Плоские двухбарьерные резонансно-туннельные структуры: резонансные энергии и резонансные ширины квазистационарных состояний электрона

© Н.В. Ткач¶, Ю.А. Сети

Черновицкий национальный университет им. Ю. Федьковича, 58012 Черновцы, Украина

(Получена 8 декабря 2008 г. Принята к печати 22 января 2009 г.)

Предложена теория резонансных энергий и ширин квазистационарных состояний на основе функции распределения плотности вероятности нахождения электрона в двухбарьерной резонансно-туннельной структуре с использованием трансфер-матрицы и *S*-матрицы рассеяния в моделях прямоугольных и *δ*-образных потенциалов с различными эффективными массами в слоях наносистемы.

На примере наносистемы $In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As$ выполнен анализ эволюции спектральных параметров квазистационарных состояний электрона в зависимости от геометрических размеров разонансно-туннельной структуры, рассчитанных тремя разными методами. Показано, что поскольку по отношению к более реалистичной модели прямоугольных потенциалов δ -барьерная модель завышает величины резонансных ширин в десятки раз, она может быть использована только для грубых оценок.

PACS: 73.21.Fg, 73.90.+f

1. Введение

Изучению резонансно-туннельных структур (РТС) уделяется все большее внимание не только из-за чисто академического интереса к исследованию физических процессов в открытых системах, но и в связи с тем, что на их основе уже созданы и работают каскадные лазеры терагерцевого диапазона, резонанснотуннельные диоды и другие наноустройства, которые имеют уникальные перспективы для использования в наноприборах [1–4].

Задачей теории РТС является вычисление динамической проводимости $\sigma(\omega)$ или же тока $j(\omega)$ отзыва системы на внешнее воздействие. Теория создавалась в разных моделях с использованием различных математических способов [5–14] решения полного уравнения Шредингера для системы электронов, взаимодействующих с электромагнитным полем в наноструктуре. Независимо от выбора модели РТС и методов расчета ее физических характеристик в теории содержится и используется информация о спектральных параметрах (резонансных энергиях и ширинах) квазистационарных состояний (КСС) электрона в этой системе.

Для расчета спектральных параметров электрона в РТС в большинстве работ используется метод эффективных масс [5–16] и модель прямоугольных потенциальных барьеров [15,16]. С целью упрощения весьма громоздких аналитических расчетов часто прямоугольные барьеры аппроксимируются δ -образными [5–13], хотя априори ясно, что такая аппроксимация должна приводить к значительной потере точности определяемых спектральных параметров КСС электрона. Так как известно, что величина динамической проводимости очень чувствительна к изменению величин резонансных энергий (РЭ) и резонансных ширин (РШ) КСС, необходимо выяснить, возникают ли существенные погрешности величин спектральных параметров, определяемые δ -барьерной моделью, по сравнению с моделью прямоугольных потенциалов в РТС с типичными физическими и геометрическими параметрами.

В некоторых теоретических работах [5–9] расчет или оценка РЭ и РШ КСС электрона выполнялся через коэффициент прозрачности РТС. Однако, согласно общей теории рассеяния [17], оба спектральных параметра КСС определяются комплексными полюсами *S*-матрицы, а также, как будет показано в предлагаемой работе, они определяются соответствующими параметрами функции распределения *W* (по энергии) плотности вероятности нахождения электрона в РТС.

2. Гамильтониан, *S*- и *T*-матрицы. Спектральные параметры КСС электрона в плоской открытой ДБРТС

Рассматривается плоская открытая двухбарьерная резонансно-туннельная структура (ДБРТС) с геометрическими параметрами, указанными на рис. 1. Считая, что величины постоянных решеток (a_0, a_1^{\pm}) и диэлектрических проницаемостей составляющих наносистемы отличаются слабо (например, для структур на основе InAs, GaAs, AlAs), для электрона будем использовать модель эффективных масс (m_0, m_1^{\pm}) и прямоугольных потенциалов.

В декартовой системе координат, с началом в середине пленки-ямы с осью OZ, перпендикулярной к плоскостям всех слоев, эффективная масса и потенциальная

[¶] E-mail: ktf@chnu.edu.ua

Рис. 1. Геометричаская (*a*) и энергетическая (*b*) схемы ДБРТС.

энергия электрона имеют вид

$$m(z) = \begin{cases} m_0, & 0 \le |\pm z| \le a, \ z_1^{\pm} \le |\pm z| \le \infty \\ m_1^{\pm}, & a \le |\pm z| \le z_1^{\pm} \end{cases};$$

$$U(z) = \begin{cases} 0, & 0 \le |\pm z| \le a, \ z_1^{\pm} \le |\pm z| \le \infty \\ U^{\pm}, & a \le |\pm z| \le z_1^{\pm} \end{cases}.$$
(1)

Поэтому решение стационарного уравнения Шредингера

$$H\Psi(x, y, z) = E\Psi(x, y, z)$$
(2)

с гамильтонианом

$$H = -\frac{\hbar^2}{2} \left(\frac{\partial}{\partial z} \frac{1}{m(z)} \frac{\partial}{\partial z} + \frac{1}{m(z)} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \right) + U(z)$$
(3)

следует искать в форме

$$\Psi(x, y, z) = \Psi(z)\Psi_{\mathbf{k}_{\parallel}}(x, y) = \frac{1}{L}\Psi(z)e^{i\mathbf{k}_{\parallel}(x\mathbf{n}_{x}+y\mathbf{n}_{y})}.$$
 (4)

Здесь \mathbf{k}_{\parallel} — квазиимпульс электрона в плоскости XOY, а L — длина основной области в этой плоскости.

Теперь для функции $\Psi(z)$ получается уравнение

$$\left(-\frac{\hbar^2}{2}\frac{d}{dz}\frac{1}{m(z)}\frac{d}{dz}+U_{\mathbf{k}_{\parallel}}(z)\right)\Psi(z)=E\Psi(z),\quad(5)$$

4* Физика и техника полупроводников, 2009, том 43, вып. 10

в котором

$$U_{\mathbf{k}_{\parallel}}(z) = U(z) + \frac{\hbar^{2}k_{\parallel}^{2}}{2m(z)}$$

$$= \begin{cases} \frac{\hbar^{2}k_{\parallel}^{2}}{2m_{0}}, & 0 \le |\pm z| \le a, \ z_{1}^{\pm} \le |\pm z| \le \infty \\ \frac{\hbar^{2}k_{\parallel}^{2}}{2m_{1}^{\pm}} + U^{\pm}, \ a \le |\pm z| \le z \end{cases}$$
(6)

играет роль эффективной потенциальной энергии, зависящей от величины k_{\parallel} .

Отметим, что вследствие разницы между эффективными массами электрона в барьерах (m_1^{\pm}) и ямах (m_0) , при фиксированном значении k_{\parallel} величины эффективных потенциалов \tilde{U} в ямах и барьерах перенормируются по-разному. Поскольку, как правило, $m_1^{\pm} > m_0$, величины эффективных потенциальных барьеров $\tilde{U}^{\pm} = U^{\pm} - \hbar^2 k_{\parallel}^2 (m_1^{\pm} - m_0)/2 (m_1^{\pm} + m_0)$ с увеличением k_{\parallel} уменьшаются, что должно вызывать уменьшение времени жизни (увеличение РШ) КСС электрона.

Чтобы исследовать спектральные параметры КСС электрона в ДБРТС, будем искать решение уравнения (5) методом трансфер-матрицы [18], выполняя аналитический расчет двумя близкими, но, как будет видно далее, несколько различными способами: а) вычисляя коэффициент прозрачности D; б) методом *S*-матрицы рассеивания. В обоих подходах запись волновой функции отличается только во внешней ± 2 области $(z_1^{\pm} \le |\pm z| \le \infty)$ ДБРТС, поэтому компактно волновая функция может быть представлена в такой форме:

$$\begin{split} \Psi_{\{{}^{S}_{D}\}}(k_{\perp}z) &= \\ &= \begin{cases} \Psi_{0}(z) = A_{0}e^{ik_{\perp}z} + B_{0}e^{-ik_{\perp}z}, & 0 \leq |\pm z| \leq a \\ \Psi_{1}^{\pm}(z) = A_{1}^{\pm}e^{\chi^{\pm}z} + B_{1}^{\pm}e^{-\chi^{\pm}z}, & a \leq |\pm z| \leq z_{1}^{\pm} \\ \Psi_{2S}^{\pm}(z) = B_{2}^{\pm}(e^{\mp ik_{\perp}z} + Se^{\pm ik_{\perp}z}), & z_{1}^{\pm} \leq |\pm z| \leq \infty \\ \Psi_{2D}^{\pm}(z) = A_{2}^{\pm}e^{ik_{\perp}z} + F_{2}^{\pm}{}_{0}e^{-ik_{\perp}z}, & z_{1}^{\pm} \leq |\pm z| \leq \infty \end{cases}$$

$$\end{split}$$

$$(7)$$

где

$$k_{\perp} = \sqrt{\frac{2m_0E}{\hbar^2} - k_{\parallel}^2}, \quad \chi^{\pm} = \sqrt{\frac{2m_1^{\pm}}{\hbar^2}} \left(U^{\pm} - E\right) - k_{\parallel}^2.$$
 (8)

Граничные условия

$$\Psi_i(\pm z_i) = \Psi_{i+1}(\pm z_i);$$

$$\frac{1}{m_i} \left. \frac{d\Psi_i(z)}{dz} \right|_{z=\pm z_i} = \frac{1}{m_{i\pm 1}} \left. \frac{d\Psi_{i\pm 1}(z)}{dz} \right|_{z=\pm z_i} \quad (i=0,\pm 1)$$
(9)

и условие нормировки

$$\int_{-\infty}^{\infty} \Psi_{k'_{\perp}}^*(z) \Psi_{k_{\perp}}(z) dz = \delta(k_{\perp} - k'_{\perp})$$
(10)

однозначно определяют все неизвестные коэффициенты $A_i^{\pm}, B_i^{\pm}, F_2^{\pm}$ и *S*-матрицу рассеяния. В нашем случае трансфер-матрица *T* [18] определяет-

В нашем случае трансфер-матрица *Т* [18] определяется произведением

$$T = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} = (T_{-}^{01}T_{-}^{12})^{-1}T_{+}^{01}T_{+}^{12}, \qquad (11)$$

где

$$T_{\pm}^{01} = \begin{pmatrix} t_{\pm 11}^{01} & t_{\pm 12}^{01} \\ t_{\pm 21}^{01} & t_{\pm 22}^{01} \end{pmatrix}, \quad T_{\pm}^{12} = \begin{pmatrix} t_{\pm 11}^{12} & t_{\pm 12}^{12} \\ t_{\pm 21}^{12} & t_{\pm 22}^{12} \end{pmatrix}.$$
 (12)

Аналитический расчет матричных элементов T_{\pm}^{ij} -матрица дает такой результат:

$$t_{\pm 11}^{01} = (t_{\pm 12}^{01})^* = t_{\pm 22}^{01} = (t_{\pm 21}^{01})^* = \frac{1}{2} \left(1 \mp i \, \frac{m_0 \chi^{\pm}}{m_1^{\pm} k_{\perp}} \right) e^{\pm i k_{\perp} a},$$
(13)
$$t_{\pm 11}^{12}(\chi^{\pm}) = t_{\pm 21}^{12}(-\chi^{\pm}) = \left(t_{\pm 12}^{12}(\chi^{\pm}) \right)^* = \left(t_{\pm 22}^{12}(-\chi^{\pm}) \right)^*$$

$$= \frac{1}{2} \left(1 + i \, \frac{m_1^{\pm} k_{\perp}}{m_0 \chi^{\pm}} \right) e^{-\chi^{\pm} (z_1^{\pm} - a)}.$$
(14)

Теперь все матричные элементы *Т*-матрицы (11) определены однозначно.

Согласно определению коэффициента прозрачности [19] ДБРТС, получается выражение

$$D = |A_2^+|^2 |F_2^-|^{-2} = |t_{21}|^{-2}.$$
 (15)

При нахождении *S*-матрицы, определяющей волновую функцию (7), получается простое квадратное уравнение, которое имеет два решения

$$S^{(1,2)}(k_{\perp}) = \frac{t_{11}e^{-2ik_{\perp}z_{1}^{-}} - t_{22}e^{-2ik_{\perp}z_{1}^{+}}}{2t_{21}}$$
$$\times \left(1 \pm \sqrt{1 + 4 \frac{t_{12}t_{21}e^{-2ik_{\perp}(z_{1}^{+} + z_{1}^{-})}}{(t_{11}e^{-2ik_{\perp}z_{1}^{-}} - t_{22}e^{-2ik_{\perp}z_{1}^{+}})^{2}}}\right), \quad (16)$$

соответствующие двум волновым функциям $\Psi_{2s}^{\pm(1)}$ и $\Psi_{2s}^{\pm(2)}$:

$$\Psi_{2S}^{\pm(1,2)}(z) = B_2^{\pm(1,2)} \left(e^{\pm ik_{\perp}z} + S^{(1,2)} e^{\pm ik_{\perp}z} \right).$$
(17)

Согласно принципам квантовой механики [19], линейная комбинация

$$\Psi_{2S}^{\pm}(z) = B^{\pm}(e^{\mp ik_{\perp}z} + Se^{\pm ik_{\perp}z})$$
(18)

с известными коэффициентами B^{\pm} и S-матрицей рассеяния,

$$B^{\pm} = B_2^{\pm(1)} + B_2^{\pm(2)}, \quad S = \frac{B_2^{\pm(1)}S^{(1)} + B_2^{\pm(2)}S^{(2)}}{B^{\pm}},$$
 (19)

однозначно определяет полную волновую функцию (7) КСС электрона в ДБРТС.

Выполнив, согласно общей теории [17], аналитическое продолжение S-матрицы в комплексную плоскость квазиимпульсов $(k_{\perp} = k'_{\perp} - ik''_{\perp})$ или энергий (E = E' - iE''), получаем уравнения

$$\operatorname{Re}(S(E))^{-1} = 0, \quad \operatorname{Im}(S(E))^{-1} = 0$$
 (20)

для определения РЭ и РШ КСС электрона соответственно.

Найденная через *S*-матрицу волновая функция (18) позволяет выполнить точный аналитический расчет функции распределения плотности вероятности нахождения электрона в ДБРТС:

$$\begin{split} W(k_{\perp}) &= \frac{1}{z_{1}^{+} + z_{1}^{-}} \int_{-z_{1}}^{z_{1}^{+}} |\Psi_{k_{\perp}}^{S}(z)|^{2} dz \\ &= \frac{1}{\pi(z_{1}^{+} + z_{1}^{-})} \left[\frac{\frac{dZ^{(1)}(k_{\perp})}{dk_{\perp}} - Z^{(1)}(k_{\perp}) \frac{\cos(k_{\perp}(z_{1}^{+} - z_{1}^{-}))}{k_{\perp}}}{1 + (Z^{(1)}(k_{\perp}))^{2}} \right] \\ &+ \frac{\frac{dZ^{(2)}(k_{\perp})}{dk_{\perp}} - Z^{(2)}(k_{\perp}) \frac{\cos(k_{\perp}(z_{1}^{+} - z_{1}^{-}))}{k_{\perp}}}{1 + (Z^{(2)}(k_{\perp}))^{2}} \end{split}$$
(21)

где с учетом свойств T-матрицы обе функци
и $Z^{(1)}(k_{\perp})$ и $Z^{(2)}(k_{\perp})$

 $Z^{(1,2)}(k_{\perp}) =$

$$= \frac{\operatorname{Re}(t_{12})(\operatorname{Im}(t_{21}) + \operatorname{Im}(t_{11}e^{-ik_{\perp}(z_{1}^{+}+z_{1}^{-})}))}{|t_{12}|^{2} + \operatorname{Im}(t_{21})\operatorname{Im}(t_{11}e^{-ik_{\perp}(z_{1}^{+}+z_{1}^{-})})}{\mp \operatorname{Re}(t_{12})\sqrt{|t_{12}|^{2} - (\operatorname{Im}(t_{11}e^{-ik_{\perp}(z_{1}^{+}+z_{1}^{-})}))^{2}}}$$
(22)

являются действительными функциями аргумента k_{\perp} (или энергии E).

Аналитический расчет спектральных параметров электрона в ДБРТС с δ-образными потенциальными барьерами

Поскольку в модели прямоугольных потенциалов для электрона в ДБРТС получаются точные, но достаточно сложные аналитические выражения для *S*-матрицы (16) или коэффициента прозрачности D (15), то в большинстве теоретических работ [5–13], с целью упрощения

Физика и техника полупроводников, 2009, том 43, вып. 10

аналитических выражений, используются δ-образные потенциальные барьеры. В δ-барьерной модели потенциальная энергия электрона в ДБРТС имеет вид

$$U(z) = U^+ \Delta^+ \delta(z-a) + U^- \Delta^- \delta(z+a), \qquad (23)$$

вследствие чего уравнение для волновой функции $\Psi_{k+}(z)$ получается таким:

$$\left(\frac{d^2}{dz^2} + k_\perp^2 - \frac{2m_0}{\hbar^2} \left(U^+ \Delta^+ \delta(z-a) + U^- \Delta^- \delta(z+a) \right) \right)$$
$$\times \Psi_{k\perp}(z) = 0, \tag{24}$$

где k_{\perp} определено ранее формулой (8).

Из уравнения (24) видно, что в этом подходе автоматически теряется информация о разности эффективных масс электрона в ямах и барьерах, а поэтому в его решении фигурирует только масса m_0 :

$$\Psi(z) = \begin{cases} \Psi_0(z) = A_0 e^{ik_{\perp}z} + B_0 e^{-ik_{\perp}z}, & -a \le z \le a \\ \Psi_{\pm}(z) = \pm C_{\pm} \sin(k_{\perp}z \pm \varphi), & a \le |\pm z| \le \infty. \end{cases}$$
(25)

Уравнение относительно фазы рассеивания φ , а поскольку $S_{\delta} = e^{2i\varphi}$, то и относительно S_{δ} -матрицы, получается из условий интегрирования величины $\frac{d^2\Psi(z)}{dz^2}$ по области, которая охватывает оба барьера. Прямое интегрирование дает результат

$$I(\pm a) = \lim_{\varepsilon \to 0} \int_{\pm a-\varepsilon}^{\pm a+\varepsilon} \frac{d^2 \Psi(z)}{dz^2} dz$$
$$= \pm k_{\perp} C_{\pm} \cos(\pm k_{\perp} a \pm \varphi) \mp i k_{\perp} (A_0 e^{\pm i k_{\perp} a} - B_0 e^{\mp i k_{\perp} a})$$
(26)

С другой стороны, интегрирование с использованием уравнения Шредингера (24) дает

$$I(\pm a) = \frac{\Omega^{\pm}}{a} \Psi(\pm a), \quad \left(\Omega^{\pm} = \frac{2m_0 \Delta^{\pm} a U^{\pm}}{\hbar^2}\right).$$
(27)

Обозначая $K_{\perp} = k_{\perp}a$, $\gamma = A_0/B_0$ и комбинируя уравнения (26) и (27), получим точные аналитические выражения для обеих $S_{\delta}^{(1,2)}$ -матриц:

$$S_{\delta}^{(1,2)} = e^{-2iK_{\perp}} \frac{1 + iZ_{\delta}^{(1,2)}}{1 - iZ_{\delta}^{(1,2)}},$$
(28)

где

$$Z_{\delta}^{(1,2)} = \sin(2K_{\perp}) \left\{ \cos(2K_{\perp}) + \frac{\Omega^{+} + \Omega^{-}}{2K_{\perp}} \sin(2K_{\perp}) \right.$$
$$\left. \pm \sqrt{1 + \left(\frac{\Omega^{+} - \Omega^{-}}{2K_{\perp}} \sin(2K_{\perp})\right)^{2}} \right\}^{-1}.$$
(29)

Из сравнения формул (16) и (28) видно, что аналитическое выражение для $S^{(1,2)}$ -матрицы точное, но громоздкое, а для $S_{\delta}^{(1,2)}$ -матрицы оно простое и удобное для анализа.

В случае симметричных барьеров $U^+\Delta^+ = U^-\Delta^-$ = $U\Delta$, $\Omega^+ = \Omega^- = \Omega$

$$S_{\delta}^{(1,2)} = e^{-2iK} \frac{\pm \Omega(\operatorname{ctg} K_{\perp})^{\pm 1} + 2i}{\pm \Omega(\operatorname{ctg} K_{\perp})^{\pm 1} - 2i}.$$
 (30)

Осуществив аналитическое продолжение в комплексную плоскость ($K_{\perp} = K_1 - iK_2$), из полюсов $S_{\delta}^{(1,2)}$ -матриц получается система двух трансцендентных уравнений

$$\frac{\Omega K_2}{K_1^2 + K_2^2} + \frac{\operatorname{sh} K_2 \operatorname{ch} K_2}{(\operatorname{sh} K_2)^2 + \binom{(\operatorname{sin} K_1)^2}{(\operatorname{cos} K_1)^2}} = 1,$$
$$\frac{\Omega K_1}{K_1^2 + K_2^2} \pm \frac{\operatorname{sin} K_1 \operatorname{cos} K_1}{(\operatorname{sh} K_2)^2 + \binom{(\operatorname{sin} K_1)^2}{(\operatorname{cos} K_1)^2}} = 0, \quad (31)$$

решения которой (K_{1N} и K_{2N}) определяют резонансные энергии E_N и ширины Γ_N ,

$$E_N = \frac{\hbar^2 (K_{1N}^2 - K_{2N}^2)}{2m_0 a^2}, \quad \Gamma_N = \frac{2\hbar^2 K_{1N} K_{2N}}{m_0 a^2}, \quad (32)$$

квазистационарных состояний электрона соответственно.

Для сравнения полученных результатов с результатами других работ [5–7], выполненных в δ-барьерной модели, приведем РЭ и РШ КСС электрона в несимметричной ДБРТС [6]:

$$E_{N}^{D_{\delta}} = \frac{\hbar^{2}K_{N}^{2}}{2m_{0}a^{2}},$$

$$\Gamma_{N}^{D_{\delta}} = \left(\frac{\pi N\hbar^{2}}{m_{0}a^{2}}\right)^{3}\frac{K_{N}a^{2}}{2\pi N}\left(\frac{1}{(U^{+}\Delta^{+})^{2}} + \frac{1}{(U^{-}\Delta^{-})^{2}}\right)$$

$$(N = 1, 2, \ldots).$$
(33)

Величина K_N является решением дисперсионного уравнения с δ -образными барьерами ДБРТС разных мощностей (Ω^+ , Ω^-):

$$\operatorname{tg}(2K_N) + K_N\left(\frac{1}{\Omega^+} + \frac{1}{\Omega^-}\right) = 0. \tag{34}$$

Дальнейший анализ свойств квазистационарного спектра электронов в ДБРТС выполняется на основе численных расчетов.

Анализ эволюции КСС электрона в ДБРТС

Анализ и расчет КСС электрона в ДБРТС выполнялся на примере наносистемы $In_{0.53}Ga_{0.47}Ad/$ $In_{0.52}Al_{0.48}As$, так как она интенсивно исследуется экспериментально [1,3,20], а ее физические параметры: $m_0 = 0.046m_e$, $m_1^{\pm} = 0.089m_e$, $a_0 = 0.587$ нм,

Рис. 2. Эволюция функций W(E) и D(E), характеризующих КСС электрона в симметричной ДБРТС, в зависимости от ширины слоя ямы a.

 $a_1^{\pm} = 0.587$ нм, $U^{\pm} = 516$ мэВ удовлетворяют условиям теоретической модели.

Прежде чем анализировать спектральные параметры (РЭ и РШ) КСС электрона в моделях ДБРТС с δ -подобными и прямоугольными барьерами, сначала определим эти параметры тремя разными методами: а) через ко-

эффициент прозрачности D; б) через функцию распределения вероятности W; в) через комплексные полюса *S*-матрицы.

Типичные зависимости D и W от энергии при различных геометрических параметрах симметричной ДБРТС приведены на рис. 2. Из рисунка видно, что D и W, как

Физика и техника полупроводников, 2009, том 43, вып. 10

Рис. 3. Эволюция функций W(E) и D(E), характеризующих КСС электрона, в зависимости от соотношения между толщинами (Δ^+/Δ^-) барьеров при неизменной суммарной толщине $\Delta = \Delta^- + \Delta^+ = 6a_0$.

функции энергии, при фиксированных геометрических параметрах имеют характер кривых с пиками квазилоренцевого типа, которым соответствуют КСС электрона в системе. Положение максимумов *N*-х пиков в шкале энергий определяют РЭ E_N^D и E_N^W , а интервал энергии, определенный между двумя точками с ординатами, равными половине суммы максимума и соседнего высокоэнергетического минимума *N*-го пика, определяет РШ Γ_N^D и Γ_N^W .

На рис. 2 РЭ и РШ показаны на примере второго пика (N = 2). Из рис. 2 видно, что, хотя максимальные значения всех пиков на кривых D достигают значений, равных 1, а максимальные значения пиков на кривых W с увеличением номера N КСС уменьшаются, тем не менее определяемые этими функциями РЭ и РШ практически совпадают ($E_N^W = E_N^D$, $\Gamma_N^W = \Gamma_N^D$). Более детально поведение этих спектральных параметров будет проанализировано далее.

На рис. З показана эволюция функций D и W в зависимости от соотношения между толщинами барьеров ДБРТС при условии, что их суммарная толщина остается постоянной. Величины геометрических параметров ДБРТС приведены на рис. З. Из рисунка видно, что с изменением соотношения величин Δ^+ и Δ^- пики КСС на кривых D и W эволюционируют существенно поразному.

С уменьшением толщины одного из барьеров (Δ^-) и соответственном увеличении толщины другого барьера (Δ^+) высоты всех подбарьерных пиков КСС на кривой W

Физика и техника полупроводников, 2009, том 43, вып. 10

только опускаются и существуют вплоть до полного исчезновения одного из барьеров ($\Delta^- = 0$). При этом, как видно из рисунка, РЭ и РШ изменяются слабо, а подбарьерные КСС постепенно превращаются в квази-свободные виртуальные состояния (при $\Delta^- = 0$). Высоты надбарьерных пиков сначала также опускаются, а при малых значениях Δ^- совершают сложную эволюцию, которую мы здесь не исследуем.

С аналогичным изменением толщин барьеров РТС эволюции пиков КСС на кривой D совершенно иная. Главная особенность эволюции D состоит в том, что в ДБРТС с несимметричными барьерами ($\Delta^+ \neq \Delta^-$) во всех подбарьерных КСС максимум коэффициента прозрачности не достигает значения, равного 1, а с уменьшением толщины Δ^- и соответствующим увеличением Δ^+ величины максимумов уменьшаются так, что подбарьерные пики вырождаются в непрерывную кривую, первый пик которой (в этом случае N = 5 при $a = 10a_0$) достигает значения, равного 1, только в надбарьерной области спектра. Следует отметить, что эволюция прибарьерного КСС (N = 4), находящегося в области непрерывного спектра, подобна эволюции всех подбарьерных КСС (N = 1, 2, 3), тогда как все надбарьерные КСС (начиная с N = 5) осуществляют сложную эволюцию, при которой D также может достигать значения, равного 1.

Из рис. З видно, что величины РЭ и РШ подбарьерных КСС, определяемые через функции *D* и *W*, хорошо

Рис. 4. Эволюция: *а* — спектральных параметров; *b* — функций (*D*, *W*, *L*), характеризующих КСС электрона в ДБРТС.

согласуются между собой для ДБРТС с симметричными и не сильно отличающимися барьерами. Если же ДБРТС является сильно несимметричной, то информация о спектральных параметрах подбарьерных КСС в функции W(E) сохраняется, а в функции D(E) исчезает. Математическая причина такого различного поведения обеих функций при малых Δ^- очевидна. Она обусловлена тем, что в отличие от функции W, которая выражается через

	$\Delta^+/\Delta^-=0.5$				$\Delta^+/\Delta^-=1$				$\Delta^+/\Delta^-=1.5$			
Ν	1		2		1		2		1		2	
$\Gamma_{\!N}^W$, мэВ	1.9	Γ_N^i/Γ_N^W	11.2	Γ_N^i/Γ_N^W	0.3	Γ_N^i/Γ_N^W	2.3	Γ_N^i/Γ_N^W	0.15	Γ_N^i/Γ_N^W	1.3	Γ_N^i/Γ_N^W
$\Gamma_N^{S_0}$	3.2	1.7	22.4	2	0.84	2.8	7.6	3.3	0.5	3.3	4.9	3.8
$\Gamma_N^{S_\delta}$	6.2	3.3	40.4	3.6	2.9	90.7	23.2	10.1	2.5	16.7	18.1	13.9
$\Gamma_N^{D_\delta}$	10.9	5.7	89.6	8	4.6	15.3	37.0	16.1	3.4	22.7	27.1	20.8
E_N^W , мэВ	34.4	$\eta, \%$	141.8	$\eta, \%$	35.2	$\eta, \%$	142.5	η, %	35.3	$\eta, \%$	142.5	η, %
$E_N^{S_0}$	37.6	9.3	152.6	7.6	39.4	11.9	155.9	9.4	39.6	12.2	156.7	9.9
$E_N^{S_\delta}$	43.9	27.6	182.8	28.9	47.9	36.1	194.9	36.8	49.6	40.5	200.6	40.8
$E_N^{D_\delta}$	43.9	27.6	183.4	29.3	48.0	36.4	195.6	37.3	49.6	40.5	200.8	40.9

Спектральные характеристики электрона в ДБРТС ($\eta = (E_N^i - E_N^W) / E_N^W$)

все элементы *T*-матрицы, коэффициент прозрачности *D* выражается только через одну ее компоненту и поэтому не содержит достаточно полной информации о КСС системы. Пока толщины барьеров ДБРТС соразмерны, информация, содержащаяся в матричном элементе t_{21} , достаточно хорошо отражает свойства КСС электрона. Как только барьеры ДБРТС становятся несоразмерными, важную роль в определении КСС начинают играть все матричные элементы *T*-матрицы (11), которые определяют функцию *W*, но не фигурирующие в коэффициенте прозрачности *D*. Поэтому следует полагать, что именно функция распределения W(E) несет наиболее полную информацию о КСС электрона в ДБРТС.

На рис. 4, *а* приведены результаты расчета разными методами зависимости РЭ и РШ первого (N = 1) КСС электрона в ДБРТС от величины отношения Δ^+/Δ^- . Величины геометрических параметров типичны для экспериментально [1–3,20] и теоретически [5–7,10–12,15–16] исследуемых ДБРТС: $a = 10a_0, \Delta^- = 4a_0$. Расчеты РЭ и РШ выполнялись: а) в модели прямоугольных потенциалов через функции W(E) $(E_N^W, \Gamma_N^W), D(E)$ (E_N^D, Γ_N^D) и через комплексные полюса *S*-матрицы (E_N^S, Γ_N^S) при $m_0 \neq m_1$, а также через полюса *S*-матрицы при $m_1 = m_0$ $(E_N^{S_0}, \Gamma_N^{S_0})$; б) в δ -барьерной модели методом *S*-матрицы $(E_N^{S_0}, \Gamma_N^S)$ и через коэффициент прозрачности $(E_N^{D_\delta}, \Gamma_N^{D_\delta})$.

Из рис. 4, *а* видно, что в более реалистичной модели с прямоугольными потенциалами и разными эффективными массами ($m_0 \neq m_1$) электрона в зависимости от соотношения между толщинами барьеров (Δ^+/Δ^-) ДБРТС три метода (W, D, S) расчета РЭ и РШ КСС дают либо практически одинаковые значения (при $\Delta^+/\Delta^- < 0.25$), либо совершенно различные значения (при $\Delta^+/\Delta^- < 0.25$). Те же величины РЭ и РШ во всей области изменения соотношения между толщинами обоих барьеров в более грубых моделях, игнорирующих разницу эффективных масс, оказываются значительно завышенными с такой иерархией: $E_N^S < E_N^{S_0} < E_N^{S_0} < \Gamma_N^{D_\delta}$.

Представление о точности величин РЭ и РШ, определяемых приближенными моделями, по сравнению с точными (E_N^W , Γ_N^W) дает таблица. Из нее видно, что при соразмерной толщине бареьров ДБРТС δ -барьерная модель позволяет определять РЭ с точностью до десятков процентов, а значения РШ КСС оказываются завышенными в несколько, а то и в десятки раз. Таким образом, ясно, что δ -барьерная модель ДБРТС с соразмерными барьерами может применяться только для грубых качественных оценок спектральных параметров КСС.

Что касается ДБРТС с очень тонкими или несоразмерными между собой барьерами (здесь $\Delta^+/\Delta^- < 0.25$), то касательно эволюции КСС и их спектральных параметров в таких наносистемах возникают еще два вопроса:

1) Почему с уменьшением толщины одного из барьеров, вплоть до полного его исчезновения, все три метода расчета (W, D, S) показывают даже качественно различную зависимость РЭ и РШ от соотношения Δ^+/Δ^- ?

2) Существует ли естественный критерий, согласно которому можно разграничить квазисвязанные и квазисвободные КСС? Как с уменьшением суммарной мощности барьеров происходит превращение квазисвязанных состояний в квазисвободные, а затем и в свободные ($\Delta^+ = 0$) и как это отражается на спектральных параметрах электрона в РТС?

Последний вопрос коррелирует с хорошо известным из теории рассеяния [17] о том, существует ли «строгая разница между "действительными" квазистационарными состояниями и состояниями, существенно зависящими от вида потенциала».

Чтобы выяснить картину эволюции КСС с уменьшением величины Δ^+/Δ^- , вплоть до нуля, на рис. 4, *b* приведены результаты расчета функции D(E), W(E), а также функции распределения лоренцевого типа

$$L(E) = \sum_{N=1} \frac{\Gamma_N^S/2}{(E - E_N^S)^2 + (\Gamma_N^S/2)^2}$$

с параметрами Γ_N^S, E_N^S , определяемыми полюсами *S*-матрицы. Из рисунка видно следующее.

При постепенном уменьшении величины Δ^+/Δ^- от 1 до 0 формы кривых L, W и D изменяются по-разному. Так, при $\Delta^+/\Delta^- = 0.35$ формы всех подбарьерных пиков на кривых W, D и L практически лоренцевы и соответствующие спектральные параметры почти не различаются между собой ($\Gamma_N^S = \Gamma_N^W = \Gamma_N^D$, $E_N^S = E_N^W = E_N^D$). С уменьшением величины Δ^+/Δ^- формы пиков на кривых W и D все больше отличаются от лоренцевых (L). При этом на кривой W(E) пики, а следовательно, и характеризующие их спектральные параметры E_N^W и Γ_N^W существуют вплоть до $\Delta^+/\Delta^- = 0$. Что же касается эволюции функции D(E), то с уменьшением величины Δ^+/Δ^- все подбарьерные пики постепенно уменьшаются и затем исчезают. При этом кривая D принимает форму плавно увеличивающихся ступенек и при $\Delta^+/\Delta^- = 0$ она вырождается в плавную линию, которая является коротковолновым крылом первого надбарьерного пика (рис. 3 и 4, b). В связи со сложной зависимостью функции D(E) от отношения Δ^+/Δ^- определяемые ею РЭ (E_N^D) имеют минимумы, а РШ (Γ_N^D) — максимумы (рис. 4, *a*).

Известно [17], что в РТС с мощными барьерами величина $\tau_N = \hbar/\Gamma_N$ интерпретируется как время жизни КСС электрона, которое пропорционально времени пролета РТС. Поэтому возникает вопрос о том, какой из приведенных трех методов определения Γ_N и E_N наиболее адекватно описывает физическую картину при любых толщинах барьеров и их соотношениях ($0 \le \Delta^+/\Delta^- < \infty$), в частности при слабых барьерах или же при малых значениях Δ^+/Δ^- , когда функции L, W, D дают совершенно разные значения РЭ и РШ (рис. 4, *a*). Ответ получается из анализа предельного случая превращения ДБРТС в однобарьерную РТС при исчезновении одного из барьеров.

Из физических соображений ясно, что КСС однобарьерной системы должны быть виртуальными, т.е. они должны характеризоваться отличными от нуля и бесконечности спектральными характеристиками. Из анализа функций W, D и S и из рис. 4, а видно, что при $\Delta^+/\Delta^-
ightarrow 0$ лишь $\Gamma_N^W
eq 0, \infty, \ E_N^W
eq 0, \infty,$ тогда как $\Gamma_N^S \to \infty$, а Γ_N^D , как характеристика КСС, вообще не существует. Поэтому если учесть, что величина τ_N характеризует время пролета электроном расстояния 2a, а оно должно быть конечным даже при отсутствии одного из барьеров, то, поскольку этому естественному физическому требованию удовлетворяет лишь $\tau_N^W \neq 0, \infty$, по-видимому, наиболее адекватной функцией, характеризующей КСС в ДБРТС, следует считать именно функцию W(E) распределения плотности вероятности нахождения электрона внутри ДБРТС или же на расстоянии ширины ямы 2а в однобарьерной РТС.

Остается проанализировать вопрос о превращении квазисвязанных состояний в квазисвободные с уменьшением мощности барьеров или же при малых отношениях Δ^+/Δ^- . С этой целью еще раз обратимся к рис. 4, *a*, из которого видно, что на кривых Γ_N^W, Γ_N^S ;

 E_N^W, E_N^S , как функциях аргумента Δ^+/Δ^- , нет выделенных точек (максимумов, минимумов или обрывов). Что же касается кривых Γ^D_N, E^D_N , то в области малых значений Δ^+/Δ^- на них есть выделенные точки экстремумов, очень близко расположенные к точкам обрыва этих кривых. Поэтому представляется довольно естественным считать критическое значение $\Delta_{\kappa}^+/\Delta_{\kappa}^-$, при котором обрываются значения Γ_N^D, E_N^D , границей между квазисвязанными $(\Delta^+/\Delta^- > \Delta^+_\kappa/\Delta^-)$ и квазисвободными $(\Delta^+/\Delta^- < \Delta_{\kappa}^+/\Delta_{\kappa}^-)$ состояниями. Хотя такое определение ширины границы достаточно условно, но оно базируется не на "желании интерпретировать экспериментальные данные в пользу одной из нескольких альтернативных теоретических возможностей" [17], а на объективных математических свойствах коэффициентов прозрачности, как физической величины, характеризуюшей КСС в РТС.

5. Заключение

Методом функции W(E) распределения плотности вероятности нахождения электрона внутри ДБРТС с использованием *S*-матрицы рассеяния предложена теория спектральных параметров КСС электрона в ДБРТС в модели прямоугольных потенциалов и различных эффективных масс.

На примере ДБРТС $In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As$ показано, что δ -барьерная модель может применяться лишь для грубых количественных оценок спектральных параметров КСС, так как по отношению к более точной модели прямоугольных потенциалов значения РЭ оказываются завышенными на несколько десятков процентов, а РШ завышены в 10–20 раз.

Установлено, что в ДБРТС с мощными и соразмерными барьерами спектральные параметры КСС, определенные тремя методами (W, D, S), совпадают между собой. В ДБРТС со слабыми потенциальными барьерами или малыми отношениями Δ^+/Δ^- величины РЭ и РШ КСС наиболее адекватно определяются функцией распределения W, а естественная граница между квазисвязанными и квазисвободными состояниями определяется критическим значением отношения $\Delta^+_{\kappa}/\Delta^-_{\kappa}$ барьеров, при котором заканчивается область определения спектральных параметров Γ^D_N и E^D_N .

Список литературы

- J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho. Science, 264, 553 (1994).
- [2] I.V. Kudryashov, V.P. Evtikhiev, V.E. Tokranov, E.Yu. Kotel'nikov, A.K. Kryganovskii, A.N. Titkov. J. Cryst. Growth, 201/202, 1158 (1999).
- [3] C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho. Rep. Progr. Phys., 64, 1533 (2001).
- [4] Ж.И. Алфёров, А.Л. Асеев, С.В. Гапонов, П.С. Копьев, В.И. Панов, Э.А. Полторацкий, Н.Н. Сибельдин, Р.А. Сурис. Микросистемная техника, 8, 3 (2003).

- [5] И.В. Беляев, Е.И. Голант, А.Б. Пашковский. ФТП, 31, 137 (1997).
- [6] Е.И. Голант, А.Б. Пашковский. ФТП, 31, 1077 (1997).
- [7] Е.И. Голант, А.Б. Пашковский. ФТП, 34, 334 (2000).
- [8] Е.И. Голант, А.Б. Пашковский. ФТП, 36, 330 (2002).
- [9] А.Б. Пашковский. Письма ЖЭТФ, 82, 228 (2005).
- [10] В.Ф. Елесин. ЖЭТФ, 121, 925 (2002).
- [11] В.Ф. Елесин. ЖЭТФ, 123, 1096 (2003).
- [12] В.Ф. Елесин. ЖЭТФ, 124, 379 (2003).
- [13] В.Ф. Елесин, И.Ю. Катеев. ФТП, 42, 586 (2008).
- [14] В.И. Галиев, А.Н. Круглов, А.Ф. Полупанов, Е.М. Голдис, Т.Л. Тансли. ФТП, 36, 576 (2002).
- [15] Н.В. Ткач, В.А. Головацкий. ФТТ, 43, 350 (2001).
- [16] Н.В. Ткач, Ю.А. Сети, Г.Г. Зегря. Письма ЖТФ, 33, 70 (2007).
- [17] А.И. Базь, Я.Б. Зельдович, А.М. Переломов. Рассеяние, реакции и распады в нерелятивистской квантовой механике (М., Наука, 1971).
- [18] G.H. Davies. *The physics of low-dimensional semiconductors* (Cambridge University Press, 1998).
- [19] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Нерелятивистская теория (М., Наука, 1989).
- [20] A.K.M. Newaz, W. Song, E.E. Mendez, Y. Lin, J. Nitta. Phys. Rev. B, 71, 195 303 (2005).

Редактор Л.В. Беляков

Plane two-barrier resonance-tunnel structures: resonance energies and resonanse widths in quasi-stationary electron states

M. Tkach, Ju. Seti

Chernivtsi National University, 58012 Chernivtsi, Ukraine

Abstract The theory of resonance energies and widths of quasistationary states is presented using the density distribution functions of probability of electron location in two-barrier resonance-tunnel structure within transfer-matrix and scattering *S*-matrix for the models of rectangular and δ -like potentials with different effective masses in nanosystem parts.

For $In_{0.53}$ Ga_{0.47}As/In_{0.52}Al_{0.48}As nanosystem it is performed the analysis of spectral parameters evolution for electron quasistationary states depending on geometrical sizes of resonance-tunnel structure and calculated within three different methods. It is shown that δ -barrier model gives the resonanse widths ten times bigger comparing to the more realistic model of rectangular potentials, thus it can be used only for the rough evaluations.