Энергия связи экситона в полупроводниковых квантовых точках

© С.И. Покутний¶

Институт металлофизики им. Г.В. Курдюмова Национальной академии наук Украины, 03680 Киев, Украина

(Получена 10 июня 2009 г. Принята к печати 10 сентября 2009 г.)

В адиабатическом приближении, а также в рамках модифицированного метода эффективной массы, в котором приведенная эффективная масса экситона $\mu = \mu(a)$ является функцией радиуса *a* полупроводниковой квантовой точки, получено выражение для энергии связи экситона $E_{ex}(a)$ в квантовой точке. Обнаружен эффект существенного увеличения энергии связи экситона $E_{ex}(a)$ в квантовых точках селенида и сульфида кадмия с радиусами *a*, сравнимыми с боровскими радиусами экситона a_{ex} , относительно энергии связи экситона в монокристаллах CdSe и CdS (в 7.4 и 4.5 раз соответственно).

1. Введение

В настоящее время особое внимание уделяется исследованиям полупроводниковых нанокристалллов сферической формы — так называемых квантовых точек (КТ) с радиусами a = 1-10 нм, содержащих в своем объеме сульфид и селенид кадмия, арсенид галлия, германий и кремний, синтезированных в матрице боросиликатного стекла [1–4]. Последнее обстоятельство связано с их уникальными фотолюминесцентными свойствами, способностью эффективно излучать свет в видимом или близком инфракрасном диапазонах при комнатной температуре [1–6].

В большинстве теоретических моделей, в которых рассчитывались энергетические спектры квазичастиц в КТ, авторами использовалось приближение эффективной массы, которому приписывалась применимость к КТ по аналогии с массивными монокристаллами [6–9]. Вопрос о применимости приближения эффективной массы к описанию полупроводниковых КТ является до сих пор нерешенным [6,9,10].

В работе [10] предложен новый модифицированный метод эффективной массы, с помощью которого описывался энергетический спектр экситона в полупроводниковых КТ с радиусами *a*, сравнимыми с боровским радиусом экситона a_{ex} (a_{ex} — боровский радиус экситона в полупроводниковом материале, который содержится в объеме КТ). Показано, что в рамках модели КТ, в которой КТ описывалась бесконечно глубокой потенциальной ямой, приближение эффективной массы можно применять к описанию экситона в КТ с радиусами $a \approx a_{ex}$, считая, что приведенная эффективная масса экситона является функцией радиуса *a* КТ: $\mu = \mu(a)$.

Применению полупроводниковых наносистем в качестве активной области инжекционных нанолазеров препятствует малая энергия связи экситона $E_{\rm ex}(a)$ в КТ, а также распад экситонов при комнатной температуре для большинства полупроводниковых КТ [1,2,6,7]. Поэтому исследования, направленные на поиск наноструктур, в которых может наблюдаться существенное увеличение энергии связи экситона $E_{\rm ex}(a)$ в КТ, являются весьма актуальными. В настоящей работе в адиабатическом приближении, а также в рамках модифицированного метода эффективной массы теоретически обнаружен эффект существенного увеличения энергии связи экситона $E_{\rm ex}(a)$ в КТ селенида и сульфида кадмия с радиусами $a \approx a_{\rm ex}$ (в 7.4 и 4.5 раз соответственно) по сравнению с энергией связи экситона в монокристаллах CdSe и CdS. Обсуждаются также возможности использования в качестве активной области полупроводниковых лазеров наносистем, состоящих из КТ сульфида и селенида кадмия, синтезированных в матрице боросиликатного стекла.

2. Энергия связи экситона в квантовых точках в адиабатическом приближении

Рассмотрим простую модель квазинульмерной системы: нейтральную полупроводниковую сферическую КТ радиуса *a*, которая содержит в своем объеме полупроводниковый материал с диэлектрической проницаемостью ε_2 , окруженную матрицей с диэлектрической проницаемостью ε_1 . При этом диэлектрическая проницаемость КТ ε_2 существенно больше диэлектрической проницаемости матрицы ε_1 (т.е. относительная диэлектрическая проницаемость $\varepsilon = (\varepsilon_2/\varepsilon_1) \gg 1$). В объеме такой КТ движутся электрон *e* и дырка *h* с эффективными массами m_e и m_h (r_e и r_h — расстояния до электрона и дырки от центра КТ, см. рис. 1) [7–10]. Предполагается, что зоны электронов и дырок имели параболическую форму. Характерными размерами задачи являются величины *a*, a_e , a_h , a_{ex} , где

$$a_e = \frac{\varepsilon_2 \hbar^2}{m_e e^2}, \quad a_h = \frac{\varepsilon_2 \hbar^2}{m_h e^2}, \quad a_{\text{ex}} = \frac{\varepsilon_2 \hbar^2}{\mu_0 e^2} \tag{1}$$

— боровские радиусы электрона, дырки и экситона соответственно в полупроводнике с диэлектрической проницаемостью ε_2 , e — заряд электрона, $\mu_0 = m_e m_h/(m_e + m_h)$ — приведенная эффективная масса экситона в полупроводнике с диэлектрической проницаемостью ε_2 . То обстоятельство, что все характерные размеры задачи a, a_e , a_h , a_{ex} значительно больше межатомных расстояний a_0 , позволяет рассматривать

[¶] E-mail: Pokutnyi_Sergey@inbox.ru

Рис. 1. Схематическое изображение экситона в сферической квантовой точке. Радиус-векторы r_e и r_h определяют расстояние электрона e и дырки h от центра КТ с радиусом a. Заряды изображений $e' = (a/r_e)e$ и $h' = (a/r_h)h$ расположены на расстояниях $r'_e = (a^2/r_e)$ и $r'_h = (a^2/r_h)$ от центра КТ и представляют собой точечные заряды изображения электрона и дырки соответственно.

движение электрона в дырки в КТ в приближении эффективной массы.

Энергию поляризационного взаимодействия $U(\mathbf{r}_e, \mathbf{r}_h, a)$ электрона и дырки со сферической поверхностью раздела "КТ — диэлектрическая матрица" при относительной диэлектрической проницаемости $\varepsilon \gg 1$ можно представить в виде алгебраической суммы энергий взаимодействия дырки и электрона со своими, $V_{hh'}(r_h, a), V_{ee'}(r_e, a)$ (энергия "самодействия"), и с "чужими", $V_{he'}(\mathbf{r}_e, \mathbf{r}_h, a), V_{eh'}(\mathbf{r}_e, \mathbf{r}_h, a)$, изображениями соответственно [7–9] (рис. 1):

$$U(\mathbf{r}_{e}, \mathbf{r}_{h}, a) = V_{hh'}(r_{h}, a) + V_{ee'}(r_{e}, a)$$
$$+ V_{eh'}(\mathbf{r}_{e}, \mathbf{r}_{h}, a) + V_{he'}(\mathbf{r}_{e}, \mathbf{r}_{h}, a), \quad (2)$$

где

$$V_{hh'}(r_h, a) = \frac{e^2}{2\varepsilon_2 a} \left(\frac{a^2}{a^2 - r_h^2} + \varepsilon\right),\tag{3}$$

$$V_{ee'}(r_e, a) = \frac{e^2}{2\varepsilon_2 a} \left(\frac{a^2}{a^2 - r_e^2} + \varepsilon\right),\tag{4}$$

$$= -\frac{e^2\beta}{2\varepsilon_2 a} \frac{a}{[(r_e r_h/a)^2 - 2r_e r_h \cos\theta + a^2]^{1/2}}.$$
 (5)

В формуле (5) параметр

 $V_{eh'}(\mathbf{r}_e, \mathbf{r}_h, a) = V_{he'}(\mathbf{r}_e, \mathbf{r}_h, a)$

$$\beta = \frac{(\varepsilon - 1)}{(\varepsilon + 1)},\tag{6}$$

а угол $\theta = \mathbf{r}_e^{\wedge} \mathbf{r}_h$.

В изучаемой модели квазинульмерной структуры (рис. 1) в рамках вышеизложенных приближений, а также в приближении эффективной массы гамильтониан экситона, движущегося в объеме КТ, принимает вид [7–9]

$$H(\mathbf{r}_e, \mathbf{r}_h, a) = -\frac{\hbar^2}{2m_e} \Delta_e - \frac{\hbar^2}{2m_h} \Delta_h + E_g + U(\mathbf{r}_e, \mathbf{r}_h, a) + V_{eh}(\mathbf{r}_e, \mathbf{r}_h) + V_e(r_e, a) + V_h(r_h, a),$$
(7)

где первые два члена являются операторами кинетической энергии электрона и дырки, E_g — ширина запрещенной зоны в неограниченном полупроводнике с диэлектрической проницаемостью ε_2 ; энергия кулоновского взаимодействия между электроном и дыркой $V_{eh}(\mathbf{r}_e, \mathbf{r}_h)$ описывается формулой

$$V_{eh}(\mathbf{r}_e, \mathbf{r}_h) = -\frac{e^2}{\varepsilon_2 |\mathbf{r}_e - \mathbf{r}_h|}.$$
(8)

В гамильтониане экситона (7) потенциалы

$$V_{e}(r_{e}, a), V_{h}(r_{h}, a) = \begin{cases} 0, & r_{e}, r_{h} \le a \\ \infty, & r_{e}, r_{h} > a \end{cases}$$
(9)

описывают движение квазичастиц в объеме КТ с помощью модели бесконечно глубокой потенциальной ямы.

При выполнении условия

$$a_h \ll a \ll a_e \approx a_{\rm ex} \tag{10}$$

можно использовать адиабатическое приближение (в котором эффективная масса дырки m_h значительно превосходит эффективную массу электрона m_e), считая кинетическую энергию электрона в КТ

$$T_{n_e,l_e=0}^e(S) = \frac{\pi^2 n_e^2}{S^2} \left(\frac{\mu_0}{m_e}\right) \operatorname{Ry}_{ex}$$

самой большой величиной задачи ($S = (a/a_{ex})$ — безразмерный радиус КТ) [7–9]. Используя первый порядок теории возмущений, получим энергию связи экситона $E_{ex}^{n_e,l_e;n_h,l_h}(a,\varepsilon)$ в основном состоянии ($n_e = 1$, $l_e = 0$; $n_h = 1$, $l_h = 0$) (n_e , l_e и n_h , l_h — главные и орбитальные квантовые числа электрона и дырки) в КТ радиуса a (10):

$$E_{\rm ex}^{1,0;1,0}(a,\varepsilon) = \bar{V}_{eh}^{1,0;1,0}(a) + \left[\bar{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \bar{V}_{he'}^{1,0;1,0}(a,\varepsilon)\right].$$
(11)

Средние значения энергии кулоновского взаимодействия электрона с дыркой $\bar{V}_{eh}^{1,0;1,0}(a)$, а также энергий взаимодействия электрона и дырки с "чужими" изображениями $\bar{V}_{eh'}^{1,0;1,0}(a, \varepsilon) + \bar{V}_{he'}^{1,0;1,0}(a, \varepsilon)$, полученные усреднением энергий (8) и (5) на электронных волновых функциях потенциальной ямы бесконечной глубины КТ, принимают такой вид:

$$\bar{V}_{eh}^{1,0;1,0}(S) = -\left\{\frac{2}{S}\left[\ln(2\pi) + \gamma - \text{Ci}(2\pi)\right] - \omega(S, n_e = 1)\frac{3}{2}\right\} \text{Ry}_{\text{ex}}, \quad (12)$$

Физика и техника полупроводников, 2010, том 44, вып. 4

$$\omega(S, n_e = 1) = \frac{2[1 + (2/3)\pi^2]^{1/2}}{S^{3/2}} \left(\frac{\mu_0}{m_h}\right)^{1/2}, \qquad (13)$$

$$\left[\bar{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \bar{V}_{he'}^{1,0;1,0}(a,\varepsilon)\right] = -\frac{2\beta}{S} \operatorname{Ry}_{\mathrm{ex}},\qquad(14)$$

где энергия связи экситона

$$E_{\text{ex}} = \text{Ry}_{\text{ex}} = \frac{(\mu_0/m_0)}{\varepsilon_2^2} \text{ Ry}_0$$
(15)

в неограниченном полупроводнике с диэлектрической проницаемостью ε_2 (Ci(y) — интегральный косинус, $\gamma = 0.577$ — постоянная Эйлера, Ry₀ = 13.61 эВ — постоянная Ридберга).

Эффект усиления энергии связи экситона $E_{ex}^{1,0;1,0}(a,\varepsilon)$ (11) в КТ, согласно формулам (11)–(15), определяется двумя факторами: перенормировкой энергии кулоновского взаимодействия электрона с дыркой $\bar{V}_{eh}^{1,0;1,0}(a)$ (12), связанной с чисто пространственным ограничением области квантования объемом КТ, а также энергией взаимодействия электрона и дырки с "чужими" изображениями $\bar{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \bar{V}_{he'}^{1,0;1,0}(a,\varepsilon)$ (14) (эффект "диэлектрического усиления" [11]), возникающими на сферической поверхности раздела КТ–диэлектрическая матрица (рис. 1).

Эффект "диэлектрического усиления" обусловлен тем, что в случае, когда диэлектрическая проницаемость матрицы ε_1 значительно меньше, чем диэлектрическая проницаемость КТ ε_2 , существенную роль во взаимодействии между электроном и дыркой в объеме КТ играет поле, создаваемое этими квазичастицами в матрице. При этом взаимодействие между электроном и дыркой в КТ оказывается значительно больше, чем в неограниченном полупроводнике с диэлектрической проницаемостью ε_2 [11].

Экспериментальная зависимость положения экситонных линий поглощения КТ сульфида кадмия радиусом $a \leq 30$ нм, диспергированных в прозрачной диэлектрической матрице боросиликатного стекла, которые вызваны межзонными переходами дырки на уровни размерного квантования электрона ($n_e = 1$, $l_e \leq 2$) в зоне проводимости, от радиуса КТ a была получена в [3]. При этом законы дисперсии носителей заряда у дна зоны проводимости и валентной зоны в хорошем приближении можно считать параболическими.

Следует отметить, что в рамках развитой нами теории можно, строго говоря, получить значения энергии связи экситона $E_{\rm ex}^{1,0;1,0}(a,\varepsilon)$ (11) в КТ сульфида и селенида кадмия лишь с радиусами [12]

$$a_{\rm ex} \le a \le 3a_{\rm ex}.\tag{16}$$

Для КТ сульфида кадмия с радиусами *a* (16), выращенных в матрице боросиликатного стекла [3], наибольшая энергия связи экситона $|E_{\rm ex}^{1,0;1,0}(a,\varepsilon)| \approx$ $\approx 4.50 \, {\rm Ry}_{\rm ex} \approx 1.4 \cdot 10^{-1}$ эВ наблюдается в КТ радиусом $a = a_{\rm ex} = 2.5$ нм (рис. 2). Такое значение энергии связи

Рис. 2. Зависимость энергии связи экситона $E_{ex}^{1,0;1,0}(a, \varepsilon)$ (11) (1), $\tilde{E}_{ex}^{1,0;1,0}(a, \varepsilon)$ (21) (1') и энергии кулоновского взаимодействия $\bar{V}_{eh}^{1,0;1,0}(a)$ (12) (2), $\tilde{V}_{eh}^{1,0;1,0}(a)$ (22) (2') в КТ сульфида кадмия от радиуса *a* КТ. $a_{ex} = 2.5$ нм — боровский радиус экситона в монокристалле CdS.

экситона в КТ существенно превышает (в 4.5 раз) энергию связи экситона $E_{\rm ex} \approx 31 \,\text{мэB}$ (15) в монокристалле CdS. Соответственно в КТ сульфида кадмия с радиусами $a = 5, 7.5 \,\text{нм}, \text{т. e. } a = (2, 3)a_{\rm ex}$, энергия связи экситона $|E_{\rm ex}^{1,0;1,0}(a, \varepsilon)|$ (11) принимает весьма существенные значения: $|E_{\rm ex}^{1,0;1,0}(a, \varepsilon)| \approx (2.5, 1.73) \,\text{Ry}_{\rm ex} \approx (77, 54) \,\text{мэB}$ (рис. 2).

Основной вклад в энергию связи экситона $E_{ex}^{1,0;1,0}(a,\varepsilon)$ (11)–(14) в КТ сульфида кадмия с радиусами a (16) (т.е. $2.5 \le a \le 7.5$ нм) вносит среднее значение энергии кулоновского взаимодействия $\bar{V}_{eh}^{1,0;1,0}(a)$ (12) между электроном и дыркой: $0.714 \le |\bar{V}_{eh}^{1,0;1,0}(a)/E_{ex}^{1,0;1,0}(a)| \le 0.74$. При этом среднее значение энергии взаимодействия электрона и дырки с "чужими" изображениями $\bar{V}_{eh'}^{1,0;1,0}(a,\varepsilon)$ (14) дает в энергию связи экситона $E_{ex}^{1,0;1,0}(a,\varepsilon)$ (11) в КТ меньший, но существенный вклад: $0.26 \le |[\bar{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \bar{V}_{he'}^{1,0;1,0}(a,\varepsilon) + \bar{V}_{he'}^{1,0;1,0}(a,\varepsilon)]/E_{ex}^{1,0;1,0}(a)| \le 0.286$ (рис. 2).

В интервале радиусов

$$0.55a_{\rm ex} \le a \le 2.76a_{\rm ex}$$
 (17)

КТ селенида кадмия, выращенных в матрице боросиликатного стекла [4], энергия связи экситона принимает наибольшее значение $|E_{ex}^{1,0;1,0}(a, \varepsilon)| \approx 7.4 \text{ Ry}_{ex}$ $\approx 1.1 \cdot 10^{-1}$ эВ в КТ радиусом $a = 0.55a_{ex} = 2.5$ нм (рис. 3). Такое значение энергии связи экситона существенно превышает (в 7.4 раза) энергию связи экситона $E_{ex} \approx 15$ мэВ (15) в монокристалле CdSe. Соответственно в КТ селенида кадмия с радиусами a = 5, 7.5, 10, 12.5 нм (т.е. $a = (1.1, 1.66, 2.21, 2.76)a_{ex})$ энергия связи экситона (11) принимает существенные

Рис. 3. Зависимость энергии связи экситона $E_{ex}^{1,0;1,0}(a, \varepsilon)$ (11) (1) и энергии кулоновского взаимодействия $\bar{V}_{eh}^{1,0;1,0}(a)$ (12) (2) в КТ селенида кадмия от радиуса *а* КТ. $a_{ex} = 4.55$ нм — боровский радиус экситона в монокристалле CdSe.

значения: $|E_{\rm ex}^{1,0;1,0}(a,\varepsilon)| \approx 4.26, 3.0, 2.0, 1.76 \, {\rm Ry}_{\rm ex} \approx 64, 45, 30, 27$ мэВ (рис. 3).

Основной вклад в энергию связи экситона (11) КΤ селенида кадмия с радиусами а (17)в $2.5 \le a \le 12.5$ HM) (т.е. дает среднее знаэнергии чение кулоновского взаимодействия $\bar{V}_{eh}^{1,0;1,0}(a)$ (12) между электроном И дыркой, $0.74 \leq |ar{V}_{eh}^{1,0;1,0}(a)/E_{ ext{ex}}^{1,0;1,0}(a)| \leq 0.80$, тогда как среднее значение энергий взаимодействия электрона и дырки с "чужими" изображениями, $\bar{V}_{eh'}^{1,0;1,0}(a, \varepsilon)$ $+ \bar{V}_{he'}^{1,0;1,0}(a, \varepsilon)$ (14), вносит в энергию связи экситона $F_{ex}^{1,0;1,0}(a,\varepsilon)$ (11) в КТ меньший, но заметный вклад: $0.20 \leq \left[|\bar{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \bar{V}_{he'}^{1,0;1,0}(a,\varepsilon)|/|E_{ex}^{1,0;1,0}(a)|\right] \leq 0.26$ (см. рис. 3).

Эффект "диэлектрического усиления" [11] энергии связи экситона $|E_{\text{ex}}^{1,0;1,0}(a,\varepsilon)|$ (11) в КТ, согласно формуле (14), определяется отношением $|\bar{V}_{eh'}^{1,0;1,0}(a,\varepsilon)|$ + $\bar{V}_{he'}^{1,0;1,0}(a,\varepsilon)|/\operatorname{Ry}_{\text{ex}} = 2\beta/S$, которое зависит от значения параметра β (6) (для КТ CdS параметр $\beta = 0.63$, а для КТ CdSe параметр $\beta = 0.67$).

Энергия связи экситона в квантовых точках в рамках модифицированного метода эффективной массы

В работе [10] в рамках модифицированного метода эффективной массы использовалась радиальная вариационная волновая функция основного состояния экситона (1s-состояния электрона и 1s-состояния дырки) в КТ сульфида кадмия радиуса а:

$$\Psi_{0}(\mathbf{r}_{e},\mathbf{r}_{h},r) = A \exp\left[-\frac{\mu(a)}{\mu_{0}} \frac{r}{a_{ex}}\right] \frac{\sin(\pi r_{e}/a)}{r_{e}} \frac{\sin(\pi r_{h}/a)}{r_{h}}$$
$$\times \frac{(a^{2} - r_{e}^{2})}{a^{2}} \frac{(a^{2} - r_{h}^{2})}{a^{2}} \frac{r}{a} \frac{|\mathbf{r}_{e} - (a/r_{h})^{2}\mathbf{r}_{h}|}{a}, \quad (18)$$

где $r = |\mathbf{r}_e - \mathbf{r}_h|$. В волновой функции экситона (18) приведенная эффективная масса экситона $\mu(a)$ является вариационным параметром. В работе [10] показано (см. таблицу), что функция $\mu(a)$ монотонно слабо меняется в пределах

$$0.40 \le \left[\mu(a)/m_0\right] \le \left(\mu_0/m_0\right) = 0.197 \tag{19}$$

при изменении радиуса а КТ в интервале

$$2.5 \le a \le 8.5$$
 нм (20)

 $(\mu_0$ — приведенная эффективная масса экситона в монокристалле сульфида кадмия, m_0 — масса свободного электрона). Значения функции $\mu(a)$ (19) в КТ CdS, радиус которой определялся неравенством (20), были получены в [10] в условиях экспериментов [3].

По аналогии с формулой (11) запишем выражение для энергии связи экситона $\widetilde{E}_{ex}^{1,0;1,0}(a,\varepsilon)$ в основном состоянии ($n_e = 1$, $l_e = 0$; $n_h = 1$, $l_h = 0$) в КТ сульфида кадмия радиуса a (20):

$$\widetilde{E}_{ex}^{1,0;1,0}(a,\varepsilon) = \widetilde{V}_{eh}^{1,0;1,0}(a) + \left[\widetilde{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \widetilde{V}_{he'}^{1,0;1,0}(a,\varepsilon)\right].$$
(21)

Средние значения энергии кулоновского взаимодействия электрона с дыркой, $\widetilde{V}_{eh}^{1,0;1,0}(a)$, а также энергий взаимодействия электрона и дырки с "чужими" изображениями, $\widetilde{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \widetilde{V}_{he'}^{1,0;1,0}(a,\varepsilon)$, полученные усреднением энергии (8) и (5) на вариационных волновых функциях экситона $\Psi_0(\mathbf{r}_e, \mathbf{r}_h, r)$ (18), принимают такой вид:

$$\widetilde{V}_{eh}^{1,0;1,0}(a) = \langle \Psi_0(\mathbf{r}_e, \mathbf{r}_h, r) | V_{eh}(\mathbf{r}_e, \mathbf{r}_h) | \Psi_0(\mathbf{r}_e, \mathbf{r}_h, r) \rangle, \quad (22)$$

$$\widetilde{V}_{eh'}^{1,0;1,0}(a) + \widetilde{V}_{he'}^{1,0;1,0}(a) = \langle \Psi_0(\mathbf{r}_e, \mathbf{r}_h, r) | V_{eh'}^{1,0;1,0}(\mathbf{r}_e, \mathbf{r}_h, a) + V_{he'}^{1,0;1,0}(\mathbf{r}_e, \mathbf{r}_h, a) | \Psi_0(\mathbf{r}_e, \mathbf{r}_h, r) \rangle.$$
(23)

Подставляя значения функции $\mu(a)$ (19), взятые из таблицы, одновременно с соответствующими значениями радиуса *а* КТ сульфида кадмия из интервала (20) в выражения (22) и (23), получим значения энергий $\widetilde{V}_{eh}^{1,0;1,0}(a)$ (22) и $\widetilde{V}_{eh'}^{1,0;1,0}(a)$ + $\widetilde{V}_{he'}^{1,0;1,0}(a)$ (23), а также значение энергии связи

Значение вариационного параметра $\mu(a)$ как функции радиуса *а* нанокристалла сульфида кадмия [10]

а, нм	2.5	3.0	4.0	5.0	6.0	7.0	8.0	8.5
$\mu(a)/m_0$	0.40	0.37	0.32	0.28	0.23	0.21	0.20	0.197

Физика и техника полупроводников, 2010, том 44, вып. 4

экситона $\widetilde{E}_{\mathrm{ex}}^{1,0;1,0}(a,\varepsilon)$ (21) как функций радиуса aКТ сульфида кадмия (рис. 2). При этом величина энергии связи экситона $|\widetilde{E}_{\mathrm{ex}}^{1,0;1,0}(a,\varepsilon)| = 4.19 \operatorname{Ry}_{\mathrm{ex}}$ $\approx 1.30 \cdot 10^{-1}$ эВ в КТ CdS радиусом $a = a_{ex}$, выращенной в матрице боросиликатного стекла в условиях экспериментов [3] (см. рис. 2), в 1.07 раз меньше соответствующего значения энергии связи экситона $|E_{\text{ex}}^{1,0;1,0}(a,\varepsilon)|$ (11) в КТ CdS того же радиуса $a = a_{\rm ex}$, полученного с использованием адиабатического приближения. В КТ сульфида кадмия с радиусами a = 5, 7.5, 10, 12.5, 13.5 HM (T.e. $a = (2, 3, 4, 5, 5.4)a_{\text{ex}}$) энергия связи экситона (21) принимает значения $|\widetilde{E}_{\text{ex}}^{1,0;1,0}(a,\varepsilon)| \approx 2.29, \ 1.65, \ 1.20, \ 1.06, \ 1.0 \,\text{Ry}_{\text{ex}} = 71.1,$ 51, 37.1, 33.0, 31 мэВ, которые слабо отличаются от соответствующих значений $|E_{\text{ex}}^{1,0;1,0}(a,\varepsilon)|$ (11) — на величину $\Delta = |(\widetilde{E}_{\mathrm{ex}}^{1,0;1,0}(a,\varepsilon) - E_{\mathrm{ex}}^{1,0;1,0}(a,\varepsilon))/E_{\mathrm{ex}}^{1,0;1,0}(a,\varepsilon)|,$ меняющуюся в пределах от 7 до 5% при изменении радиусов а КТ в интервале (16) (рис. 2). При этом энергия связи экситона $|\widetilde{E}_{\mathrm{ex}}^{1,0;1,0}(a,\varepsilon)|$ (21) в КТ сульфида кадмия радиусом $a_c = 5.4a_{\mathrm{ex}} \approx 13.5$ нм принимает значение, равное энергии связи экситона $E_{\rm ex} = 31$ мэВ (15) в монокристалле CdS.

Так же как и для значений энергии связи экситона $E_{ex}^{1,0;1,0}(a, \varepsilon)$ (11) в КТ CdS, полученных в рамках адиабатического приближения, основной вклад в $\widetilde{E}_{\rm ex}^{1,0;1,0}(a,\varepsilon)$ (21)-(23) энергию связи экситона в КТ сульфида кадмия с радиусами $a \ge a_{ex}$ вносит среднее значение энергии кулоновского взаимодействия $\widetilde{V}_{eh}^{1,0;1,0}(a,\varepsilon)$ (22) между электроном $0.70 \leq |\widetilde{V}_{eh}^{1,0;1,0}(a,\varepsilon)/\widetilde{E}_{ex}^{1,0;1,0}(a)| \leq 0.78.$ дыркой При этом среднее значение энергии взаимодействия электрона и дырки с "чужими" изображениями, $\widetilde{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \widetilde{V}_{he'}^{1,0;1,0}(a,\varepsilon)$ (23), дает энергию связи экситона (21) в КТ меньший, но заметный вклад: $0.22 \leq |[\widetilde{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \widetilde{V}_{he'}^{1,0;1,0}(a,\varepsilon)]/\widetilde{E}_{\mathrm{ex}}^{1,0;1,0}(a)| \leq 0.30$ (рис. 2).

Следует отметить, что значения энергии связи экситона $|\tilde{E}_{ex}^{1,0;1,0}(a,\varepsilon)|$ (21) в КТ сульфида кадмия радиусами $a \ge a_{ex}$, полученные вариационным методом, являются несколько завышенными (параметр Δ слабо меняется в пределах от 5 до 7%) по сравнению с соответствующими значениями энергии связи экситона $|E_{ex}^{1,0;1,0}(a,\varepsilon)|$ (11) в КТ CdS радиусом a (16), вычисленными в рамках адиабатического приближения [8,9,12]. Такое различие значений энергии связи экситона в КТ CdS $|\tilde{E}_{ex}^{1,0;1,0}(a,\varepsilon)|$ (21) и $|E_{ex}^{1,0;1,0}(a,\varepsilon)|$ (11), по-видимому, обусловлено тем обстоятельством, что вариационные методы расчета энергетического спектра экситона в КТ [10,13,14] дают завышенные значения, что в свою очередь приводит так же к завышенному значению энергии связи экситона (21) в КТ.

Таким образом, в отличие от энергии связи экситона $E_{\rm ex}^{1,0;1,0}(a, \varepsilon)$ (11), полученной в рамках адиабатического приближения, только в интервале радиусов *a* KT CdS, ограниченного сверху неравенством (16), вариационный модифицированный метод эффективной массы [10] да-

ет возможность получить выражение $\widetilde{E}_{\rm ex}^{1,0;1,0}(a,\varepsilon)$ (21), описывающее энергию связи экситона в КТ CdS в области радиусов $a \ge a_{\rm ex}$, которая не ограничена сверху. При этом выражение $\widetilde{E}_{\rm ex}^{1,0;1,0}(a,\varepsilon)$ (21) позволило проследить предельный переход к величине энергии связи экситона $E_{\rm ex} = 31$ мэВ (15) в монокристалле CdS начиная с радиуса КТ сульфида кадмия $a \ge a_c \approx 5.4a_{\rm ex} \approx 13.5$ нм.

4. Заключение

Для применения полупроводниковых наносистем, содержащих КТ селенида и сульфида кадмия, в качестве активной области инжекционных лазеров необходимо, чтобы энергия связи экситона $E_{\rm ex}^{1,0;1,0}(a, \varepsilon)$ (11), $\tilde{E}_{\rm ex}^{1,0;1,0}(a, \varepsilon)$ (21) в КТ была порядка нескольких kT_0 при комнатной температуре T_0 (k — постоянная Больцмана), т. е. параметры $E_{\rm ex}^{1,0;1,0}(a, \varepsilon)/kT_0$, $\tilde{E}_{\rm ex}^{1,0;1,0}(a, \varepsilon)/kT_0$ должны быть много больше единицы. Это дает возможность устранить основную проблему наноэлектроники — "размывание" уровней квазичастиц в энергетическом интервале $\sim kT_0$, которое приводит к деградации оптических свойств лазеров на квантовых точках при повышении рабочей температуры [1,2,7].

В качестве активной области полупроводниковых лазеров на квантовых точках можно использовать наносистемы, состоящие из КТ сульфида и селенида кадмия, выращенных в матрице боросиликатного стекла [3,4]. Для КТ CdS радиусами a = 2.5, 5 нм параметры $E_{\rm ex}^{1,0;1,0}(a,\varepsilon)/kT_0$ и $\tilde{E}_{\rm ex}^{1,0;1,0}(a,\varepsilon)/kT_0$ принимают существенные значения, равные 5.4 и 3, 5.1 и 2.8 соответственно. Для КТ селенида кадмия с теми же радиусами *а* параметр $E_{\rm ex}^{1,0;1,0}(a,\varepsilon)/kT_0$ характеризуется несколько меньшими значениями, равными 4.3 и 2.5.

В настоящей работе показано, что эффект увеличения энергии связи экситона $E_{ex}^{1,0;1,0}(a,\varepsilon)$ (11), $\tilde{E}_{ex}^{1,0;1,0}$ (21) в КТ определяется двумя факторами: перенормировкой энергии кулоновского взаимодействия электрона с дыркой, $\bar{V}_{eh}^{1,0;1,0}(a)$ (12), $\tilde{V}_{eh}^{1,0;1,0}(a)$ (22), связанной с чисто пространственным ограничением области квантования объемом КТ, а также энергией взаимодействия электрона и дырки с "чужими" изображениями, $\bar{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \bar{V}_{he'}^{1,0;1,0}(a,\varepsilon)$ (14), $\tilde{V}_{eh'}^{1,0;1,0}(a,\varepsilon) + \tilde{V}_{he'}^{1,0;1,0}(a,\varepsilon)$ (23) (эффект существенного усиления" [11]). Обнаружен эффект существенного увеличения энергии связи экситона $E_{ex}^{1,0;1,0}(a,\varepsilon)$ (21) в КТ селенида и сульфида кадмия с радиусами $a \ge a_{ex}$ (в 7.4 и 4.5 раз соответственно) по сравнению с энергией связи экситона в монокристаллах CdSe и CdS.

Список литературы

- [1] Ж.И. Алфёров. ФТП, **32** (1), 3 (1998).
- [2] Ж.И. Алфёров. УФН, 172 (9), 1068 (2002).
- [3] A. Ekimov, F. Nache. J. Opt. Soc. Amer. B, 20 (1), 100 (2003).

- [4] Ю.В. Вандышев, В.С. Днепровский, В.И. Климов. Письма ЖЭТФ, 53 (6), 301 (1991).
- [5] П.К. Кашкаров, М.Г. Лисаченко, О.А. Шальгина. ЖЭТФ, 124 (4), 1255 (2003).
- [6] И.М. Купчак, Д.В. Корбутяк, Ю.В. Крюченко. ФТП, 40 (1), 98 (2006).
- [7] S.I. Pokutnyi. Phys. Lett. A, 342, 347 (2005).
- [8] S.I. Pokutnyi. Phys. Lett. A, 168 (5,6), 433 (1992).
- [9] С.И. Покутний. ФТП, **39**(9), 1101 (2005).
- [10] С.И. Покутний. ФТП, **41** (11), 1323 (2007).
- [11] Л.В. Келдыш. Письма ЖЭТФ, 29 (11), 776 (1979).
- [12] С.И. Покутний. ФТП, **30** (11), 1952 (1996).
- [13] А.Б. Мигдал. Качественные методы в квантовой теории (М., Наука, 1975).
- [14] С.И. Покутний. ФТТ, 38 (9), 2667 (1996).

Редактор Л.В. Шаронова

The exciton binding energy in semiconductor quantum dots

S.I. Pokutnii

G.V. Kurdjumov Institute for Metal Physics, National Academy of Sciences of Ukraine, 03680 Kiev, Ukraine

Abstract In the adiabatic approximation and also in the framework of the modified effective mass method in which the reduced exciton effective mass $\mu = \mu(a)$ is a function of a semiconductor quantum dot radius *a*, the expression for the binding energy of the exciton $E_{\text{ex}}(a)$ in a quantum dot is drawn. The effect of substantial amplification of the exciton binding energy $E_{\text{ex}}(a)$ in quantum dots CdSe and CdS with radii $a \approx a_{\text{ex}}$ (in 7.4 and 4.5 times correspondingly) is found out, in comparison with the exciton binding energy in monocrystals CdSe and CdS.