Влияние различных химических обработок поверхности на высоту барьеров AI-*p*-SiGe, Au-*n*-SiGe

© И.Г. Атабаев, Н.А. Матчанов, М.У. Хажиев[¶], В. Пак, Т.М. Салиев

Физико-технический институт им. С.В. Стародубцева Академии наук Республики Узбекистан, 100084 Ташкент, Узбекистан

(Получена 4 августа 2009 г. Принята к печати 29 сентября 2009 г.)

Исследовано влияние различной химической обработки на свойства барьеров Шоттки Au-n-SiGe и Al-p-SiGe. Травление в различных режимах использовалось для формирования поверхности с различной плотностью поверхностных состояний (D_{ss}). Показано, что высота барьеров исследованных структур коррелирует с плотностью поверхностных состояний D_{ss} и содержанием германия в твердом растворе Si_{1-x}Ge_x.

1. Введение

Как известно, барьеры Шоттки (переходы металлполупроводник) являются основой многих полупроводниковых приборов. Их свойства определяются многими факторами, такими как состояние поверхности (концентрация поверхностных состояний и др.), типом проводимости кристалла и электрохимическим сродством к электрону металла и полупроводника и др.

В последние годы расширяются исследования и производство приборов на основе пленок $Si_{1-x}Ge_x$, выращенных молекулярно-лучевой эпитаксией (МЛЭ). Интерес к исследованиям барьеров Шоттки на основе пленок МЛЭ- $Si_{1-x}Ge_x$ вызван многочисленными практическими применениями этой структуры в электронных устройствах.

Высота барьера Шоттки для структур Ir-Si_{1-x}Ge_x, Pt-Si_{1-x}Ge_x, Pd-Si_{1-x}Ge_x и Fe-Si_{1-x}Ge_x, изготовленных на пленках МЛЭ-Si_{1-x}Ge_x, уменьшается с ростом содержания германия в твердом растворе (0 < x < 0.25) и составляет величину ~ 0.69–0.54 эВ [1,2].

Нами ранее были исследованы барьеры в детекторных структурах на основе объемных кристаллов *i*-Si_{1-x}Ge_x (Li), полученных путем электрического дрейфа лития при температуре 65–80°С [3]. Экспериментальная высота барьера $q\phi_b \approx 0.9-1.0$ эВ (по данным вольт-фарадных характеристик и спектров фототока структур) [3] превышает высоту барьера на кремнии (~ 0.7–85 эВ для структур Au–Si).

Интересно, что даже при содержании германия порядка $x \approx 0.5$ высота барьера в детекторных структурах $Au-i-Si_{1-x}Ge_x \langle Li \rangle$ намного превышает высоту барьера Au-Si. В работе [3] высказано предположение, что большая высота барьера связана с низкой концентрацией поверхностных состояний из-за обогащения поверхности кристалла германием.

Ясного понимания, каким образом обогащение поверхности германием приводит к пассивации поверхностных состояний, нет. Хорошо известны адсорбционные механизмы пассивации, в которых поверхность кристалла адсорбирует водород, хлор или другие элементы и соединения. Однако в нашем случае эти механизмы не подходят, так как германий формирует на поверхности твердый раствор, обогащенный германием. Другой возможной причиной является изменение характера химических процессов на поверхности кристалла: германий, обогащая поверхность, слабо взаимодействует с кислородом, и сплошной слой окиси отсутствует. Следующей причиной могут быть особенности взаимодействия золота с поверхностью кристалла. К сожалению, данные по барьерам Шоттки на основе Si_{1-x}Ge_x с использованием таких металлов, как платина, никель, алюминий и др. отсутствуют. Отсутствуют также данные по барьерам Au-*n*-SiGe, изготовленным на низкоомных кристаллах.

Ясно, что на свойства барьеров будет оказывать влияние тип металла (например, металлы, активно взаимодействующие с кремнием и германием), качество подготовки поверхности, технология напыления и др. Повышенные значения высоты Al- и Au-барьера на основе кремния были получены в работах [4–7]. В этих работах различная химическая обработка поверхности использовалась для управления свойствами барьеров путем получения поверхности с различной концентрацией поверхностных состояний.

Данная работа посвящена исследованию влияния различных химических обработок поверхности на свойства и характеристики барьеров Шоттки M–SiGe (Мметалл). Для уточнения факторов, влияющих на барьер, здесь использованы металлы — золото и алюминий для изготовления переходов Al–*n*-SiGe, Au–*p*-SiGe.

2. Методика эксперимента

Слитки монокристаллов твердых растворов Si_{1-x}Ge_x были выращены методом электронно-лучевой бестигельной зонной плавки в вакууме $10^{-5}-10^{-7}$ Торр. Слитки разрезались на шайбы толщиной 600-800 мкм, имели *р*- и *n*-тип проводимости. Удельное сопротивление *р* полученных слитков при комнатной температуре составляло $\rho \approx 50-200 \,\text{См} \cdot \text{см}$, при холловской подвижности дырок $300-500 \,\text{сm}^2/(\text{B} \cdot \text{c})$. Состав твердого раствора в

[¶] E-mail: hajiev_mardonbek@mail.ru, atvi@uzsci.net

образцах определяли методом гидростатического взвешивания и рентгеновским микроанализом. Атомная доля Ge составляла 0 < x < 0.10.

Поверхность кристаллов проходила стандартную механическую и химическую обработку. Затем часть кристаллов травилась в смеси HF: HMO₃: CHOO (1:3:1) с охлаждением при температуре $\sim 30^{\circ}$ С в течение 5 мин при активном перемешивании (1-й *тип химической обработки*). Этот режим травления позволяет получать поверхности с относительно малой плотностью поверхностных состояний [8].

Другая часть кристаллов для получения поверхности с увеличенной концентрацией поверхностных состояний травилась в смеси HF: HNO₃: CHOO (1:3:1) при температуре $\sim 70^{\circ}$ C в течение 5 мин (2-й *mun обработки*).

Барьеры Шоттки изготавливались путем термического напыления алюминия и золота в вакууме. Были изготовлены структуры Au-n-SiGe и Al-p-SiGe на поверхностях, подвергнутых различной химической обработке, с содержанием германия в кристаллах от 0 до 10 ат%. Тыльные омические контакты изготавливались на основе Ni.

Для определения параметров барьеров Шоттки $M-Si_{1-x}Ge_x$ применялись измерения статических вольтамперных характеристик (ВАХ) и импеданса структур при трех частотах (1, 5 и 15кГц) при различных приложенных напряжениях. Измерения импеданса при этих частотах позволяют получить информацию о поверхностных состояниях со временем релаксации $\tau \approx 10^{-3}-10^{-5}$ с и оценить их концентрацию. Проводились также измерения спектров фототока структур при комнатной температуре.

3. Экспериментальные результаты

Рассмотрим аналитические выражения для высоты энергетического барьера исследуемых структур по [9].

Высота барьер
а $\varphi_{\mathrm{b}n}$ для структуры Au-n-SiGe $-\mathrm{Ni}$ в
 двух предельных случаях:

если $D_{
m ss}
ightarrow \infty$, то

$$q\varphi_{\rm b} = (E_{\rm g} - q\varphi_0) - q\Delta\varphi \approx 0.1\,\mathrm{sB},\tag{1}$$

если $D_{ss} \rightarrow 0$, то

$$q\varphi_{\rm b} = q(\varphi_{\rm m} - \chi) - q\Delta\varphi \approx 1.1\,\mathrm{sB}.$$
 (2)

Здесь $D_{\rm ss}$ — плотность поверхностных состояний, $q\phi_0$ — уровень Ферми на свободной поверхности полупроводника (около $E_{\rm g}/3$), q — заряд электрона, $\Delta \phi$ — снижение высоты барьера из-за сил изображения (0.035 эВ), $\phi_{\rm m}$ — работа выхода (5.2 эВ для Au), χ — сродство к электрону (4.0375 эВ для Si_{0.75}Ge_{0.25}).

В промежуточном случае

$$q\varphi_{\rm b} = cq(\varphi_{\rm m} - \chi) + (1 - c)(E_{\rm g} - q\varphi_{\rm 0}) - q\Delta\varphi, \qquad (3)$$
$$c = \frac{\varepsilon_{\rm 1}}{\varepsilon_{\rm 1} + q^2\delta D_{\rm ss}},$$

где δ , ε_1 — толщина и диэлектрическая постоянная промежуточного слоя.

Для структуры Al-p-SiGe-Ni:

если $D_{
m ss}
ightarrow \infty$, то

$$q\varphi_{\rm b} = (E_{\rm g} - q\varphi_0) - q\Delta\varphi \approx 1.0\,\mathrm{sB},\tag{4}$$

если $D_{ss} \rightarrow 0$, то

$$q\varphi_{\rm b} = q(\varphi_{\rm m} - \chi) - q\Delta\varphi \approx 0.2\,\mathrm{sB},\tag{5}$$

$$\varphi_{\rm m} = 4.24$$
 эВ для Al.

Как видно из выражений (1)-(5), высокий барьер для контактов на основе золота с *n*-SiGe и алюминия с *p*-SiGe может достигаться при взаимно противоположных условиях: высокий барьер Al-*p*-SiGe — при больших D_{ss} , а высокий барьер Au-*n*-SiGe — при малых D_{ss} .

4. Оценка высоты барьера

Измерения обратных вольт-фарадных характеристик (ВФХ) образцов Al-*p*-SiGe, поверхность которых была подвергнута обработке по типу 2 (см. разд. 2), показали, что экспериментальная величина барьера в них $E_{\rm b} = q\varphi_{\rm b} \approx 0.90 - 0.95$ эВ. А образцы Al-*p*-SiGe, поверхность которых была подвергнута обработке по типу 1 (см. разд. 2), имели $q\varphi_{\rm b} \approx 0.25 - 0.50$ эВ (рис. 1). Вместе с тем известно, что поверхностные состояния, внося вклад в емкость структур, искажают вид зависимости $1/C^2(V)$ и могут дать завышенные или заниженные значения высоты барьера.

Образцы Au-n-SiGe (обработка 1), по данным обратной ВФХ, имели высоту барьера 0.7-0.85 эВ. А образцы, подвергнутые обработке 2, имели практически линейную ВАХ, и барьер почти отсутствовал.

Измерения спектров фототока при комнатной температуре (рис. 2. *b*) показали, что образцы A1–*p*-SiGe (обработка 2) из-за большой концентрации поверхностных состояний проявляют чувствительность при hv > 1.0 эВ.

Высота барьера также оценивалась по прямой ветви ВАХ. Как известно [9],

$$I = I_{s0} \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right], \tag{6}$$

$$I_{s0} = A^* T^2 S \exp\left(\frac{q\varphi_{\rm b}}{kT}\right),\tag{7}$$

где *I* — плотность тока; *V* — напряжение, приложенное к образцу; *n* — коэффициент неидеальности ВАХ, *T* — температура, *S* — площадь контакта,

 A^* — эффективная постоянная Ричардсона. Так как наш материал близок к кремнию, для оценок использовались значения для кремния $A^* = 110 \text{ A/cm}^2 \text{K}^2$ для *n*-типа, $A^* = 30 \text{ A/cm}^2 \text{K}^2$ для *p*-типа.

Для проведения компьютерной подгонки выражение (6) записывалось в виде

$$V = \frac{nkT}{q} \ln\left(\frac{I}{I_{s0}} + 1\right),\tag{8}$$

а с учетом сопротивления базы и контактов R_{b,c}:

$$V = \frac{nkT}{q} \ln\left(\frac{I}{I_{s0}+1}\right) + IR_{b,c}.$$
 (9)

Выражение (9) легко подгоняется к экспериментальным данным в программе Origin, в качестве подгоночных параметров берутся n, I_{s0} и $R_{b,c}$ (рис. 3).

По величине I_{s0} , используя выражение (2), оценили высоту барьера $q\phi_b$ структур (см. таблицу).

Рис. 1. Зависимости C^2 для структур Al-*p*-SiGe, подвергнутых обработке типа 1 (*a*) и обработке типа 2 (*b*).

Рис. 2. Спектры фототока структур Al-p-SiGe, подвергнутых обработке типа 1 (*a*) и обработке типа 2 (*b*).

5. Оценка концентрации поверхностных состояний

Концентрация поверхностных состояний оценивалась по данным измерения импеданса при частоте 1000, 5000, 15000 Гц. В работе [9] показано, что поверхностные состояния могут учитываться в эквивалентной схеме путем введения емкости и проводимости, связанных с ними. На рис. 4 приведена эквивалентная схема, по которой оценивалась концентрация поверхностных состояний.

Здесь

$$C = C_{\rm b} + \frac{C_{\rm s}}{1 + \omega^2 \tau^2}, \qquad G_{\rm ss} = \frac{C_{\rm s} \omega^2 \tau}{1 + \omega^2 \tau^2}$$

где $C_{\rm b}$ — емкость барьера; $C_{\rm s}$, $G_{\rm ss}$ — емкость и проводимость, связанные с поверхностными состояниями; $\tau = C_{\rm s}R_{\rm s}, R_{\rm s} = 1/G_{\rm ss}, \omega = 2\pi\nu$.

Концентрация поверхностных состояний оценивается по выражению

$$D_{\rm ss} = C_{\rm s}/qS$$

Результаты оценок приведены в таблице.

Физика и техника полупроводников, 2010, том 44, вып. 5

Параметры	Au–n-SiGe		Al- <i>p</i> -SiGe		Al- <i>p</i> -SiGe	
	Обработка 1				Обработка 2	
Номер образца	32Au	12Au	31Al	21Al	22A1	32A1
Содержание Ge,%	2.5	1	5.1	0.8	0.8	6.4
Высота барьера по обратной ветви ВАХ, эВ	0.71	0.39	0.49	0.25	0.85	0.95
Высота барьера по прямой ветви ВАХ, эВ	0.73	0.69	0.70	0.66	0.78	0.77
$D_{\rm ss}, 10^{12} {\rm cm}^{-2}$ (оценка по прямой ВАХ)	1.4-3	0.3-5	0.2 - 0.7	0.1 - 0.6	1 - 2	1-3
Коэффициент неидеальности <i>п</i> ВАХ	1.40	2.13	4.41	5.49	1.70	1.40
$D_{\rm ss}, 10^{12} {\rm cm}^{-2}$ (из коэффициента неидеальности)	8.25	2.9	1.0	0.73	4.7	8.25

Характеристики некоторых образцов

Концентрация *D*_{ss} оценивалась также по коэффициенту неидеальности прямой ветви ВАХ. Согласно [10], коэффициент неидеальности

$$n = 1 + d\varepsilon_{\rm s} [W_c(\varepsilon_d + qN_{\rm ssc})]^{-1}, \qquad (10)$$

где $N_{\rm ssc}$ — плотность поверхностных состояний; ε_d , d — диэлектрическая проницаемость и толщина естественного слоя окиси кремния на поверхности образцов; $\varepsilon_{\rm s}$ — диэлектрическая проницаемость полупроводника. Полагая, что толщина $d \approx 10$ нм [8], мы оценили величину $D_{\rm ss}$, которая также приведена в таблице.

Рис. 3. Определение *n*, I_{s0} и $R_{b,c}$ путем компьютерной подгонки для образцов: a - 12 Au, b - 32 Au (см. таблицу).

Рис. 4. Эквивалентная схема для оценки концентрации поверхностных состояний.

Как видно из таблицы, обработка по типу 1 действительно создает пониженные значения концентрации поверхностных состояний по сравнению с обработкой по типу 2. Причем в случае обработки 1 контакты с алюминием имеют более низкую плотность $D_{\rm ss}$, чем контакты с золотом. Видимо, это связано с тем, что алюминий более активно взаимодействует с поверхностью, нежели золото.

Высота барьеров Au-*n*-SiGe и Al-*p*-SiGe, согласно выражениям (1)-(3), коррелирует с концентрацией поверхностных состояний.

6. Заключение

Таким образом, исследованы барьеры Шоттки М—SiGe на основе золота и алюминия, изготовленные на поверхности с различной плотностью поверхностных состояний. Показано, что высота их барьера коррелирует с плотностью поверхностных состояний и содержанием германия в твердом растворе.

Список литературы

- O. Nur, M. Willander, R. Turan, M.R. Sardela, G.V. Hansson, jr. Appl. Phys. Lett., 68, 1084 (1996).
- [2] G.D. Scott, M. Xiao, H.W. Jiang, E.T. Croke, E. Yablonovitch. Appl. Phys. Lett., 90, 032110 (2007).

Физика и техника полупроводников, 2010, том 44, вып. 5

635

- [3] М.С. Саидов, Р.А. Муминов, И.Г. Атабаев и др. Атом. энергия, 4, 270 (1996).
- [4] Zs.J. Horváth, M. Ádám, I. Szabo, M. Serényi, Vo Van Tuyen. Appl. Surf. Sci., 190, 441 (2002).
- [5] A. Keffous, M. Zitouni, Y. Belkacem, H. Menari, W. Chergui. Appl. Surf. Sci., 199, 22 (2002).
- [6] H. Rahab, A. Kelous, H. Menari, W. Chergui, N. Boussaa, M. Siad. Nucl. Instr. Meth. Phys. Res. A, 459, 200 (2001).
- [7] G. Ottaviani, K.N. Tu, J. W Mayer. Phys. Rev. B, 24, 3354 (1981).
- [8] В.Т. Малаева. Автореф. канд. дис. (Ташкент, 1985).
- [9] С. Зн. Физика полупроводниковых приборов. (М., Мир, 1984) т. 1, с. 275. 285–287 и 395–397.
- [10] H.N. Hall. Phys. Rev., 87, 387 (1952).

Редактор Т.А. Полянская

The influence of various chemical treatments of a surface on height of AI-p-SiGe, Au-n-SiGe barrieres

I.G. Atabaev, N.A. Matchanov, M.U. Hajiev, V. Pak, T.M. Saliev

Physicotechnical Institute,

Academy of Sciences of the Republic of Usbekistan, 100084 Tashkent, Uzbekistan

Abstract The influence of different chemical treatments on the properties of Au–*n*-SiGe and Al–*p*-SiGe Schottky junctions was studied. The chemical treatments was used to formation different density (D_{ss}) of surface states on the surface of SiGe single crystals. It is shown that height of barrier correlates with D_{ss} and content of Ge in SiGe crystal.