Получение текстурированных пленок нитрида алюминия методом термохимической нитридизации сапфира

© Х.Ш-о. Калтаев, Н.С. Сидельникова, С.В. Нижанковский, А.Я. Данько[¶], М.А. Ром, П.В. Матейченко, М.В. Добротворская, А.Т. Будников

Институт монокристаллов Национальной академии наук Украины, 61001 Харьков, Украина

(Получена 7 апреля 2009 г. Принята к печати 14 апреля 2009 г.)

Показана возможность получения текстурированных пленок нитрида алюминия методом термохимической нитридизации сапфира в диапазоне температур 1200–1500°С в атмосфере азота с содержанием СО от 0.1 до 5 об%. Установлен диффузионный механизм формирования пленки нитрида алюминия на поверхности сапфира под воздействием восстановительной среды.

PACS: 68.55.Ag, 81.05.Ea, 81.15.Np.

1. Введение

Нитрид алюминия — полупроводниковый материал, обладающий высокой теплопроводностью и механической прочностью, хорошими диэлектрическими свойствами. Благодаря этому он широко применяется в различных областях электронной индустрии: оптоэлектронике дальнего ультрафиолетового (УФ) диапазона, сверхвысокочастотнойрадиоэлектронике (СВЧ), акустоэлектронике и т.д. Пленка нитрида алюминия на сапфире — лучшая подложка для создания гетероструктур на основе твердых растворов AIN-GaN и InN-GaN (несоответствие периодов кристаллических решеток вдоль оси $a \approx 2.5\%$). Наиболее распространенные способы получения пленок нитрида алюминия на сапфире — газофазная хлоргидридная эпитаксия (ХГФЭ), молекулярно-лучевая эпитаксия (МЛЭ) и металлорганическая газофазная эпитаксия (МОГФЭ). К недостаткам этих методов относятся дорогостоящее оборудование (ХГФЭ), использование токсичных реагентов (ХГФЭ, МОГФЭ), необходимость поддерживания высокого вакуума (МЛЭ). Получение пленок с высоким совершенством структуры при осаждении нитрида алюминия на поверхность сапфира — сложная технологическая задача. Метод нитридизации сапфира [1] более привлекателен по простоте реализации и совершенству полученных пленок. Принципиальное его отличие состоит в том, что пленка нитрида алюминия не наносится на поверхность сапфира, а образуется в результате трансформации приповерхностного слоя сапфира в нитрид алюминия в восстановительной среде, содержащей азот. В [1,2] описан метод получения совершенных монокристаллических пленок AlN, в котором сапфировую подложку нитридизировали в соответствующей смеси газов СО-N2. Нитридизацию сапфира авторы проводили при температуре 1650°С, при которой между сапфиром и нитридом алюминия образуется буферный слой у-оксинитрида алюминия. Механизм формирования пленки авторы не рассматривают. В предыдущей работе [3] нами была исследована трансформация структуры корунда в результате высокотемпературного восстановительного отжига. Установлено, что отжиг при температуре 1500-2000°С в атмосфере Ar при концентрациях $CO + H_2$ 0.1–10 об% и N_2 — 0.1–0.4 об% приводит к превращению корунда в оксинитридные соединения алюминия со структурой шпинели (у-AlON) с периодом элементарной ячейки в пределах 7.932-7.948 Å и вюртцита (AlN), с $a \approx 3.111 - 3.115$ и $c \approx 4.979 - 4.988$ Å. Полученные данные позволили предположить, что наблюдаемые превращения являются результатом реакции азота с анионно-дефектным корундом. Представляет научный интерес исследование взаимодействия сапфира с азотом в присутствии газов-восстановителей (СО, Н₂) и образование пленок нитрида алюминия при температурах ниже 1600°С, где образование оксинитрида алюминия термодинамически невозможно (рис. 1). В настоящей работе исследованы условия образования текстурированных пленок нитрида алюминия на поверхности сапфира в диапазоне температур 1200-1500°С.

2. Объекты и методы исследования

Для исследований использовали полированные плоскопараллельные образцы сапфира с ориентацией (0001). Шероховатость R_a поверхности в пределах 2 нм. Отклонение оси (0001) от нормали к поверхности составляло от 15' до 4°. Восстановительный отжиг проводили в печи с углеграфитовыми тепловыми экранами в диапазоне температур 1200–1500°С. Температуру контролировали интегральным инфракрасным пирометром Marathon MRISCSF. Печь предварительно прогревали до температуры 1200°С в условиях форвакуумной откачки. При достижении остаточного давления $\sim 0.1-0.3$ мм рт. ст. камеру заполняли N₂ до давления 760 мм рт. ст.

В результате взаимодействия адсорбированного кислорода и паров воды с углеграфитовыми материалами в печи спонтанно формируется восстановительная среда, основными компонентами которой являются СО и H₂. Состав среды контролировали при помощь газового хроматографа "Кристалл 2000М". Суммарная концентрация восстановительных компонент в зависимости

[¶] E-mail: danko@isc.kharkov.ua

от предварительной вакуум-технической подготовки составляет 0.1–0.5 об%, относительное содержание СО и H₂ изменяется в пределах $P_{\rm H_2}/P_{\rm CO} \approx 0.01-0.04$. При необходимости концентрацию СО и H₂ в среде изменяли от 1 до 10 об% (~ 8–80 мм рт. ст.) при различных соотношениях $P_{\rm H_2}/P_{\rm CO}$. В этих случаях использовали следующие восстановительные добавки:

— CO_2 технической чистоты, которая в результате реакции газификации углерода: $C + CO_2 = 2CO$ является источником CO;

— этиловый спирт, который является источником СО и H₂;

— химически чистый водород, полученный при помощи генератора водорода ГВ-6.

Фазовый состав приповерхностного слоя образцов определялся рентгеновским фазовым анализом на дифрактометре ДРОН-1.5 в Си $K\alpha_{1,2}$ -излучении (монохроматор — пирографит (002)) по схеме θ -2 θ . Совершенство структуры полученных пленок определялось методом кривых качания на дифрактометре ДРОН-3 в Си $K\alpha_1$ -излучении (монохроматор — Ge (002)) по схеме θ -2 θ .

Морфология поверхности образцов до и после трансформации исследовалась при помощи сканирующего зондового микроскопа Solver PRO фирмы NT-MDT в контактном режиме методом постоянной силы и сканирующего электронного микроскопа JSM-6390 LV.

Состав поверхности образцов определяли методом рентгеновской фотоэлектронной спектроскопии на спектрометре XSAM-800 Kratos. Вакуум в камере прибора был 10^{-8} мм рт. ст. Фотоэлектроны возбуждались MgK_α-излучением (hv = 1253.6 эВ). Состав поверхности образцов определялся по отношению площадей линии O1s, Al2p, N1s остовных оболочек с учетом коэффициентов чувствительности. Толщина анализируемого слоя ~ 5 нм.

Экспериментальные результаты и их обсуждение

Для определения условий образования нитрида алюминия в системе $Al_2O_3-N_2-CO$ в диапазоне температур от 1200 до 1500°C были проведены термодинамические расчеты. Влияние H_2 на процесс восстановления не рассматривалось вследствие малого содержания его в атмосфере отжига (<0.001 об%). В общем виде реакция восстановления сапфира с образованием нитрида алюминия выглядит так

$$Al_2O_3(tb) + 3CO(r) + N_2(r) = 2AlN(tb) + 3CO_2(r).$$
 (1)

Образование оксинитрида алюминия рассматривалось по реакции

$$7 \cdot Al_2O_3(tb) + 3CO(t) + N_2(t)$$

= 2[(AlN) \cdot 3(Al_2O_3)](tb) + 3CO_2(t). (2)

Термодинамические константы взяты из литературных источников [4–6]. На основании результатов расчетов свободной энергии Гиббса для реакций (1) и (2) построен график зависимости состава приповерхностного слоя сапфира от концентрации СО в атмосфере отжига (рис. 1).

После восстановительного отжига на поверхности сапфировых образцов образуется слой нитрида алюминия с гексагональной структурой вюртцита с периодом решетки $a \approx 3.111$, $c \approx 4.985$ Å.

Рис. 1. Состав трансформированного поверхностного слоя в зависимости от условий отжига (T, P_{CO}): $I - Al_2O_3$, 2 - AlN, $3 - Al_7O_9N$, $4 - AlN + Al_7O_9N$.

Рис. 2. Штрихренттенограмма пленки нитрида алюминия, полученной при 1400° C в атмосфере азота при концентрации CO < 0.1 об%. Время отжига 10 ч. Ориентация образца (0001) с отклонением оси (0001) от нормали к поверхности 1°.

Пленки характеризуются острой текстурой (рис. 2), полуширина кривой качания — от 0.3 до 2° в зависимости от условий отжига.

В результате рентгенографических исследований текстур $\langle 001 \rangle$ фазы нитрида алюминия на поверхности (0001) сапфира установлено, что ось *C* фазы нитрида алюминия совпадает с осью *C* кристаллической решетки корунда, причем решетка фазы нитрида в плоскости базиса повернута вокруг оси *C* на 30° (рис. 3).

Экспериментально полученные данные о фазовом составе поверхностного слоя отожженных образцов хорошо согласуются с теоретическими расчетами (рис. 1). Так, при температуре отжига 1400° С и концентрации CO = $5 \, \text{об}\%$ образования пленки нитрида алюминия не

Рис. 3. Согласование кристаллических решеток корунда и нитрида алюминия.

Рис. 4. Поверхность образца $(10 \times 10 \text{ мкм})$, отожженного при 1400°С в атмосфере азота при концентрации CO = 5 об%. Время отжига 10 ч. Ориентация (0001), отклонение оси (0001) от нормали к поверхности 4°.

Рис. 5. Поверхность пленки AlN $(14 \times 14 \text{ мкм})$, полученной при 1400°C в атмосфере азота при концентрации CO < 0.1 об%. Время отжига 10 ч. Ориентация образца (0001). Отклонение оси (0001) от нормали к поверхности 2°.

Рис. 6. Зависимость толщины пленок (1) и соотношения N/Al (2) в поверхностном слое образцов от времени отжига. $T = 1500^{\circ}$ С, среда — азот с концентрацией СО 0.2–1.0 об%.

происходило, а наблюдалось травление поверхности образца (рис. 4).

Полученные пленки имеют шероховатость R_a на уровне 3 нм при шероховатости поверхности R_a исходного образца 2 нм (рис. 5). Макродефектов на поверхности пленок не обнаружено. Толщина получаемых пленок с ростом температуры отжига от 1200 до 1500°С увеличивается от 10 нм до 2 мкм. При увеличении времени отжига свыше 10 ч толщина пленки не изменяется (рис. 6). Методом рентгеновской фотоэлектронной спектроскопии определено соотношение азот/алюминий в поверхностном слое отожженых образцов (рис. 6). Параболический вид кривых на рис. 6 свидетельствует о диффузионном механизме формирования на его поверхности пленки нитрида алюминия.

4. Заключение

Методом термохимической нитридизации сапфира в атмосфере азота с содержанием СО от 0.1 до 5 об% в диапазоне температур 1200–1500°С получены текстурированные пленки нитрида алюминия. Совершенство структуры пленок в зависимости от условий отжига характеризуется полушириной кривой качания от 0.3 до 2°. Установлена параболическая зависимость толщины пленок и содержания в них азота от времени отжига, что свидетельствует о диффузионном механизме формирования пленки нитрида алюминия. Указанный метод прост в реализации, не требует использования дорогостоящего оборудования и токсичных реагентов.

Список литературы

- [1] Hiroyuki Fukuyama, Shin-ya Kusunoki, Akira Hakomori, Kenji Hiraga. J. Appl. Phys., **100**, 024 905 (2006).
- [2] Wataru Nakao, Hiroyuki Fukuyama. J. Cryst. Growth, 259, 302 (2003).
- [3] A.Ya. Danko, M.A. Rom, N.S. Sidelnikova, Kh.Sh. Kaltaev, S.V. Nizhankovsky, A.I. Fedorov. Functional Mater., 14, 460 (2007).
- [4] Xidong Wang, Wenchao Li, Seshadri Seetharaman. Scandinavian J. Metallurgy, 31, 1 (2002).
- [5] Wataru Nakao, Hiroyuki Fukuyama, Kazuhiro Nagata. J. Amer. Ceram. Soc., 85, 889 (2002).
- [6] Термодинамические свойства индивидуальных веществ. Справочное издание (М., Наука, 1978) т. 1, кн. 1.

Редактор Л.В. Беляков

Formation of aluminum nitride textured films by the method of thermochemical nitridation of sapphire

Kh.Sh-o. Kaltaev, N.S. Sidel'nikova, S.V. Nizhankovskiy, A.Y. Dan'ko, M.A. Rom, P.V. Mateychenko, M.V. Dobrotvorskaya, A.T. Budnikov

Institute for Single Crystals, National Academy of Sciences of Ukraine, 61001 Kharkiv, Ukraine

Abstract Possibility of formation of aluminum nitride textures films by thermochemical nitridation of sapphire in the temperature range $1200-1500^{\circ}$ C in the atmosphere of nitrogen with containing of CO 0.1 to 5 vol% is shown. The diffusive mechanism of aluminum nitride film formation on the sapphire surface under reducing media is established.