930 нм. Карта фотолюминесценции пластины диаметром 76.2 мм приведена на рис. 3, где показано распределение длины волны максимума спектра ФЛ и интенсивности сигнала ФЛ по площади пластины. Наблюдаемое распределение интенсивности ФЛ по поверхности пластины в виде "бабочки" соответствует типичному распределению дефектов в подложке [4] и является косвенным подтверждением высокого кристаллического качества эпитаксиальных слоев. Такое распределение интенсивности ФЛ свидетельствует о том, что в процессе эпитаксиального выращивания дополнительные кристаллические дефекты не генерируются, т.е. дефектность слоев гетероструктуры определяется только дефектностью подложки. Среднее значение длины волны ФЛ слоя канала InGaAs для партии экспериментальных

Рис. 2. Спектры фотолюминесценции (PL) двухканальных псевдоморфных НЕМТ-гетероструктур с различной концентрацией носителей в канале $n, 10^{12}$ см⁻²: 1 - 3.0, 2 - 3.3.

№ структуры (тип легирования)	300 K		77 K	
	$N_s, 10^{12} { m cm}^{-2}$	μ , cm ² /B · c	$N_s, 10^{12} \mathrm{cm}^{-2}$	μ , cm ² /B · c
1 (объем)	2.88	6350	2.80	20000
2 (объем)	3.26	5900	3.18	18800
3 (импульс)	3.00	6500	2.96	24000
4 (импульс)	3.36	6000	3.06	21000

Результаты исследования транзисторных гетероструктур методом Холла

образцов в 80 штук составило 983.47 нм при среднеквадратическом отклонении 0.94 нм: (983.47 ± 0.94) нм. Для определения концентрации и подвижности сво-

бодных носителей заряда в экспериментальных образ-

цах использовался метод Холла. Измерения проводи-

лись на установке HMS-3000 фирмы Есоріа при ком-Peak Lambda nm 987.8 986.8 985.7 984.7 983.6 982.6 981.5 980.5 979.5 983.4 Avge: Median: 983.6 Std Dev: 0.150 (1.472)In-Spec: 99.1% Above: 0.0% Below: 0.9% Peak Int nm 0.979 0.961 0.944 0.927 0.909 0.892 0.874 0.857 0.840 0.929 Avge: Median: 0.938 Std Dev: 3.202 (0.030)Above: 0.0% In-Spec: 98.9% Below: 1.1% Рис. 3. Карта фотолюминесценции двухканальных псевдо-

Рис. 3. Карта фотолюминесценции двухканальных псевдоморфных НЕМТ-гетероструктур диаметром 76.2 мм: вверху распределение длины волны максимума ФЛ, внизу — распределение пиковой интенсивности ФЛ.

натной температуре (300 K) и температуре жидкого азота (77 K). Результаты измерения методом Холла электрофизических параметров двухканальных псевдоморфных HEMT-гетероструктур InGaAs/AlGaAs/GaAs с импульсным легированием и традиционным объемным легированием приведены в таблице.

Конструкции гетероструктур 1, 2, 3 и 4 (см. таблицу) практически идентичны, за исключением того, что часть барьерного слоя AlGaAs структур 1 и 2 легировалась традиионным способом, а в барьерных слоях AlGaAs структур 3 и 4 вместо традиционного использовалось импульсное легирование (рис. 1). Как видно из результатов холловских измерений, представленных в таблице, использование импульсного легирования вместо объемного позволяет улучшить транспортные характеристики НЕМТ-гетероструктур. Второе важное преимущество импульсного легирования — существенное повышение воспроизводимости результатов от процесса к процессу.

Метод Холла является разрушающим способом диагностики гетероструктур, так как для измерений необходимо выкалывать из пластины тестовые квадраты размером $\sim 1 \times 1$ см. Для неразрушающего контроля проводимости канала НЕМТ-гетероструктур использовался бесконтактный измеритель сопротивления LEI 1510А SA компании Lehighton Electronics. Сопротивление обратно пропорционально произведению концентрации и подвижности, т.е. проводимости канала, и является критерием качества транзисторной гетероструктуры. Используемая установка дает возможность регистрировать карту распределения сопротивления по пластине и судить о степени его однородности. Результаты измерения сопротивления бесконтактным методом приведены на рис. 4. На рис. 4, а показаны области, занимаемые зондом для измерения сопротивления при сканировании по поверхности пластины, и типичная гистограмма распределения значений слоевого сопротивления по пластине. Как видно, информация о слоевом сопротивлении снимается практически со всей площади структуры.

Среднее значение слоевого сопротивления составило (128.96 ± 0.59) Ом/ \Box при среднем значении отклонения по пластине (0.35 ± 0.04) Ом/ \Box . Таким образом, максимальный разброс значений слоевого сопротивления по пластине составил 0.3%, а от партии к партии всего 0.5% (рис. 4, *b*).

Рис. 4. Результаты измерения слоевого сопротивления двухканальных псевдоморфных НЕМТ-гетероструктур бесконтактным методом: *a* — распределение областей измерения по поверхности пластины и гистограмма распределения значений слоевого сопротивления по пластине; *b* — среднее значение слоевого сопротивления для различных партий образцов.

Для изучения распределения точечных и овальных дефектов на поверхности гетероэпитаксиальных структур использовался автоматический лазерный сканер поверхности Surfscan 4000 компании Tencor Instruments. Данный сканер позволяет получать карту распределения дефектов по пластине с указанием их размеров и плотности. Среднее значение плотности овальных дефектов составило (10.60 ± 2.70) см⁻².

4. Заключение

Двухканальные псевдоморфные HEMT-гетероструктуры InGaAs/AlGaAs/GaAs с импульсным легированием (δ -легированием) реализованы методом молекулярнопучковой эпитаксии на пластинах GaAs (100) диаметром 76.2 мм. Неоднородность толщины и элементного состава слоев гетероструктур по площади пластины не преышает $\pm 2\%$. Подвижность электронов при комнатной температуре, определенная методом Холла, составляет 6550 см²/В · с при концентрации электронов в канале $3.0 \cdot 10^{12}$ см⁻². Подвижность электронов превышает типичные значения, характерные для подобных гетероструктур, созданных посредством объемного легирования. Двухканальные псевдоморфные НЕМТ-гетероструктуры InGaAs/AlGaAs/GaAs с импульсным легированием (б-легированием) реализованы методом молекулярно-пучковой эпитаксии на многоподложечной промышленной установке. Научная значимость проведенной работы состоит в исследовании фундаментальных аспектов технологии НЕМТ-наногетероструктур, практическая значимость — в создании отечественной базовой промышленной технологии синтеза псевдоморфных гетероструктур AlInGaAs/AlGaAs методом молекулярнопучковой эпитаксии.

Работа выполнена в рамках программы президиума РАН № 27.

Список литературы

- T.H. Windhorn, L.W. Cook, G.E. Stillmann. IEEE Electron. Dev. Lett., EDL-3, 18 (1982).
- [2] S. Nayak, M.-Y. Kao, A. Bross, S. Chen, Q. Wang, S. Hillyard, A. Ketterson, K. Decker, J. Delaney, K. Salzman. *Int. Conf. Compound Semiconductor Manufacturing Tech*nology, 2005 On-line Digest (TriQuint Semiconductor). www.gaasmatech.org/Digests/2005/2005papers/ 2.2.opdf
- [3] W. Lu, K. Prasad, G.I. Ng, J.H. Lee, P. Lindstrom. J. Phys. D: Appl. Phys., **31**, 159 (1998).
- [4] P. Rudolph, Ch. Frank-Rotsch, U. Juda, St. Eichler, M. Scheffer-Czygan. Phys. Status Solidi C, 4, 2934 (2007).

Редактор Л.В. Шаронова

Double pulse doped InGaAs/AIGaAs/GaAs pseudomorphic high electron mobility transistor heterostructures

A.Yu. Egorov, A.G. Gladyshev, E.V. Nikitina, D.V. Denisov, N.K. Polyakov, E.V. Pirogov, A.A. Gorbazevich

Saint-Petersburg Physics and Technology Centre for Research and Edication, Russian Academy of Sciences, 195220 St. Petersburg, Russia

Abstract Double pulse doped InGaAs/AlGaAs/GaAs pseudomorphic high-electron-mobility transistor heterostructures have been grown by molecular-beam epitaxy on GaAs substrates using multiwafer technological system. Hall mobilities of 6550 and $6000 \text{ cm}^2/\text{V} \cdot \text{s}$ at 300 K are obtained with a sheet carrier density of $3.00 \cdot 10^{12}$ and $3.36 \cdot 10^{12} \text{ cm}^{-2}$, correspondingly. The very reproducible and high yield 76.2 mm multiwafer technologies have been developed.