Локальная структура стеклообразных сплавов германий—сера, германий—селен и германий—теллур

© Г.А. Бордовский, Е.И. Теруков*, Н.И. Анисимова, А.В. Марченко, П.П. Серегин¶

Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 29 января 2009 г. Принята к печати 4 февраля 2009 г.)

Методом мёссбауэровской спектроскопии на изотопах ¹¹⁹Sn и ¹²⁹Te (¹²⁹I) показано, что стекла $Ge_{100-y}X_y$ (X = S, Se, Te), обогащенные халькогеном, построены из структурных единиц, включающих 2-координированные атомы халькогена в цепочках типа -Ge-X-Ge- и -Ge-X-X-Ge-. Германий в этих стеклах только четырехвалентен и 4-координирован, причем в локальном окружении атомов германия находятся только атомы халькогена. Стекла, обедненные халькогеном, построены из структурных единиц, включающих единиц, включающих 2-координированные (в цепочках типа -Ge-X-Ge-) и 3-координированные атомы халькогена (в цепочках типа -Ge-X-Ge-) и 3-координированные атомы халькогена (в цепочках типа -Ge-X-Ge-) и 3-координированные атомы халькогена обедненные халькогена. Стеклах стабилизируется как в четырехвалентном и 4-координированном состоянии, так и в двухвалентном и 3-координированном состоянии, причем в локальном окружении атомов германия находятся только атомы калькогена.

PACS: 61.43.Fs, 76.80+y, 78.66.Jg

Поскольку физико-химические свойства стеклообразных полупроводников определяются их локальной структурой, экспериментальное определение структуры ближнего порядка стекол является актуальной задачей [1]. Широкое использование в подобных исследованиях находит мёссбауэровская спектроскопия [2]. Настоящая работа посвящена исследованию локальной структуры атомов халькогена и германия в стеклообразных полупроводниках систем $Ge_{100-y}X_y$ (X = S, Se, Te) методами абсорбционной на изотопе ¹¹⁹Sn и эмиссионной мёссбауэровской спектроскопии на изотопе ¹²⁹Te (¹²⁹I). Отметим, что, несмотря на длительное исследование стекол $Ge_{100-y}X_y$ различными методами [3], их локальная структура остается предметом дискуссий [4].

1. Методика эксперимента

Стекла синтезировались из элементарных веществ в вакуумированных до 10^{-3} мм рт. ст. тонкостенных кварцевых ампулах при 950° С с последующей закалкой расплава (~1 г) в воде. Стеклообразное состояние фиксировали по отсутствию включений, отсутствию линий на дебаеграммах и раковистому излому. Для исследований были выбраны стекла составов Ge₂₀S₈₀, Ge₃₀S₇₀, Ge₄₀S₆₀, Ge₂₀Se₈₀, Ge₃₀Se₇₀, Ge₄₀Se₆₀, Ge₂₀Te₈₀, а также стекла Ge_{28.5}Pb₁₅S_{56.5}, Ge₂₇Pb₁₇S₅₆ и аморфный сплав Ge₅₀Te₅₀. Олово в виде обогащенного до 92% изотопа ¹¹⁹Sn вводилось в исходную шихту всех стекол (его концентрация составляла 0.5 ат%). Мёссбауэровские источники ¹²⁹Te (¹²⁹I) готовились путем плавления стекол, причем в шихту добавлялся препарат безносительного ¹²⁹Te.

Концентрация 129 Те во всех образцах была порядка $10^{16} - 10^{17}$ см $^{-3}$.

При измерении мёссбауэровских спектров ¹¹⁹Sn источником служил Ca^{119 mm}SnO₃, поверхностная плотность поглотителей составляла 0.1 мг/см² по ¹¹⁹Sn. Изомерные сдвиги спектров ¹¹⁹Sn приведены относительно CaSnO₃. При измерении мёссбауэровских спектров ¹²⁹Te (¹²⁹I) поглотителем служил K¹²⁹I с поверхностной плотностью 15 мг/см² по ¹²⁹I. Изомерные сдвиги приводятся относительно спектра KI. При измерении мёссбауэровских спектров источник и поглотитель находились при температуре 80 К.

2. Экспериментальные результаты и обсуждение

Типичные мёссбауэровские спектры ¹²⁹Te (¹²⁹I) стекол приведены на рис. 1 и 2, а мёссбауэровские спектры ¹¹⁹Sn — на рис. 3 и 4. Параметры спектров сведены в табл. 1 и 2.

Для всех стекол Ge_{100-y} X_y, обогащенных халькогеном ($y \ge 0.66$), мёссбауэровские спектры ¹²⁹Te (¹²⁹I) представляют собой наложение двух квадрупольных мультиплетов I и II (рис. 1, *a*, *b* и 2, *a*). Квадрупольный мультиплет I с меньшими значениями изомерного сдвига IS и постоянной квадрупольного взаимодействия (по модулю |*C*|) отвечает атомам ¹²⁹I, которые образовались в узлах халькогена после радиоактивного распада ¹²⁹Te и которые образуют химические связи с атомами германия в своем ближайшем окружении. Для этого мультиплета наблюдается отрицательная величина C и, следовательно, он относится к атомам ¹²⁹I, замещающим атомы 2-координированного халькогена X в цепочках

[¶] E-mail: ppseregin@hotmail.ru

	Состояние	Спектр I Узлы двухкоординированного				Спектр II Узлы двухкоординированного				Спектр III Узлы трехкоординированного						
Состав		халькогена –Ge–X–Ge–				халькогена –Ge–X–X–Ge–				халькогена –Ge–X–Ge–						
		IS	С	η	G	S	IS	С	η	G	S	IS	С	η	G	S
Ge ₂₀ S ₈₀	стекло	0.75	-42.4	0.6	1.75	0.19	1.33	-64.7	< 0.2	1.75	0.80					
Ge ₃₀ S ₇₀	стекло	0.77	-42.6	0.6	1.75	0.33	1.35	-64.8	< 0.2	1.75	0.67					
Ge40S60	стекло	0.81	-28.3	< 0.2	1.75	0.85						1.05	25.4	0.9	1.75	0.15
Ge _{28.5} Pb ₁₅ S _{56.5}	стекло	0.81	-28.3	< 0.2	1.75	0.80						1.01	25.1	0.9	1.75	0.20
S	пластическая						1.30	-65.2	< 0.2	1.75	1.00					
GeS	кристалл											1.10	13.0	< 0.2	0.80	1.00
GeS ₂	кристалл	0.74	-40.1	0.6	1.75	0.90	1.31	-63.2	< 0.2	1.75	0.10					
$Ge_{20}Se_{80}$	стекло	0.81	-38.4	0.5	1.75	0.21	1.33	-60.7	< 0.2	1.75	0.79					
Ge ₃₀ Se ₇₀	стекло	0.80	-38.6	0.5	1.75	0.35	1.34	-60.8	< 0.2	1.75	0.66					
$Ge_{40}Se_{60}$	стекло	0.91	-25.3	< 0.2	1.75	0.85						1.03	20.4	0.7	1.75	0.15
Ge27Pb17Se56	стекло	0.91	-25.3	< 0.2	1.75	0.80						1.02	20.1	0.7	1.75	0.20
Se	стекло						1.16	-58.8	< 0.2	1.75	1.00					
GeSe	кристалл											1.05	10	< 0.2	0.80	1.00
GeSe ₂	кристалл	0.77	-36.4	0.5	1.75	0.95	1.33	-60.4	< 0.2	1.75	0.05					
Ge20Te80	стекло	0.94	-23.8	< 0.2	1.75	0.85	1.25	-17.6	< 0.2	1.75	0.15					
Ge20Te80	кристалл						1.15	-16.9	0.8	1.70	0.80	0.99	3.0	< 0.2	0.80	0.20
Ge50Te50	аморфный	0.92	-23.4	< 0.2	1.75	0.60						1.02	17.2	0.7	1.75	0.40
Te	кристалл						1.18	-16.7	0.8	1.70	1.00					
GeTe	кристалл											0.99	3.0	< 0.2	0.80	1.00

Таблица 1. Параметры мессбауэровских спектров 129 Te $({}^{129}$ I) сплавов Ge $_{100-x}$ Se $_x$, Ge $_{100-x}$ Se $_x$ и Ge $_{100-x}$ Te $_x$

Примечание: погрешности в измерении изомерного сдвига IS, постоянной квадрупольного расщепления C, параметра асимметрии η, ширины спектральной линии G и площади под нормированным мессбауэровским спектром S составляли соответственно: ±0.03 мм/с, ±0.8 мм/с, ±0.1, ± 0.04 мм/с и ± 0.03 .

Состар	Состоянна		Sn-	-IV		Sn-II					
Состав	Состояние	IS	Δ	G	S	IS	Δ	G	S		
Ge _{19.5} Sn _{0.5} S ₈₀	стекло	1.58		1.21	1.00						
Ge _{19.5} Sn _{0.5} S ₈₀	кристалл	1.37		1.19	1.00						
Ge _{29.5} Sn _{0.5} S ₇₀	стекло	1.57		1.19	1.00						
Ge _{29.5} Sn _{0.5} S ₇₀	кристалл	1.36		1.20	1.00						
Ge _{39.5} Sn _{0.5} S ₆₀	стекло	1.56		1.22	0.61	3.43	0.96	0.80	0.39		
Ge _{39.5} Sn _{0.5} S ₆₀	кристалл					3.44	0.92	0.80	1.00		
C . C . DL C	-					2.25	0.00	0.00	1.00		

Таблица 2. Параметры мессбауэровских спектров 119 Sn сплавов Ge $_{99,5-x}$ Sn $_{0.5}$ Sx, Ge $_{99,5-x}$ Sn $_{0.5}$ Sex и Ge $_{99,5-x}$ Sн $_{0.5}$ Sеx и Ge $_{99,5-x}$ Sн $_{0.5}$ Sеx и Ge $_{99,5-x}$ Sн $_{0.5}$ Sех и Ge $_{99,5-x}$ Sн $_{0.5}$ Sех и Ge $_{99,5$

Ge19.5Sn0.5S80	кристалл	1.37		1.19	1.00				
Ge _{29.5} Sn _{0.5} S ₇₀	стекло	1.57		1.19	1.00				
Ge _{29.5} Sn _{0.5} S ₇₀	кристалл	1.36		1.20	1.00				
Ge _{39.5} Sn _{0.5} S ₆₀	стекло	1.56		1.22	0.61	3.43	0.96	0.80	0.39
Ge _{39.5} Sn _{0.5} S ₆₀	кристалл					3.44	0.92	0.80	1.00
$Ge_{28}Sn_{0.5}Pb_{15}S_{56.5}$	стекло					3.25	0.99	0.90	1.00
Ge _{49.5} Sn _{0.5} S ₅₀	кристалл					3.38	1.03	0.90	1.00
SnS	кристалл					3.44	0.90	0.80	1.00
SnS ₂	кристалл	1.30	0.40	0.80	1.00				
$Ge_{19.5}Sn_{0.5}Se_{80}$	стекло	1.76		1.22	1.00				
$Ge_{19.5}Sn_{0.5}Se_{80}$	кристалл	1.66		1.20	1.00				
Ge _{29.5} Sn _{0.5} Se ₇₀	стекло	1.73		1.19	1.00				
Ge _{29.5} Sn _{0.5} Se ₇₀	кристалл	1.63		1.20	1.00				
Ge _{39.5} Sn _{0.5} Se ₆₀	стекло	1.73		1.20	0.45	3.45	0.67	0.80	0.55
$Ge_{39.5}Sn_{0.5}Se_{60}$	кристалл					3.43	0.66	0.80	1.00
$Ge_{26.5}Sn_{0.5}Pb_{17}Se_{56}$	стекло					3.41	0.65	0.90	1.00
$Ge_{49.5}Sn_{0.5}Se_{50}$	кристалл					3.39	0.69	0.90	1.00
SnSe	кристалл					3.45	0.65	0.80	1.00
SnSe ₂	кристалл	1.65	0.30	0.8	1.00				
$Ge_{19.5}Sn_{0.5}Te_{80}$	стекло	2.07		1.03	1.00				
$Ge_{19.5}Sn_{0.5}Te_{80}$	кристалл					3.52		1.10	1.00
Ge49.5Sn0.5Te50	аморфный								
Ge _{49.5} Sn _{0.5} Te ₅₀	кристалл					3.53		1.12	1.00
SnTe	кристалл					3.55		0.94	1.00

Примечание: погрешности в измерении изомерного сдвига IS, квадрупольного расщепления Д, ширины спектральной линии G и площади под нормированным мессбауэровским спектром S составляли соответственно: ±0.02 мм/с, ±0.04 мм/с, ±0.03 мм/с и ±0.03.

Рис. 1. Мёссбауэровские спектры ¹²⁹Те (¹²⁹I) стекол $Ge_{20}S_{80}$ (*a*), $Ge_{30}S_{70}$ (*b*), $Ge_{40}S_{60}$ (*c*). Показано разложение спектров на мультиплеты I (отвечает 2-координированной сере в цепочках $-\overset{l}{Ge}-S-\overset{l}{Ge}-$), II (отвечает 2-координированной сере в цепочках $-\overset{l}{Ge}-S-\overset{l}{Ge}-$) и III (отвечает 3-координированной сере в цепочках $-\overset{l}{Ge}-S-\overset{l}{Ge}-$) и III (отвечает 3-координированной сере в цепочках $-\overset{l}{Ge}-S-\overset{l}{Ge}-$).

Квадрупольный мультиплет II с большими значениями IS и |C| следует отнести к атомам ¹²⁹I, которые образуют химические связи с атомами халькогена в своем ближайшем окружении. Близкие величины IS и С наблюдаются для эмиссионных мёссбауэровских спектров ¹²⁹Те (¹²⁹I) в сере и селене (табл. 1). Для этого мультиплета также наблюдается отрицательная величина C и, следовательно, он относится к атомам ¹²⁹I, замещающим атомы 2-координированного халькогена в цепочках типа -Ge-X-X-Ge-. Очевидно, что после радиоактивного превращения ¹²⁹Те дочерний атом иода в таких цепочках образует химическую связь только с атомами халькогена. Отметим, что по мере уменьшения индекса у площадь под спектром II для стекол $Ge_{100-v}S_v$ и $Ge_{100-v}Se_v$ уменьшается, что отражает факт уменьшения содержания цепочек $-\overset{|}{Ge} - X - X - \overset{|}{Ge} - в$ структуре стекол.

Для стекол $Ge_{100-y}S_y$ и $Ge_{100-y}Se_y$, обедненных халькогеном (y < 0.66), мёссбауэровские спектры

¹²⁹Те (¹²⁹І) представляют собой наложение двух квадрупольных мультиплетов I и III, различающихся знаком постоянной квадрупольного взаимодействия (рис. 1, с). Квадрупольный мультиплет I, как и в предыдущих случаях, следует отнести к атомам ¹²⁹I, которые образуют химические связи с атомами германия в своем ближайшем окружении. Для этого спектра наблюдается отрицательная величина С и, следовательно, он относится к атомам ¹²⁹I, замещающим атомы 2-координированного халькогена в цепочках типа –Ge-X-Ge-. Квадрупольный мультиплет III с меньшим значением |C| отвечает атомам ¹²⁹I, которые образуют химические связи с атомами германия в своем ближайшем окружении. Для этого спектра наблюдается положительная величина Си, следовательно, он относится к атомам ¹²⁹I, замещающим атомы 3-координированного халькогена в структурных единицах типа – Ge–X–Ge–. Аналогичные структурные единицы имеют место в кристаллических GeS и GeSe, однако степень искажения для них в стекле значительно больше, что и приводит к большей величине С (табл. 1). Объемные стекла системы Ge_{100-v}Te_v не могут быть

Объемные стекла системы Ge_{100-у} Ie_у не могут быть получены в сплавах, обедненных теллуром, и поэтому для индентификации 3-координированного состояния

Рис. 2. Мёссбауэровские спектры ¹²⁹Te (¹²⁹I) стеклообразного сплава $Ge_{20}Te_{80}$ (*a*) и аморфного сплава $Ge_{50}Te_{50}$ (*b*). Показано разложение спектров на мультиплеты I (отвечает 2-координированному теллуру в цепочках $-\overset{l}{Ge}-Te-\overset{l}{Ge}-)$, II (отвечает 2-координированному теллуру в цепочках $-\overset{l}{Ge}-Te-\overset{l}{Ge}-)$ и III (отвечает 3-координированному теллуру в цепочках $-\overset{l}{Ge}-Te-\overset{l}{Ge}-)$.

Рис. 3. Мёссбауэровские спектры ¹¹⁹Sn стекол Ge_{29.5}Sn_{0.5}S₇₀ (*a*), Ge_{39.5}Sn_{0.5}S₆₀ (*b*) и Ge₂₈Sn_{0.5}Pb₁₅S_{56.5} (*c*). Показано разложение спектров на синглет I (отвечает четырехвалентному и 4-координированному олову) и квадрупольный дублет II (отвечает двухвалентному и 3-координированному олову).

атомов теллура мы использовали аморфный сплав стехиометрического состава GeTe, который был получен путем выливания расплава на металлическую плиту, охлаждаемую жидким азотом. Мёссбауэровский спектр ¹²⁹Te (¹²⁹I) такого сплава представлял собой наложение квадрупольных мультиплетов I и III (рис. 2, *b*). Мультиплет I отвечает атомам ¹²⁹I, которые замещают атомы 2-координированного халькогена в цепочках типа –Ge–X–Ge–. Мультиплет III отвечает атомам ¹²⁹I, которые замещают атомы 3-координированного халькогена в структурных единицах типа –Ge–X–Ge–. Аналогичные структурные единицы имеют место в кристаллическом GeTe, однако степень искажения для них в аморфном сплаве значительно больше, что и приводит к большей величине *C* (табл. 1).

Следует отметить, что построение стекол $Ge_{100-y}X_y$, обогащенных халькогеном, из структурных единиц типа -Ge-X-Ge- и -Ge-X-X-Ge- требует стабилизации в структурной сетке стекол четырехвалентного и 4-координированного германия. Если для стекол $Ge_{100-y}S_y$ и $Ge_{100-y}Se_y$ такая ситуация вполне естественна (существуют стабильные сульфид GeS_2 и селенид $GeSe_2$ четырехвалентного германия), то для стекла $Ge_{100-y}Te_y$ эта ситуация не очевидна, поскольку отсутствует теллурид четырехвалентного германия. В этом случае необходимы дополнительные экспериментальные аргументы в пользу стабилизации в структурной сетке стекла $Ge_{100-y}Te_y$ четырехвалентного и 4-координированного германия. С другой стороны, наличие в стеклах $Ge_{100-y}S_y$ и $Ge_{100-y}Se_y$, обедненных халькогеном, 3-координированного состояния халькогена требует стабилизации части атомов германия в двухвалентном состоянии. Очевидно, что это требование противоречит феноменологическому правилу Мотта—Губанова о стабилизации в структурной сетке халькогенидных стекол атомов с наивысшей валентностью [3]. И в этом случае необходимо независимое экспериментальное подтверждение факта стабилизации германия в двухвалентном состоянии.

Для идентификации валентного и координационного состояния германия нами было предпринято исследование стекол $Ge_{100-y}X_y$ методом мёссбауэровской спектроскопии на изотопе ¹¹⁹Sn: предполагалось, что примесные атомы олова изовалентно замещают атомы германия в структурной сетке стекла и локальная структура олова отражает локальную структуру атомов германия.

Мёссбауэровские спектры ¹¹⁹Sn стекол Ge_{99.5-y}Sn_{0.5}X_y, обогащенных халькогеном ($y \ge 0.66$), представляют собой одиночные линии I, отвечающие четырехвалентному олову (рис. 3, *a*, 4, *a*), причем величина изомерного сдвига спектров стекол, содержащих серу или селен, типична для олова, имеющего в локальном окружении только атомы халькогена (типа спектров соединений GeSe₂ и GeS₂) (табл. 2). Особо отметим,

Рис. 4. Мёссбауэровские спектры ¹¹⁹Sn стеклообразного (*a*) и кристаллического (*b*) сплава $Ge_{19.5}Sn_{0.5}Te_{70}$. Показано разложение спектров на синглет I (отвечает четырехвалентному и 4-координированному олову) и синглет II (отвечает двухвалентному и 3-координированному олову).

даже стекло Ge99.5-vSn0.5Tev демонстрирует что ¹¹⁹Sn присутствие в мёссбауэровском спектре только четырехвалентного состояния олова, причем изомерный сдвиг спектра близок к изомерному сдвигу мёссбауэровского спектра *α*-Sn, для которого известна идеальная система тетраэдрических связей (табл. 2). Иными словами, в стеклах Ge_{100-v}X_v атомы германия четырехвалентны и 4-координированы. Кристаллизация стекол, содержащих серу или селен, не изменяет валентного состояния олова (табл. 2), тогда как кристаллизация стекла Ge_{19.5}Sn_{0.5}Te₈₀ сопровождается изменением мёссбауэровского спектра ¹¹⁹Sn — он представляет собой одиночную линию, отвечающую двухвалентному олову (рис. 4, b). Иными словами, в кристаллическом сплаве Ge₂₀Te₈₀, как и ожидалось, германий двухвалентен (что подтверждается данными рентгенофазового анализа — при кристаллизации стекла Ge₂₀Te₈₀ выделяются фазы GeTe и теллура).

Мёссбауэровские спектры ¹¹⁹Sn стекол Ge_{99.5-y}Sn_{0.5}Sy и Ge_{99.5-y}Sn_{0.5}Se_y, обедненных халькогеном (y < 0.66), представляют собой наложение одиночной линии I, отвечающей четырехвалентному олову, и квадрупольного дублета II, отвечающего двухвалентному олову (рис. 3, *b*), изомерный сдвиг которого типичен для спектров соединений двухвалентного и 3-координированного олова SnS и SnSe (табл. 2).

Это позволяет заключить, что валентное и координационное состояние атомов германия в стеклах $Ge_{100-y}S_y$ зависит от содержания халькогена в составе стекла: в стеклах, обогащенных халькогеном, германий только четырехвалентен и 4-координирован, тогда как в стеклах, обедненных халькогеном, германий стабилизируется как в четырехвалентном и 4-координированном состоянии, так и двухвалентном и 3-координированном состоянии. Во всех случаях в локальном окружении атомов германия находятся только атомы халькогена.

Особенностью вхождения примесных атомов олова в структурную сетку стекол типа $Ge_{40}X_{60}$ является зависимость соотношения двух- и четырехвалентного олова в стекле от присутствия в стекле атомов свинца — для стекол, содержащих свинец ($Ge_{28.5}Pb_{15}S_{56.5}$ и $Ge_{27}Pb_{17}Se_{56}$), в мёссбауэровских спектрах ¹¹⁹Sn наблюдается только двухвалентное олово (рис. 3, *c*). Поскольку свинец в структуре таких стекол только двухвалентен [5], можно сделать вывод, что примесные атомы олова преимущественно стабилизируются в положениях свинца в двухвалентном состоянии.

3. Заключение

Стекла $Ge_{100-y}X_y$, обогащенные халькогеном, построены из структурных единиц, включающих двухкоординированные атомы халькогена в цепочках типа $- \overset{|}{Ge} - X - \overset{|}{Ge} - u - \overset{|}{Ge} - X - \overset{|}{Ge} -$, тогда как стекла, обедненные халькогеном, построены из структурных единиц, включающих двух- (в цепочках типа

-Ge-X-Ge-) и трехкоординированные атомы халькогена (в цепочках типа -Ge-X-Ge-). Валентное и координационное состояния атомов германия в стеклах зависят от содержания халькогена в составе стекла.

В стеклах, обогащенных халькогеном, германий только четырехвалентен и 4-координирован, а в стеклах, обедненных халькогеном, германий стабилизируется как в четырехвалентном и 4-координированном состоянии, так и двухвалентном и 3-координированном состоянии, но во всех случаях в локальном окружении атомов германия находятся только атомы халькогена.

Список литературы

- В.М. Любин, А.В. Клебанов. Изв. Росс. гос. пед. ун-та им. А.И. Герцена. Физика, 6 (15), 143 (2006).
- [2] Г.А. Бордовский, А.В. Марченко, П.П. Серегин, Е.И. Теруков. ФТП, 43 (1), 7 (2009).
- [3] А. Фельц. Аморфные и стеклообразные неорганические твердые тела (М., Мир, 1986).
- [4] P. Boolchand, P. Chen, M. Jin, B. Goodman, W.J. Bresser. Physica B: Condens. Matter, 389 (1), 18 (2007).
- [5] Г.А. Бордовский, Р.А. Кастро. Физика и химия стекла, 32 (3), 431 (2006).

Редактор Л.В. Беляков

Local glass structure of alloys of germanium—sulfur, germanium—selenium and germanium—tellur

G.A. Bordovsky, E.I. Terukov*, N.I. Anisimova, A.B. Marchenko, P.P. Seregin

Alexander Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia * loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract By Mossbauer spectroscopy on isotopes ¹¹⁹Sn and ¹²⁹Te (¹²⁹I) it is shown, that glasses $Ge_{100-y}X_y$ (X = S, Se, Te), which have been enriched with chalcogenide, are constructed of the structural units including two co-ordinate atoms chalcogenide in chains of type $-\overset{I}{Ge}-X-\overset{I}{Ge}-$ and $-\overset{I}{Ge}-X-X-\overset{I}{Ge}-$. Germanium in these glasses is only tetravalent and four co-ordinate, and in a local environment of germanium atoms there are only chalcogenide atoms. Glasses, impoverished with chalcogenide, are constructed of the structural units including two (in chains of type $-\overset{I}{Ge}-X-\overset{I}{Ge}-)$ and three co-ordinate chalcogenide atoms (in chains of type $-\overset{I}{Ge}-X-\overset{I}{Ge}-)$. Germanium in these glasses it is stabilized both in tetravalent and four co-ordinate states, and in bivalent and three co-ordinate states, and in a local environment of germanium in these glasses it glasses it is stabilized both in tetravalent and four co-ordinate states, and in a local environment of germanium atoms there are only chalcogenide atoms.