04

Парамагнитные дефекты в гамма-облученных Na/K-силикатных стеклах

© А.Ф. Зацепин, В.Б. Гусева, В.А. Важенин, М.Ю. Артёмов

Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия E-mail: a.f.zatsepin@ustu.ru; zats@dpt.ustu.ru

(Поступила в Редакцию 29 февраля 2012 г.)

Методом электронного парамагнитного резонанса исследованы γ -облученные щелочные силикатные стекла переменного состава $22xNa_2O \cdot 22(1-x)K_2O \cdot 3CaO \cdot 75SiO_2$. Установлено, что при последовательной замене $Na \rightarrow K$ в двущелочном стекле спектр ЭПР дырочных центров на немостиковых атомах кислорода может быть представлен как суперпозиция сигналов кислородных центров $HC_1(Na)$, $HC_2(Na)$, $HC_1(K)$ и $HC_2(K)$, характерных для однощелочных систем. Концентрационные зависимости дырочных и электронных парамагнитных центров не обнаруживают особенностей, которые могут быть интерпретированы как проявление "эффекта смешения щелочей". Полученные результаты обсуждаются с учетом расширенной модели центров на немостиковых атомах кислорода.

1. Введение

Интерес к изучению радиационно-оптических свойств поликомпонентных стеклообразных материалов обусловлен их применением в оптике, лазерной и волоконной технике, микроэлектронике и других практически важных областях. Варьирование состава стекол обеспечивает возможность направленного регулирования их атомной и электронной структуры и соответственно комплекса физических свойств.

Существует большое количество публикаций, посвященных изучению методами резонансной и оптической спектроскопии бинарных силикатных стекол *Me*₂O-SiO₂ (*Me* — щелочной катион), облученных различными способами (гамма-радиацией, рентгеновским излучением, потоками нейтронов). Наиболее подробно для этих стекол исследовалось семейство парамагнитных центров с $g \approx 2.01$, образованных при локализации дырки на концевых атомах кислорода в кремнекислородной сетке стекла [1-11]. Природа одного из таких центров установлена достаточно надежно. Парамагнитный центр HC_1 (в [1] обозначен как H_2^+) представляет собой атом немостикового кислорода, на энергетический спектр которого влияет близко расположенный щелочной катион [1,6,7,11]. Структуру такого центра можно схематически представить как \equiv Si-O $\cdot \dots Me^+$. Предполагается, что этот дырочный центр образуется в процессе облучения в результате потери электрона *L*-центром (\equiv Si-O⁻...*Me*⁺) [1].

Для центров второго типа — HC_2 (H_3^+ в обозначении [1]), образующихся в щелочных силикатных стеклах под действием ионизирующих излучений, авторами [6,7] была предложена модель, включающая два немостиковых атома кислорода с локализованной на них дыркой, стабилизирующее влияние на которую оказывает щелочной катион. В работе [1] для центров HC_2 были рассмотрены две другие модели, согласно одной

из которых данный центр возникает за счет туннелирования дырки между двумя атомами немостикового кислорода, расположенными вблизи щелочного катиона. Альтернативный вариант модели НС2-центра представлял собой планарный комплекс = Si-O₂⁻. Иной точки зрения придерживаются авторы [1], считая, что центр HC_2 — это оборванная (ненасыщенная) связь \equiv Si-O· или аналог типичного дефекта кварцевых стекол немостикового атома кислорода NBOHC (Non-bridging oxygen hole center) [1-3,12-15]. В связи с этим интересно отметить, что в спектрах импульсной сильноточной катодолюминесценции Li-, Na- и К-силикатных стекол обнаружена характерная полоса свечения 2.4-2.6 eV, приписанная модифицированной разновидности NBOHCцентрам типа \equiv Si-O · $/Me^+$ [16]. Предполагается, что в стеклах сложного состава указанные центры по природе и свойствам близки к центрам NBOHC кварцевых стекол, но при этом испытывают влияние (одного или более) щелочных катионов-модификаторов.

Наряду с различными типами парамагнитных дефектов на немостиковых атомах кислорода в облученных щелочных силикатных стеклах наблюдались E'-центры (оборванная связь атома кремния \equiv Si·) и поляронные E^- -центры ($g \approx 1.97$) или L^- -центры, образующиеся при локализации электрона на состояниях атома щелочи в хвостах зоны проводимости [1–3,17,18]. Помимо перечисленных центров в различных щелочно-силикатных системах после облучения регистрировались спектры ЭПР пероксирадикалов и междоузельных ионов кислорода [11].

Таким образом, в силикатных стеклах даже сравнительно простого состава после облучения возникает несколько типов радиационных парамагнитных центров, идентификация которых до сих пор не может считаться удовлетворительной. Картина еще более усложняется из-за присутствия в структуре стекол одновременно нескольких типов щелочных ионов-модификаторов. Особенностью подобных систем является так называемый "полищелочной эффект" (в англоязычной литературе — "Mixed Alkali Effect"), проявляющийся в неаддитивности зависимостей состав-свойство [19,20]. Эффекты такого рода в наибольшей степени свойственны физическим параметрам стекол, характеризующим транспортные явления: диффузию, ионную проводимость, газопроницаемость и др. [19-24]. Неаддитивный (или экстремальный) характер концентрационных зависимостей в ряде случаев имеет место и для оптических, электронных и магнитных свойств стеклообразных материалов [25-33]. Например, в спектрах люминесценции L-центров (локализованных состояний зонных хвостов) двущелочных Na/К-силикатных стекол наблюдались характерные особенности, интерпретированные как проявление люминесцентного аналога "эффекта смешения" [16,26,34,35]. Поэтому совершенно очевидно, что микроскопическая природа подобных эффектов нуждается в более детальном изучении.

По сравнению с бинарными системами Me_2O-SiO_2 двущелочные стекла являются, безусловно, более сложным для исследования объектом, однако именно в силу возрастающей сложности структуры они могут стать источником новой информации о свойствах дефектов, наблюдавшихся ранее в более простых системах. В связи с этим основной целью настоящей работы является исследование поведения и свойств парамагнитных радиационно-индуцированных дефектов в двущелочных Na/K-силикатных стеклах, включая поиск и анализ возможных спектроскопических проявлений "эффекта смешения щелочей".

2. Объекты и методы исследования

В качестве объектов исследования использовались силикатные стекла переменного состава с эквимолекулярной заменой ионов натрия и калия: $22xNa_2O \cdot 22(1-x)K_2O \cdot 3CaO \cdot 75SiO_2$ (x = 1.00, 0.85, 0.67, 0.4, 0.35, 0.2). Буферная добавка 3 mol.% CaO вводилась для обеспечения химической стойкости и стабильности поверхности стекол. Исследуемые образцы представляли собой оптически прозрачные стержни диаметром 2 mm, изготовленные в лабораторных условиях. Для получения стекол использовались реактивы марки хч. Плавление исходной шихты осуществлялось при температуре 1450°C с последующей закалкой и низкотемпературным отжигом при 350–400°C в течение 2 h для снятия закалочных напряжений.

Экспозиционная доза гамма-облучения (источник 60 Co) составляла $2 \cdot 10^7$ R. Дополнительное облучение фотонами ультрафиолетового диапазона проводилось с использованием кварцевой ртутной лампы ПРК-2М высокого давления (375 W). Запись спектров ЭПР осуществлялась на спектрометре ЕМХ Plus фирмы Bruker. Для интерпретации сигналов парамагнитного поглощения и оценки спектроскопических параметров радиаци-

онных центров использовалось компьютерное моделирование спектров ЭПР.

3. Результаты эксперимента

Спектры ЭПР облученных двущелочных Na/Ксиликатных стекол с различным соотношением ионов натрия и калия, записанные при температуре 296 К, представлены на рис. 1. Согласно [1,2], наблюдаемые в полученных спектрах наиболее интенсивные сигналы с $g \approx 2.01$ принадлежат дырочным кислородным центрам. Из рис. 1 хорошо видно, что изменение катионного отношения Na/К в рассматриваемых двущелочных системах сопровождается заметным изменением формы сигнала ЭПР указанных центров.

Рис. 1. Спектры ЭПР гамма-облученных стекол при T = 296 К. Частота микроволнового поля $\nu \approx 9430$ MHz, микроволновая мощность 2 mW. x = 0.20 (*I*), 0.35 (*2*), 0.40 (*3*), 0.67 (*4*), 0.85 (*5*)и 1.00 (*6*). Штриховой линией показаны результаты моделирования спектра ЭПР для однощелочного Na-стекла (x = 1) в виде линейной комбинации сигналов HC_1 -и HC_2 -центров и результаты моделирования спектра спектра смешанных Na/K-стекол (x = 0.40, 0.67) в виде линейной комбинации спектров однощелочных систем.

Рис. 2. Спектры ЭПР гамма-облученных стекол при T = 150 К. Частота микроволнового поля $\nu \approx 9435$ MHz, микроволновая мощность 2 mW. x = 0.20 (1), 0.35 (2), 0.40 (3), 0.67 (4), 0.85 (5)и 1.00 (6). Штриховая линия — расчетные спектры ЭПР смешанных Na/K-стекол (x = 0.35 и 0.40) и сигналы HC_1 и HC_2 в однощелочном Na-стекле (x = 1).

Рис. 3. Спектры ЭПР поляронных E^- -центров в Na/K-стеклах. Частота микроволнового поля $\nu \approx 9430$ MHz, микроволновая мощность 2 mW, температура 296 K. x = 0.20 (1), 0.35 (2), 0.40 (3), 0.67 (4), 0.85 (5)и 1.00 (6).

Форма сигнала кислородных центров претерпевает изменения не только при варьировании концентрации щелочных катионов, но и при изменении температуры образца. На рис. 2 представлены спектры ЭПР двущелочных систем, полученные при температуре 150 К. Сравнение рис. 1 и 2 показывает, что при низкой температуре уменьшается интенсивность компоненты, образующей высокополевое крыло сигнала с $g \approx 2.01$. Можно также заметить, что повышение температуры приводит к некоторому уменьшению интенсивности сигнала $g \approx 2.01$ по отношению к интенсивности сравнительно слабого сигнала $g \approx 1.97$.

Относительно слабые сигналы с $g \approx 1.97$ в высокополевой части спектра обусловлены E^- -центрами, которые представляют собой полярон, состоящий из положительно заряженного иона натрия и захваченного им электрона [1,17]. Детально структура спектров поляронных E^- -центров в двущелочных стеклах с различным отношением Na/K показана на рис. 3. Из этого рисунка видно, что в отличие от интенсивности центрального сигнала от дырочных кислородных центров (рис. 1 и 2) интенсивность сигналов E^- -центров коррелирует с величиной *x*-фактора, характеризующего концентрацию ионов натрия в матрице стекла.

Рис. 4. Спектры ЭПР гамма-облученного Na/K-стекла (x = 0.40) при различной микроволновой мощности. T = 296 K, $\nu \approx 9855$ MHz. I - 2 mW, $2 - 20 \mu$ W, $3 - 20 \mu$ W после дополнительного ультрафиолетового облучения.

Изменение состава двущелочного Na/K-стекла (уменьшение концентрации натрия) приводит не только к уменьшению количества поляронных центров, но и к появлению на высокополевом крыле спектра дырочных кислородных центров ($g \approx 2.01$) дополнительного узкого сигнала (рис. 4), который идентифицирован нами как принадлежащий кислородно-дефицитным дефектам типа E'-центров [1–3]. Полученное значение g-фактора (g = 2.0010), а также другие параметры (форма и ширина линии) для данного сигнала совпадают с аналогичными характеристиками известных E'_{γ} -центров в кварцевых стеклах [12].

Рис. 4 демонстрирует изменение интенсивности сигнала E'-центра при уменьшении СВЧ-мощности и после дополнительного ультрафиолетового облучения. Можно отметить, что в ходе эксперимента сигналы E'-центра практически исчезали при переходе от мощности СВЧ $20 \mu Wk$ мощность 2 mW вследствие насыщения, тогда как изменение соотношения интенсивностей центрального сигнала и сигнала с $g \approx 1.97$ (уменьшение интенсивности, большей 6 mW. Спектры, зарегистрированные при мощности СВЧ $20 \mu W$, с увеличением содержания ионов калия характеризуются ростом интенсивности сигнала от E'-центров, однако количественное описание этой зависимости затруднено из-за сильного перекрытия сигналов E'-центров и дырочных кислородных центров.

4. Моделирование спектров ЭПР

С целью корректного описания экспериментальных результатов было выполнено компьютерное моделирование спектров ЭПР стекол. При этом учитывалось, что в чистом Na-силикатном стекле (x = 1) спектр ЭПР дырочных центров на немостиковых атомах кислорода ($g \approx 2.01$) состоит из двух компонент и образован наложением сигналов от центров $HC_1(Na)$ и $HC_2(Na)$ [1–3]. С другой стороны, принималось во внимание, что в двущелочных системах ($x \neq 1$) в связи с частичной заменой ионов натрия ионами калия результирующий спектр формируется более сложным образом.

При проведении компьютерной симуляции предполагалось, что отдельный парамагнитный центр может быть описан спиновым гамильтонианом [3,36]

$$\mathscr{H} = \beta B(g_x l S_x + g_y m S_y + g_z n S_z) = g\beta B S'_2.$$
(1)

Здесь *l*, *m*, *n* — направляющие косинусы индукции магнитного поля *B* (в сферической системе координат направление индукции *B* задается координатами θ и φ), *g* — эффективный *g*-фактор: $g^2 = (g_x l)^2 + (g_y m)^2 + (g_z n)^2$.

Вклад в интенсивность результирующего сигнала для системы хаотически ориентированных центров со спиновым гамильтонианом (1) вычислялся согласно [3]

$$I(B_1, \varphi) \sim w(\theta_i, \varphi) dV_i, \qquad (2)$$

где $dV_i = \sin \theta_1 \cdot \Delta \theta_1 \delta \varphi / 4\pi$ — телесный угол, приходящийся на одно значение B_i при заданном приращении δB и $\delta \varphi$; $w(\theta_i, \varphi)$ — множитель, пропорциональный вероятности перехода между уровнями,

$$w(\theta_i, \varphi) = 1/g^2 \Big(g_x^2 g_y^2 (1 - l^2) + g_x^2 g_z^2 (1 - m^2) + g_z^2 g_y^2 (1 - n^2) \Big),$$
(3)

$$\theta_i(\varphi) = \arcsin\left[\left((h\nu/\beta B_i)^2 - gz^2\right)/\left((g_x \cos\varphi)^2 + (g_y \sin\varphi)^2 - g_z^2\right)\right]^{0.5}.$$
(4)

Далее для учета разброса значений g-фактора вводились параметры Δg_x , Δg_y , Δg_z и при заданном φ строилась сумма спиновых пакетов гауссовой формы с амплитудой $I(B_i, \varphi)$ и шириной ([3])

$$D(B_{i}, \varphi) = h\nu/(\beta g^{3}) \left[\left((g_{x} \Delta g_{x})^{2} (\cos \varphi)^{4} + (g_{y} \Delta g_{y})^{2} (\sin \varphi)^{4} \right) (\sin \theta_{i})^{4} + (g_{z} \Delta g_{z})^{2} (\cos \theta_{i})^{4} \right]^{0.5}.$$
 (5)

Окончательно спектр каждой из двух компонент (HC_1 и HC_2) был получен путем суммирования вкладов для конечного набора дискретных углов φ . Соотношение интегральных интенсивностей компонент включалось в качестве дополнительного параметра при подгонке формы спектра к экспериментальной. Выбранная модель позволила достичь хорошего согласия между результатами моделирования сигнала с $g \approx 2.01$ в виде суммы двух компонент, обусловленных центрами HC_1 и HC_2 , и экспериментальным спектром ЭПР в однощелочных Na-и *K*-силикатных стеклах.

Полученные при моделировании параметры спинового гамильтониана приведены в табл. 1. Погрешность для g-фактора, указанная в таблице, соответствует увеличению в 2 раза среднеквадратичного отклонения расчетных значений интенсивности сигнала от экспериментальных. Помимо использования упрощенной модели описания спектра, которая не учитывает возможную асимметрию в распределении значений g-фактора и пренебрегает возможным вкладом других кислородных дефектов [11], дополнительным источником ошибки при определении параметров спинового гамильтониана могло быть присутствие добавки СаО в составе материала образца [1]. Однако, учитывая относительно малую концентрацию буферной примеси по сравнению с содержанием щелочного компонента, мы полагаем, что для исследуемых стекол этот вклад незначителен.

5. Обсуждение результатов

5.1. Парамагнитные центры и эффекты смешения. Хорошо известно, что локальное катионное окружение оказывает существенное влияние на спектроскопические свойства кислородных парамагнитных центров в щелочно-силикатных стеклах [1–7,16,34,35].

Центр	Матрица	g _x	<i>gy</i>	g _z	Δg_x	Δg_y	Δg_z	Литературная ссылка
NBOHC	Кварцевое стекло SiO ₂	2.0010	2.0090	2.0800	-	-	-	[12]
HC_2	$22Na_2O\cdot 3CaO\cdot 75SiO_2$	2.0078 (2)	2.0131 (10)	2.0143 (8)	0.0018	0.0042	0.0124	Наст. раб
	$22K_2O\cdot 3CaO\cdot 75SiO_2$	2.0079 (5)	2.0113	2.0141	0.0016	0.0082	0.0070	То же
	$33K_2O \cdot 67SiO_2$ $K_2O \cdot 5SiO_2$	2.01	2.012	2.019	0.0006	0.0015	0.0035	[5] [7]
HC_1	К20 5502 Кварцевое стекло SiO ₂ с примесью Na	2.0050	2.0070	2.0100	-	-	-	[1]
	$22Na_2O\cdot 3CaO\cdot 75SiO_2$	2.0023 (2)	2.0075 (5)	2.0239 (50)	0.0014 (4)	0.0013 (4)	0.0241 (80)	Наст. раб
	$Na_2O\cdot 3SiO_2+6.6\%H_2O$	2.0050	2.0100	2.0900	0	0	0.8000	[8]
	$22K_2O\cdot 3CaO\cdot 75SiO_2$	2.0017 (1)	2.0076 (5)	2.0212 (100)	0.0005 (3)	0.0010 (6)	0.0278 (100)	Наст. раб.
	$15K_2O \cdot 85SiO_2$	2.0030	2.0090	2.0210	0.0001	0.0010	0.0032	[5]
	$K_2O \cdot 5SiO_2$	2.0026	2.0088	2.0213	0	0.0005	0.0027	[7]

Таблица 1. Параметры спектров ЭПР центров на немостиковых атомах кислорода в кварцевых и однощелочных силикатных стеклах

В случае значительного и сопоставимого влияния на немостиковый атом кислорода одновременно нескольких катионов замещение части из них катионами другого сорта должно привести к появлению в двущелочных системах с $x \approx 0.5$ принципиально новых парамагнитных центров и, как следствие, к радикальным изменениям структуры спектра ЭПР. Однако экспериментально подобных эффектов нами не зафиксировано. Более того, в полученных спектрах ЭПР (рис. 1 и 2) при переходе Na-стекло — К-стекло влияние катионного окружения проявляется в плавном изменении формы сигнала центров немостиковых атомов кислорода.

Результаты моделирования показывают, что спектры ЭПР двущелочных стекол, характеризующихся промежуточными значениями композиционного фактора $(x \neq 0, 1)$, достаточно хорошо описываются линейной комбинацией спектров однощелочных К- и Na-образцов с x = 1 и (табл. 1). В качестве примера на рис. 1 и 2 показаны расчетные спектры двущелочных Na/K стекол с x = 0.35, 0.4 и 0.67. Для всех значений фактора xбыли рассчитаны отношения интегральных интенсивностей однощелочных компонент I_{Na} и I_K, формирующих итоговый спектр ЭПР дырочных кислородных центров двущелочных стекол (рис. 5). Из рисунка видно, что при различных температурах величина отношения I_{Na}/I_K, получаемая при обработке результатов эксперимента, оказывается близкой к величине отношения концентраций щелочных ионов, задаваемого формулой стекла 22xNa₂O · 22(1 - x)K₂O · 3CaO · 75SiO₂. При изменении состава стекол в области $x \approx 0.5$ каких-либо особенностей, характерных для "эффектов смешения щелочей", на концентрационных зависимостях отношения $I_{\rm Na}/I_{\rm K}$, как и возникновения новых сигналов парамагнитного поглощения, не наблюдается. Отсюда следует, что результирующий сигнал ЭПР с $g \approx 2.01$ в двущелочных стеклах вполне обоснованно может быть представлен как суперпозиция сигналов "однощелочных"дырочных центров $HC_1(Na)$, $HC_2(Na)$, $HC_1(K)$ и $HC_2(K)$.

Похожая ситуация реализуется при изменении соотношения Na/K и для центров электронного типа. На рис. 6 для стекол с фактором $x = x_i$ ($x_0 = 1.00$, $x_1 = 0.85$, $x_2 = 0.67$, $x_3 = 0.4$, $x_4 = 0.35$, $x_5 = 0.2$) приведены значения доли ионов натрия $x_{eq} = (25s_i/s_0 - 3)/22$, рас-

Рис. 5. Отношение $I_{\rm Na}/I_{\rm K}$ интегральных интенсивностей спектров ЭПР однощелочных стекол, воспроизводящих в сумме спектр двущелочной Na/K-системы, рассчитанное по значению параметра x (I) и полученное при модуляции экспериментального спектра при температурах 296 и 150 K (3)

Рис. 6. Корреляция между содержанием натрия по синтезу (фактора x) и относительной концентрацией натрия x_{eq} , рассчитанной по изменению интегральных интенсивностей ЭПР-компоненты поляронного E^- -центра. Точки — расчет, прямая — аппроксимация уравнением $x_{eq} = 0.93x + 0.0015$.

считанные на основе экспериментальной зависимости отношений интегральных интенсивностей s_i/s₀ поляронных E^- -центров. Для каждого спектра значение s_i предварительно нормировалось на интегральную интенсивность соответствующего центрального сигнала $(g \approx 2.01)$. При расчете x_{eq} учитывалась поправка, обусловленная вкладом спектральной компоненты, связанной присутствием буферной примеси СаО [1]. Полученная для x_{eq} зависимость достаточно хорошо (с фактором детерминации $R^2 = 0.94$) описывается уравнением $x_{eq} = 0.93x + 0.0015$. Это означает, что концентрация поляронных Е-центров меняется приблизительно пропорционально содержанию катионов натрия, что также указывает на отсутствие особенностей, которые можно было бы интерпретировать как образование новых электронных центров смешанного типа. Таким образом, в двущелочных Na/K-силикатных стеклообразных системах не зарегистрированы дырочные или электронные (поляронные) парамагнитные центры, состав которых включает щелочные катионы разного сорта. Кроме того, реализованная возможность описания экспериментальных спектров ЭПР смешанных стекол в виде суммы вкладов центров однощелочного типа свидетельствует об отсутствии в исследуемых стеклах спектроскопических проявлений "эффекта смешения щелочей".

5.2. Конверсия и расширенная модель центров немостикового кислорода. Известные модели центров HC_1 и HC_2 [1,6,7] не предполагают одновременного взаимодействия немостикового атома кислорода сразу с несколькими катионами, что объясняет аддитивный механизм формирования спектра ЭПР и находится в хорошем согласии с полученными результатами. В то же время для высокощелочных стекол в [37] рассматривалась модель, допускающая одновременное присутствие в окрестности парамагнитного центра двух катионов-модификаторов. Эта модель, как и модель центра HC_2 [6,7], включает два немостиковых атома кислорода, связанных с общим атомом кремния, однако вблизи каждого из атомов кислорода находится свой катион.

Уменьшение отношения общей концентрации центров *HC*₂ к концентрации центров *HC*₁ при повышении температуры достаточно хорошо объясняется в рамках представлений [6,7], согласно которым в однощелочных стеклах катион, стабилизирующий захваченную атомами кислорода дырку в структуре НС2-центра, при нагревании способен незначительно менять свое положение, что приводит к преобразованию в HC_1 -центр. В то же время рост интенсивности сигналов НС2-центров по сравнению с центрами НС1, наблюдаемый при переходе от Na-стекла к К-стеклу (рис. 1 и 2), согласуется с представлением об общем увеличении числа разорванных кремнекислородных связей в аморфной сетке стекла при внедрении более крупных катионов [1]. Аналогичная причина, по-видимому, определяет и изменение интенсивности сигнала E-центра при замене К \rightarrow Na.

Можно полагать, что процессы конверсии (например, $HC_2 \rightarrow HC_1$), реализующиеся при изменении температуры и состава матрицы стекла, являются основным фактором, определяющим форму спектров ЭПР дырочных кислородных центров в исследуемых Na/K-силикатных стеклах. Одна из моделей центра НС2 [1] предполагает, что этот центр образуется за счет диффузии щелочного катиона из позиции, которую он занимает в центре HC_1 . В результате таких процессов могут возникать дефекты типа NBOHC (оборванная связь \equiv Si $-O\cdot$) и изолированные щелочные катионы Me^+ , преобразующиеся при захвате электрона в поляронные Е-центры. Хотя природа сигналов ЭПР, приписываемых в большинстве работ центрам Е-типа, также как и природа центров HC_2 , иногда подвергается сомнению [11], существование в щелочно-силикатных стеклах кислородных центров со структурой, близкой к NBOHC, само по себе вполне реально.

В общем случае различные варианты центров на немостиковых атомах кислорода могут возникать благодаря существованию в микронеоднородной структуре щелочно-силикатных стекол низкоразмерных фрагментов различного состава и строения [1,11,20,21]. Мы считаем, что в щелочно-силикатных стеклах большинство кислородных центров следует описывать скорее как модифицированную разновидность центров *NBOHC* со структурой \equiv Si-O · /Me⁺ [16]. В такой модели катион может располагаться на произвольном расстоянии от атома немостикового кислорода. Как следствие, влияние катионов может приводить к изменению в широком диапазоне микропараметров, определяющих спектр ЭПР указанных центров, что в конечном счете затрудняет наблюдение соответствующего сигнала парамагнитного поглощения. Для оценки величины возможных вариаций достаточно сравнить приведенные в табл. 1 значения *g*-фактора центра *NBOHC* в кварцевом стекле (катион

Центр	Матрица	$\Delta E, eV$	hv, eV	Литературная ссылка
NBOHC	Кварцевое стекло SiO2	0.36	2.0	[1,12]
HC_1	Кварцевое стекло SiO2 с примесью Na	3.64	2.75	[1]
	$22Na_2O \cdot 3CaO \cdot 75SiO_2$	1.29	—	Наст. раб.
	$15K_2O \cdot 85SiO_2$	1.50	2.43	[5]
	$22K_2O \cdot 3CaO \cdot 75SiO_2$	1.49	—	Наст. раб.

Таблица 2. Сравнение энергии оптического перехода *hv* с рассчитанным расстоянием *ΔЕ* между энергетическими уровнями кислородных центров (*NBOHC* и *HC*₁) в кварцевых и щелочно-силикатных стеклах

в модели \equiv Si $-O \cdot /Me^+$ удален на бесконечно большое расстояние) с данными для центров HC_1 (катион расположен вблизи кислородного атома).

5.3. Оптические переходы в NBOHC- и HC₁центрах. Модель, использованная нами для описания спектров HC_1 - и HC_2 -центров в однощелочных системах, позволила получить значения g-фактора, которые в целом неплохо согласуются с данными, имеющимися в литературе (табл. 1). Несколько хуже обстоит дело с параметром Δg , характеризующим разброс значений g-фактора, что связано в первую очередь с особенностями используемой модели. Поскольку центр HC_1 по своей структуре близок к дырочному кислородному центру NBOHC (отличается только присутствием катиона-модификатора), в табл. 1 для сравнения приведены параметры, характеризующие центр немостикового кислорода в кварцевом стекле.

Известно [1,2], что значения g-фактора центров *NBOHC* и *HC*₁ могут быть использованы для оценки энергетических расстояний между уровнями атома немостикового кислорода. В частности, для определения энергетического интервала ΔE между верхними полузаполненной и ближайшей полностью заполненной электронами *p*-орбиталями используется выражение:

$$g_z = 2.0023 + 2\lambda/\Delta E,\tag{6}$$

где $\lambda = 0.014 \,\text{eV}$ [1,2] — константа спин-орбитального взаимодействия.

В табл. 2 приведены рассчитанные с помощью выражения (6) и данных табл. 1 величины параметра ΔE для центров NBOHC и HC_1 в стеклообразном кварце и щелочно-силикатных стеклах. Из таблицы следует, что в случае центра НС1 увеличение радиуса катиона сопровождается уменьшением как параметра ΔE , так и энергии оптического перехода, что находится в согласии с результатами [16,26]. Вместе с тем из представленных данных видно, что в ряде случаев интервал ΔE между частично и полностью заполненными р-орбиталями немостикового атома кислорода для центров HC1 оказывается заметно меньше, чем экспериментальные значения энергии оптического перехода [1,2]. Наблюдаемое расхождение связано прежде всего с тем, что расчетная величина ΔE соответствует энергетическому зазору между релаксированными (основным и возбужденным)

состояниями, характеризуемыми различным значением конфигурационной координаты, тогда как оптические переходы происходят между состояниями с одинаковой атомной конфигурацией.

В связи с этим интересно заметить, что с целью объяснения наблюдаемых различий между ΔE и энергией оптического перехода была предложена модель центра NBOHC [15], согласно которой энергетические уровни наполовину и полностью заполненной р-орбиталей немостикового атома кислорода в действительности являются практически вырожденными. В этом случае полоса 2 eV оптического поглощения центра NBOHC интерпретируется как переход электрона на полузаполненную *p*-орбиталь с *σ*-орбитали, связывающей атомы немостикового кислорода и кремния. На данном этапе понимания природы дефектных центров в щелочно-силикатных стеклах можно полагать, что модификация модели [15] с учетом влияния дополнительных щелочных катионов позволит внести ряд существенных изменений в представления об энергетической структуре указанных центров и их спектроскопических свойствах. К таковым относятся прежде всего особенности распределения электронной плотности, расстояние "кислород-кремний", интервал между уровнями энергии, ответственными за полосы оптического поглощения и люминесценции. Теоретические расчеты энергетических характеристик рассматриваемых центров, проведенные в рамках такой модифицированной модели, могли бы быть весьма полезны при интерпретации как ЭПР-спектров, так и оптических свойств кислородных дефектов в силикатных стеклах сложного состава.

6. Выводы

1. Совокупность данных эксперимента и компьютерного моделирования показывает, что спектр ЭПР гаммаиндуцированных дефектов на немостиковых атомах кислорода в двущелочных Na/K-силикатных стеклах может быть представлен суммой вкладов дырочных центров типа $HC_1(K)$, $HC_1(Na)$, $HC_2(K)$ и $HC_2(Na)$, характерных для однощелочных систем. На концентрационной зависимости поляронных $E^-(Na)$ -центров также не наблюдается особенностей, обусловленных присутствием щелочных катионов разного сорта. Эти данные согласуются с отсутствием в интервале значений композиционного фактора 0 < x < 1 новых сигналов парамагнитного поглощения и каких-либо других особенностей, которые могли бы быть интерпретированы как спектроскопическое проявление "эффекта смешения щелочей".

2. Аддитивный механизм формирования результирующего спектра ЭПР дырочных кислородных центров в двущелочных стеклах находится в хорошем согласии с существующими моделями HC_1 - и HC_2 -центров, предполагающими, что основное влияние на свойства парамагнитного центра оказывает единственный находящийся на близком расстоянии щелочной катион-модификатор, жестко связанный с немостиковым атомом кислорода. Наблюдаемый при замене Na \rightarrow K одновременный рост количества E'-центров (оборванная связь кремния \equiv Si·) и дырочных центров HC_2 , которые могут включать две оборванные кислородные связи, отражает увеличение общей дефектности кремнекислородной подрешетки стекла при внедрении крупных катионов.

3. В целом, анализ экспериментальных и расчетных данных дает основание полагать, что в рассмотренных силикатных системах наряду с центрами типа НС1, HC_2, E' и E^- могут существовать модифицированные дефекты NBOHC-типа (\equiv Si-O · /Me⁺), однако их наблюдение методом традиционной ЭПР-спектроскопии затруднено вследствие значительного разброса расстояний катион-кислород и дисперсии спектральных параметров. Для обнаружения и уточнения природы модифицированных NBOHC-центров, а также центров HC-типа со смешанным катионным окружением (с учетом влияния не только ближайшего, но и более далеких катионов) необходимо использовать другие прецизионные магниторезонансные методы, например спектроскопию двойного электронно-ядерного резонанса в сочетании с моделированием электронной структуры.

Список литературы

- С.М. Бреховских, В.А. Тюльнин. Радиационные центры в неорганических стеклах. Энергоатомиздат, М. (1988). 197 с.
- [2] Defects in SiO₂ and related dielectrics: science and technology / Eds G. Pacchionu, L. Skuja, D.L. Griscom. NATO Sci. Ser. II. Mathematics, Physics and Chemistry. Springer, London (2000). V. 2. 632 p.
- [3] Я.Г. Клява. ЭПР спектроскопия неупорядоченных твердых тел. Зинатне, Рига. (1988). 318 с.
- [4] Е.А. Замотринская. Физика 3, 51 (1973).
- [5] Е.А. Замотринская, Л.А. Торгашинова, В.Ф. Ануфриенко. Неорган. материалы **8**, 1136 (1972).
- [6] D.L. Griscom. J. Non-Cryst. Solids **31**, 241 (1978).
- [7] D.L. Griscom. J. Non-Cryst. Solids 64, 229 (1984).
- [8] A.A. Wolf, E.J. Friebele, D.L. Griscom, J. Acocella, M. Tomozawa. J. Non-Cryst. Solids 56, 349 (1983).
- [9] R. Cases, D.L. Griscom. Nucl. Instrum. Meth. Phys. Res. B 1, 503 (1984).

- [10] A.N. Trukhin, J. Teteris, A. Fedotov, D.L. Griscom, G. Buscarino. J. Non-Cryst. Solids 355, 1066 (2009).
- [11] I.A. Shkrob, B.M. Tadjikov, A.D. Trifunac. J. Non-Cryst. Solids 262, 35 (2000).
- [12] L. Skuja. J. Non-Cryst. Solids 239, 16 (1998).
- [13] M. Cannas, L. Vaccaro, R. Boscaino. Nucl. Instrum. Meth. Phys. Res. B 266, 2945(2008).
- [14] В.А. Губанов, А.Ф. Зацепин, В.С. Кортов, С.П. Фрейдман, Г.Б. Черлов. ФХС 13, 811 (1987).
- [15] T. Suzuki, L. Skuja, K. Kajihara, M. Hirano, T. Kamiya, H. Hosono. Phys. Rev. Lett. 90, 186404-1 (2003).
- [16] A.F. Zatsepin, V.B. Guseva, D.A. Zatsepin. Glass Phys. Chem. 34, 709 (2008).
- [17] J.H. Mackey, H.L. Smith, A. Halperin. J. Phys. Chem. Solids 27, 1759 (1966).
- [18] J.H. Mackey, J.W. Boss, M. Kopp. Phys. Chem. Glasses 11, 205 (1970).
- [19] D.E. Day. J. Non-Cryst. Solids 21, 343 (1976).
- [20] W. Vogel. In: Glass chemistry. Springer-Verlag, Berlin (1994).464 p.
- [21] G. Fuxi. Optical and spectroscopic properties of glass. Springer-Verlag, Berlin (1992). 283 p.
- [22] A. Bunde, M.D. Ingram, S. Russ. Phys. Chem. Chem. Phys. 6, 3663 (2004).
- [23] A. Faivre, D. Viviani, J. Phalippou. Solid State Ionics 176, 325 (2005).
- [24] O. Gedeon, M. Zimova, K. Jurek, J. Non-Cryst. Solids 279, 14 (2001).
- [25] Ю.Р. Закис. ФХС 10, 676 (1984).
- [26] A.F. Zatsepin, D.A. Zatsepin, V.I. Solomonov, V.B. Guseva, S.O. Cholakh. Glass Phys. Chem. 32, 28 (2006).
- [27] R.P. Sreekanth Chakradhar, K.P. Ramesh, J.L. Rao, J. Ramakrishna J. Non-Cryst. Solids 351, 1289 (2005).
- [28] R.P. Sreekanth Chakradhar, B. Yasoda, J. Lakshmana Rao, N.O. Gopal. Mater. Res. Bull. 41, 1646 (2006).
- [29] R.P. Sreekanth Chakradhar, B. Yasoda, J. Lakshmana Rao, N.O. Gopal. J. Non-Cryst. Solids 352, 3864 (2006).
- [30] R.P. Sreekanth Chakradhar, B. Yasoda, J.L. Rao, N.O. Gopal. J. Non-Cryst. Solids 353, 2355 (2007).
- [31] G. Padmaja, P. Kistaiah. Solid State Sci. 12, 2015 (2010).
- [32] N. Ollier, B. Boizot, B. Reynard, D. Ghaleb, G. Petite. Nucl. Instrum. Meth. Phys. Res. B 218, 176 (2004).
- [33] С.К. Евстропьев, Н.В. Никоноров, Ш.К. Шалимов, А.А. Эшбеков, Д.М. Юдин, ФХС 17, 126 (1991)
- [34] Д.А. Зацепин, А.Ф. Зацепин, В.И. Соломонов, С.О. Чолах. ФХС **30**, 544 (2004).
- [35] D.A. Zatsepin, A.F. Zatsepin, V.I. Solomonov, S.O. Cholakh. Phys. Status Solidi C 1, 2912 (2004).
- [36] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1972). 527 с.
- [37] G. Kordas, H.J. Oel. Phys. Chem. Glasses 23, 179 (1982).