11

Сегнетоэлектричество и индуцированные давлением фазовые переходы в HgTiO₃

© А.И. Лебедев

Московский государственный университет им. М.В. Ломоносова, Москва, Россия

(Поступила в Редакцию 21 декабря 2011 г.)

Из первых принципов методом функционала плотности найдено основное состояние титаната ртути и проанализированы происходящие в нем фазовые переходы при давлении $P \leq 210$ kbar. Установлено, что экспериментально наблюдаемая в HgTiO₃ структура R3c является метастабильной при P = 0. С увеличением давления структура основного состояния при T = 0 изменяется по схеме $R3c \rightarrow R\bar{3}c \rightarrow Pbnm$, что согласуется с имеющимися экспериментальными данными. Показано, что возникновение сегнетоэлектричества в HgTiO₃ при P = 0 связано с неустойчивой мягкой модой. Рассчитан ряд свойств кристаллов в фазе $R\bar{3}c$, в частности, ширина запрещенной зоны в приближении GW ($E_g = 2.43$ eV), которая лучше согласуется с экспериментальными данными, чем величина, полученная в приближении LDA (1.49 eV). Анализ термодинамической устойчивости объясняет, почему синтез титаната ртути возможен только в условиях высоких давлений.

Немногочисленные исследования титаната ртути HgTiO₃ указывают на его интересные, противоречивые сегнетоэлектрические свойства. Титанат ртути получают синтезом под давлением при 60-65 kbar [1,2]. Структура этих кристаллов представляет собой ромбоэдрически искаженную структуру перовскита. Наблюдение генерации второй гармоники в HgTiO₃ при 300 K [1] позволило предположить, что пространственная группа (пр. гр.) кристалла — *R*3*c*, однако из-за ограниченной точности координаты атомов были определены только для центросимметричной структуры R3c. Последующие исследования диэлектрических свойств титаната ртути [2,3] не обнаружили ярких диэлектрических аномалий: на температурных зависимостях наблюдались широкий сильно асимметричный пик с максимумом около 220 К и с заметным гистерезисом в цикле охлаждение-нагрев и слабый узкий пик около 515 К. При этом при 300 К петли диэлектрического гистерезиса не появлялись вплоть до полей 10⁶ V/m [2,3]. Сканирующая калориметрия фиксировала слабые аномалии в области температур 420-480 К [2,3]; эти температуры, однако, отличались от температур пиков в диэлектрической проницаемости. Кроме того, рентгеновские исследования при гидростатическом сжатии [2,3] обнаружили немонотонность в поведении межплоскостного расстояния d_{024} и в расщеплении дублета (104)-(110) при давлении около 20 kbar, которая объяснялась фазовым переходом (ФП) из ромбоэдрической в кубическую фазу. Электронная структура ромбоэдрической и кубической модификаций HgTiO3 исследовалась в работе [4], в которой было показано, что ромбоэдрическая фаза является полупроводником, а кубическая — металлом.

Для разрешения противоречий, касающихся сегнетоэлектрических свойств HgTiO₃, и с целью получения новых сведений об этом соединении в настоящей работе проведены расчеты физических свойств титаната ртути из первых принципов.

Расчеты проводились методом функционала плотности аналогично работе [5]. Использованные в расчетах псевдопотенциалы для атомов Ті и О были заимствованы из указанной работы, скалярно-релятивистский псевдопотенциал для атома Нд был построен по схеме RRKJ [6] с помощью программы OPIUM для конфигурации Hg^{2+} $(5d^{10}6s^06p^0)$ со следующими параметра-MM: $r_s = 1.78$, $r_p = 2.0$, $r_d = 1.78$, $q_s = 7.37$, $q_p = 7.07$, $q_d = 7.37$ а. u. (обозначение параметров см. в [5]). Максимальная энергия плоских волн, использованная в расчетах, составляла 30 На (816 eV). Интегрирование по зоне Бриллюэна проводилось на сетке Монхорста-Пака 8 × 8 × 8. Для проверки качества псевдопотенциала ртути были проведены контрольные расчеты для двух кристаллических модификаций HgO — орторомбической и ромбоэдрической. Из них орторомбическая модификация (минерал монтроидит) имела чуть более низкую полную энергию. Расчетные параметры решетки этих фаз (*a* = 3.4663 Å, *b* = 6.6253 Å, *c* = 5.3013 Å и a = 3.5092 Å, c = 8.5417 Å соответственно) находятся в разумном согласии с экспериментальными данными [7] (a = 3.5215 Å, b = 6.6074 Å, c = 5.5254 Å; a = 3.577 Å,c = 8.681 Å). Фононные спектры рассчитывались по схеме, аналогичной [5].

Расчетный фононный спектр HgTiO₃ с кубической структурой перовскита (пр. гр. Pm3m) представлен на рис. 1. Из рисунка следует, что в титанате ртути одновременно проявляются два типа неустойчивости: более сильная неустойчивость относительно деформации и вращения октаэдров, которая не сопровождается появлением дипольных моментов (ветвь $\Gamma_{25}-X_3-M_3-\Gamma_{25}-R_{25}-M_3$), и сегнетоэлектрическая (антисегнетоэлектрическая на границе зоны Бриллюэна) неустойчивость (ветвь $\Gamma_{15}-X'_5-M'_3-\Gamma_{15}$). Отсутствие расщепления мод LO-TO в точке Г связано с металлическим характером зонной структуры кубического HgTiO₃.

Для определения структуры основного состояния были рассчитаны энергии различных искаженных фаз, которые возникают из кубической структуры перовскита при конденсации найденных выше неустойчивых мод с учетом их вырождения (табл. 1). Среди этих фаз наименьшую энергию имеет фаза $R\bar{3}c$. Она получается из кубической структуры путем противофазных поворотов

Таблица 1. Энергия и объем, приходящиеся на одну формульную единицу в различных искаженных фазах HgTiO₃ при P = 0

Неустойчивая мода	Пр. гр.	Энергия, meV	Объем ячейки, Å ³	
-	Pm3m	0	57.573	
X_3	$P4_2/mmc$	-88	57.275	
Γ_{15}	R3m	-94	58.923	
Γ_{15}	P4mm	-122	59.444	
Γ_{25}	$P\bar{4}m2$	-139	57.088	
Γ_{15},Γ_{25}	Amm2	-151	59.749	
X_5	Pmma	-202	57.916	
X_5	Cmcm	-306	57.867	
Γ_{25}	R32	-467	56.956	
R_{25}	I4/mcm	-778	56.188	
M_3	P4/mbm	-809	56.195	
$R_{25} + M_3$	Pbnm	-936	55.853	
R_{25}	Imma	-940	56.099	
R ₂₅	RĪc	-974	56.336	
A_{2u}	R3c	-982	56.632	
_	RĪ	-1059	60.140	

Примечание: За начало отсчета энергии принята энергия кубической фазы. Жирным шрифтом выделены фаза с наименьшей удельной энергией и фаза с наименьшим удельным объемом.

Рис. 1. Фононный спектр HgTiO₃ в кубической фазе *Pm3m*. Цифры рядом с кривыми указывают симметрию неустойчивых мод. Отсутствие LO–TO-расщепления в точке Г связано с металлической проводимостью фазы.

октаэдров вокруг всех трех осей четвертого порядка в результате конденсации трехкратно вырожденной моды R_{25} на границе зоны Бриллюэна (система поворотов $a^{-}a^{-}a^{-}$ по Глазеру). Энергия этой фазы оказывается даже ниже, чем фазы *Pbnm*, чего не наблюдалось в других титанатах элементов второй группы [5]. Заметим, что по мере искажения структуры перекрывание энергетических зон исчезает, и все фазы с энергией ниже 300 meV являются полупроводниками.

Сегнетоэлектрическая неустойчивость исходной кубической структуры HgTiO₃ сохраняется и в фазе $R\bar{3}c$. Расчеты показывают, что в фононном спектре этой фазы в точке Γ наблюдаются неустойчивые моды симметрии A_{2u} и E_u с частотами 135*i* и 21*i* сm⁻¹. Наиболее

Таблица 2. Параметры решетки и координаты атомов в фазах титаната ртути с пр. гр. R3c, $R\overline{3}c$ и $R\overline{3}$ при P = 0 и фазы Pbnm при 141 kbar

Фаза	a, Å	α , град	Атом	Позиция	x	у	Z
R3c	5.4984	58.4093	Hg	2 <i>a</i>	0.24904	0.24904	0.24904
			Ti	2a	-0.00333	-0.00333	-0.00333
			0	6 <i>b</i>	0.66598	-0.15240	0.25846
$R\bar{3}c$	5.4881	58.4252	Hg	2a	0.25000	0.25000	0.25000
			Ti	2b	0.00000	0.00000	0.00000
			0	6 <i>e</i>	0.65983	-0.15983	0.25000
R3c	5.4959	58.59	Hg	2a	0.25	0.25	0.25
(эксп.)*			Ti	2b	0.0	0.0	0.0
[1]			0	6 <i>e</i>	0.665	-0.165	0.25
RĪ	5.8304	53.9320	Hg	2c	0.36869	0.36869	0.36869
			Ti	2c	0.84974	0.84974	0.84974
			0	6 <i>f</i>	0.55966	-0.03220	0.19275
Pbnm	5.2678(<i>a</i>)	_	Hg	4c	-0.00445	0.03190	0.25000
	5.2983(b)		Ti	4b	0.50000	0.00000	0.00000
	7.5501(<i>c</i>)		0	4c	0.08502	0.47264	0.25000
	. ,		0	4d	0.69594	0.30216	0.04431

* Координаты пересчитаны для ромбоэдрической установки.

1561

Пара атомов	Pacc	**			
	Настоящая р	работа	Работа	число связей	
	R3c	Rāc	[1]		
Hg-O	2.198	2.195	2.20(4)	3	
Hg-O	2.698, 2.888	2.786	2.77(4)	3 + 3	
Hg-O	3.172	3.162	_	3	
Ti-O	1.906, 2.064	1.977	1.96(4)	3 + 3	

Таблица 3. Межатомные расстояния в фазах HgTiO₃ с пр. гр. *R3c* и $R\bar{3}c$

низкую энергию среди соответствующих сегнетоэлектрически искаженных фаз имеет фаза R3c. То, что эта фаза отвечает основному состоянию, доказывается тем, что в этой фазе все частоты фононов в центре зоны Бриллюэна и в высокосимметричных точках A, D и Z на ее границе положительны, а матрица упругих модулей (см. ниже) положительно определена. Расчетные параметры решетки и координаты атомов в структурах $R\bar{3}c$ и R3c представлены в табл. 2. Как следует из таблицы, они неплохо согласуются с экспериментальными данными [1]. Расчетные межатомные расстояния для фазы $R\bar{3}c$ и средние расчетные расстояния для фазы R3cтакже хорошо согласуются с межатомными расстояниями, полученными из рентгеноструктурных исследований (табл. 3).

Наряду с фазами, производными от кубической структуры перовскита, следует рассмотреть возможность появления других фаз, в частности фазы со структурой ильменита, которая характерна для титанатов элементов второй группы MgTiO₃, ZnTiO₃ и CdTiO₃ [7]. Расчеты показали, что при нормальном давлении (P = 0) фаза со структурой ильменита (пр. гр. $R\bar{3}$) имеет самую низкую энергию среди рассмотренных фаз (табл. 1). То, что по рентгеновским данным в эксперименте наблюдаются фазы R3c или R3c, позволяет предположить, что эти фазы являются метастабильными. Их метастабильная устойчивость очевидно связана с сильным различием структур R3c ($R\bar{3}c$) и $R\bar{3}$, как по параметру решетки, так и по ромбоэдрическому углу (см. табл. 2), и поэтому фазовый переход между ними является переходом первого рода, для которого характерна широкая область метастабильности. Причиной, по которой в результате синтеза возникает именно метастабильная фаза R3c ($R\bar{3}c$), может быть то, что синтез HgTiO₃ проводится при давлении 60-65 kbar, при котором (как будет показано ниже) наиболее устойчивой является именно фаза $R\bar{3}c$. Энергия еще двух возможных — гексагональных – модификаций HgTiO₃ с двухслойной структурой BaNiO₃ и шестислойной структурой гексагонального BaTiO₃ (обе имеют пр. гр. *P*6₃/*mmc*) на 269 meV и 73 meV выше энергии кубической фазы Рт3т.

Обсудим теперь сегнетоэлектрические свойства и природу сегнетоэлектрического фазового перехода в

HgTiO₃. Поскольку изменение длин связей Hg–O при ФП в сегнетоэлектрическую фазу не превышает 0.1 Å, а разность энергий фаз R3c и $R\bar{3}c$ составляет всего 8.1 meV, температура Кюри в HgTiO₃ вряд ли будет превышать 300 К. Поэтому она лучше согласуется с температурой 220 К, при которой в эксперименте наблюдался максимум в диэлектрической проницаемости. В пользу этой интерпретации говорит и отсутствие петель диэлектрического гистерезиса при 300 К. По этой причине далее, ориентируясь на эксперименты, проводимые при 300 К, мы будем обращать основное внимание на свойства фазы $R\bar{3}c$. То, что авторы [1] наблюдали сигнал второй гармоники при комнатной температуре, может быть связано с дефектностью образцов, о склонности к которой мы будем говорить далее.

Анализ собственного вектора сегнетоэлектрической моды A_{2u} в фазе $R\bar{3}c$ показывает, что амплитуда смещений атомов Hg в этой моде в 22 раза меньше амплитуды смещений атомов Ti. Это означает, что ответственными за сегнетоэлектрический ФП являются коллективные смещения атомов титана относительно атомов кислорода, а не перескоки атомов ртути между ямами двухъямного потенциала. На слабую сегнетоэлектрическую активность атомов ртути указывают и значения из эффективного борновского заряда: они равны $Z_{xx}^* = Z_{yy}^* = 3.20$ и $Z_{zz}^* = 2.42$ и немного отличаются от номинального заряда иона.

Расчетная статическая диэлектрическая проницаемость при 0 К в фазе R3c оказывается почти изотропной ($\varepsilon_{xx} = 97$, $\varepsilon_{zz} = 101$); в фазе $R\overline{3}$ диэлектрическая проницаемость заметно ниже ($\varepsilon_{xx} = 28$, $\varepsilon_{zz} = 27$). Для сравнения укажем, что полученная в эксперименте максимальная диэлектрическая проницаемость при 220 К равна ~ 800 [2,3]. Расчетная спонтанная поляризация в фазе R3c оказывается неожиданно большой — $P_s = 0.37 \text{ C/m}^2$. По-видимому, это связано с большим эффективным зарядом моды A_{2u} в параэлектрической фазе ($Z_{\text{eff}}^* = 12.66$).

Отметим теперь некоторые другие физические свойства HgTiO₃ при P = 0. Проведенные в настоящей работе расчеты электронной структуры подтвердили данные [4] о том, что фаза $R\bar{3}c$ является прямозонным полупроводником с экстремумами зон в точке Г. Ширина запрещенной зоны титаната ртути при P = 0равна $E_{q}^{\text{LDA}} = 1.49 \text{ eV}$, а ее барический коэффициент $dE_g^{\text{LDA}}/dP = +0.44 \,\text{meV/kbar}$. Полученное в приближении LDA значение E_g согласуется со значением 1.6 eV, найденным в приближении GGA методом FP-LAPW [4]. Однако оба результата расходятся с тем экспериментальным фактом, что кристаллы HgTiO3 имеют светложелтый цвет [1]. Хорошо известно, что метод функционала плотности в силу своих ограничений в отношении расчета энергий возбужденных состояний всегда дает заниженное значение ширины запрещенной зоны. Один из подходов, позволяющий получить хорошо согласующиеся с экспериментом значения E_g , основан на учете

Структура R3c			Структура Рbnm						
Мода	v, cm^{-1}	Мода	v, cm^{-1}	Мода	v, cm^{-1}	Мода	v, cm^{-1}	Мода	v, cm^{-1}
A_1	78	Ε	81	A_g	68	B_{1g}	439	B_{1u}	530
	181		121		113		502	B_{2u}	38
	379		139		144		782		86
	476		165		277	B_{2g}	104		141
A_2	62		274		417	-	266		190
	347		312		462		450		345
	355		443		559		542		356
	417		495	A_u	65		819		431
	753		515		74	B_{3g}	118		496
Структура R3			108		226		524		
A_g	73	E_{g}	94		141		353	B_{3u}	58
-	204	-	189		303		539		114
	306		311		375		732		165
	440		442		498	B_{1u}	38		246
	651		565		539		84		301
A_u	133	E_u	148	B_{1g}	80		134		380
	348		256		103		243		403
	477		371		139		387		448
	647		452		350		475		547

Таблица 4. Расчетные частоты оптических фононов в точке Γ зоны Бриллюэна для HgTiO₃ со структурами R3c, R3 и Pbnm (последняя — при P = 147 kbar).

многочастичных эффектов (электронных корреляций, динамического экранирования, эффектов локальных полей) в рамках приближения GW [8]. Расчеты, проведенные в настоящей работе в рамках этого приближения, дали величину E_g^{GW} в фазе $R\bar{3}c$, равную 2.43 eV, которая гораздо лучше согласуется с указанным в [1] цветом образцов, чем ширина запрещенной зоны в приближении LDA.

Тензор упругих модулей в фазе $R\bar{3}c$ представлен семью независимыми компонентами: $C_{11} = C_{22}$ = 348.0 GPa, $C_{33} = 260.3$ GPa, $C_{12} = 178.5$ GPa, $C_{13} = C_{23}$ = 149.9 GPa, $C_{44} = C_{55} = 76.3$ GPa, $C_{66} = 84.8$ GPa, $C_{14} = -C_{24} = C_{56} = 18.3$ GPa. Рассчитанный из них объемный модуль упругости равен B = 205.8 GPa и несколько отличается от значения 178 GPa, полученного в работе [4] без учета релаксации внутренних степеней свободы.

Для интерпретации будущих экспериментов по ИКотражению и комбинационному рассеянию света (КРС) могут оказаться полезными приведенные в табл. 4 расчетные частоты фононов в точке Γ для фаз R3c, $R\overline{3}$ при нормальном давлении, а также для фазы Pbnmпри 147 kbar. В низкотемпературной фазе R3c в ИКспектрах и спектрах КРС активны моды A_1 и E. В фазе $R\overline{3}$ ИК-активными являются моды A_u и E_u , а моды A_g и E_g активны в спектрах КРС. В фазе высокого давления Pbnm ИК-активными являются моды B_{1u} , B_{2u} и B_{3u} , а в спектрах КРС активны моды A_g B_{1g} , B_{2g} и B_{3g} .

Для обсуждения экспериментальных данных [2,3] по влиянию всестороннего сжатия на структуру HgTiO₃

в настоящей работе были проведены расчеты свойств титаната ртути под давлением. При давлении, отличном от нуля, термодинамически устойчивой при T = 0является фаза, характеризуемая не наименьшей полной энергией E_{tot} , а наименьшей энтальпией $H = E_{\text{tot}} + PV$. Для сравнения фаз с разным числом молекул в элементарной ячейке мы будем использовать удельную полную энергию и удельный объем ячейки, отнесенные к одной формульной единице. Расчеты показывают, что при изменении давления относительный вклад слагаемого PV в изменение величины H в наших кристаллах составляет примерно 95%, и поэтому с ростом давления наиболее устойчивыми должны становиться фазы, имеющие наименьший удельный объем элементарной ячейки. Как следует из табл. 1, среди рассмотренных фаз наименьший объем при P = 0 имеет фаза *Pbnm*, далее в порядке возрастания удельного объема фазы располагаются следующим образом: Imma, I4/mcm, P4/mbm, $R\bar{3}c$, R3c. Самый большой объем элементарной ячейки имеет фаза ильменита $R\bar{3}$, которая при P = 0 имеет наименьшую полную энергию. Это дает основание ожидать, что с увеличением давления последовательность устойчивых фаз будет меняться следующим образом: $R\bar{3} \rightarrow R3c \rightarrow Pbnm$. Кроме того, с ростом давления также должно наблюдаться и подавление сегнетоэлектричества ($\Phi\Pi R3c \rightarrow R\bar{3}c$).

Разности энтальпий обсуждаемых фаз и энтальпии фазы $R\bar{3}c$ как функции давления представлены на рис. 2. Из него следует, что при P = 38 kbar в HgTiO₃ должен происходить фазовый переход $R\bar{3} \rightarrow R3c$, а при

Рис. 2. Разность энтальпий различных фаз и энтальпии фазы $R\bar{3}c$ в HgTiO₃ как функция гидростатического давления.

Рис. 3. Расчетные дифрактограммы фаз $R\overline{3}c$ и *Pbnm* титаната ртути при P = 141 kbar (для K_{α} -излучения Cu.)

141 kbar — фазовый переход $R\bar{3}c \rightarrow Pbnm$. Поскольку при обоих ФП удельный объем элементарной ячейки изменяется скачком (соответственно на 6 и 0.71%), оба перехода должны быть первого рода. Фаза *Imma*, энтальпия которой при P = 0 ниже, чем для фазы *Pbnm*, с ростом давления становится энергетически менее выгодной и может быть исключена из рассмотрения. Похожее поведение, когда стабильная фаза $R\bar{3}$ под действием высоких температур и давлений превращалась в устойчивую под давлением фазу *Pbnm*, из которой при снятии давления релаксировала в метастабильную фазу $R\bar{3}c$, наблюдалось также в MnTiO₃ [9], FeTiO₃ [10] и ZnGeO₃ [11]. Сегнетоэлектрический LiTaO₃ при высоких давлениях также испытывает фазовый переход $R3c \rightarrow Pbnm$ [12].

Проведенные расчеты позволяют предложить новую интерпретацию данных о фазовом переходе, наблюдавшемся в рентгеновских измерениях [2,3] при всестороннем сжатии. Энергия предполагавшейся в [2,3] кубической фазы высокого давления (Pm3m) почти на 1 eV выше энергии фазы $R\bar{3}c$, а удельный объем ячейки в этой фазе превышает удельный объем ячейки в фазе $R\bar{3}c$ (табл. 1). Это означает, что с ростом давления достаточно большая разность энтальпий этих двух фаз будет только возрастать. Поэтому в качестве фазы высокого давления фазу *Рт3т* можно не рассматривать. Согласно нашим расчетам, с ростом давления угол ромбоэдра в фазе $R\bar{3}c$ увеличивается со скоростью 0.0054°/kbar, поэтому при P = 20 kbar структура должна оставаться еще сильно искаженной, а относительное уменьшение межплоскостного расстояния должно составлять примерно $P/3B \approx 0.32\%$, что в несколько раз меньше наблюдаемого в точке ФП уменьшения межплоскостного расстояния. Однако если допустить, что значения давлений в работах [2,3] были определены с ошибкой (по нашим оценкам, они занижены в $5-7 \, \text{pas}$), и в качестве параметра, характеризующего давление, взять относительное изменение межплоскостного расстояния d_{024} ,¹ то согласие результатов настоящих расчетов с экспериментом становится вполне удовлетворительным. Так, в точке $\Phi\Pi R3c \rightarrow Pbnm$ (141 kbar) расчетное уменьшение межплоскостного расстояния d_{024} по сравнению со случаем P = 0 составляет 2.0%, тогда как в эксперименте оно равно 2.3%, а расчетный скачок среднего межплоскостного расстояния² в точке ФП (0.054%) близок к экспериментальному значению ~ 0.05%.

Параметры решетки и координаты атомов в структуре *Pbnm* при 141 kbar представлены в табл. 2. Расчетные дифрактограммы фаз $R\bar{3}c$ и *Pbnm* при 141 kbar показаны на рис. 3. Расчетная рентгенограмма фазы *Pbnm* действительно похожа на полученную в эксперименте дифрактограмму фазы высокого давления [2,3]. При переходе в орторомбическую фазу линия (012) уширяется, поскольку в орторомбической фазе ей отвечает пара близко расположенных рефлексов (002) и (110). Появляющаяся в орторомбической фазе новая линия (021) хорошо видна на дифрактограммах, записанных при снятии давления. Заметное расхождение экспериментальных и расчетных дифрактограмм заключается в отсутствии линии (111) на дифрактограмме фазы высокого давления. Возможно, что это расхождение является следствием неполноты

¹ Приведенное на рис. З работы [2] абсолютное значение d_{024} при P = 0 не соответствует указанным в этой работе параметрам решетки при том же давлении (расхождение составляет около 5%)

² При ФП $R\bar{3}c \rightarrow Pbnm$ пик (012) расщепляется на две компоненты с индексами (110) и (002).

структурного превращения. Поэтому чтобы подтвердить предложенную в настоящей работе интерпретацию, необходимы дополнительные исследования HgTiO₃ под давлением.

Как отмечалось выше, противоречие между отсутствием петель диэлектрического гистерезиса в HgTiO₃ при 300 К и наблюдением сигнала генерации второй гармоники может быть связано с существованием дефектов. Действительно, по данным [1], образцы быстро темнели при экспозиции на свету. Отсутствие яркого пика в диэлектрической проницаемости также может быть вызвано присутствием дефектов. Эта склонность HgTiO₃ к образованию дефектов доказывается простыми расчетами его термодинамики из первых принципов: при P = 0 энтальпия фазы $R\bar{3}c$ титаната ртути на 150 meV (на формульную единицу) выше суммы энтальпий орторомбического HgO и рутила TiO2. Это означает, что титанат ртути термодинамически нестабилен относительно распада на исходные компоненты. Однако из-за того, что удельный объем ячейки HgTiO₃ заметно меньше суммарного удельного объема ячеек HgO и TiO2, с ростом давления устойчивость HgTiO₃ возрастает. Так, при давлении 58.8 kbar энтальпия HgTiO₃ оказывается уже на 75 meV ниже суммы энтальпий орторомбического HgO и рутила TiO2. Это объясняет почему синтез титаната ртути возможен только в условиях высоких давлений.

Представленные в настоящей работе расчеты были выполнены на лабораторном вычислительном кластере (16 ядер).

Список литературы

- [1] A.W. Sleight, C.T. Prewitt. J. Solid State Chem. 6, 509 (1973).
- [2] Y.J. Shan, Y. Inaguma, T. Nakamura, L.J. Gauckler. Ferroelectrics 326, 117 (2005).
- [3] Y.J. Shan, Y. Inaguma, H. Tetsuka, T. Nakamura, L.J. Gauckler. Ferroelectrics 337, 71 (2006).
- [4] H.S. Nabi, R. Pentcheva, R. Ranjan. J. Phys.: Condens. Matter 22, 045504 (2010).
- [5] А.И. Лебедев. ФТТ 51, 341 (2009).
- [6] A.M. Rappe, K.M. Rabe, E. Kaxiras, L.D. Joannopoulos. Phys. Rev. B 41, 1227 (1990).
- [7] Springer Materials. The Landolt-Börnstein Database. URL http://www.springermaterials.com/navigator/.
- [8] G. Onida, L. Reining, A. Rubio. Rev. Mod. Phys. 74, 601 (2002).
- [9] N.L. Ross, J. Ko, C.T. Prewitt. Phys. Chem. Minerals 16, 621 (1989).
- [10] K. Leinenweber, W. Utsumi, Y. Tsuchida, T. Yagi, K. Kurita. Phys. Chem. Minerals 18, 244 (1991).
- [11] H. Yusa, M. Akaogi, N. Sata, H. Kojitani, R. Yamamoto, Y. Ohishi. Phys. Chem. Minerals 33, 217 (2006).
- [12] J. Li, X. Zhou, W. Zhu, J. Li, F. Jing. J. Appl. Phys. 102, 083503 (2007).