## Влияние магнитного фазового перехода на перенос заряда в слоистых полупроводниковых ферромагнетиках TICrS<sub>2</sub>, TICrSe<sub>2</sub>

© Р.Г. Велиев, Р.З. Садыхов, Э.М. Керимова<sup>¶</sup>, Ю.Г. Асадов, А.И. Джаббаров

Институт физики Национальной академии наук Азербайджана, Az-1143 Баку, Азербайджан

(Получена 26 января 2009 г. Принята к печати 4 февраля 2009 г.)

Твердотельной реакцией синтезированы кристаллы TICrS<sub>2</sub>, TICrSe<sub>2</sub>. Рентгенографическим анализом выявлено, что соединения TICrS<sub>2</sub> и TICrSe<sub>2</sub> кристаллизуются в гексагональной сингонии соответственно с параметрами кристаллической решетки a = 3.538 Å, c = 21.962 Å,  $c/a \approx 6.207$ , z = 3, рентгеновской плотностью  $\rho_x = 6.705$  г/см<sup>3</sup> и a = 3.6999 Å, c = 22.6901 Å,  $c/a \approx 6.133$ , z = 3, рентгеновской плотностью  $\rho_x = 6.209$  г/см<sup>3</sup>. В интервале температур 77–400 К проведены магнитные и электрические исследования, которые показали, что TICrS<sub>2</sub>, TICrSe<sub>2</sub> являются полупроводниковыми ферромагнетиками. Достаточно большое отклонение значения экспериментального эффективного магнитного момента TICrS<sub>2</sub> ( $3.26 \mu_B$ ) и TICrSe<sub>2</sub> ( $3.05 \mu_B$ ) от теоретического ( $3.85 \mu_B$ ) объясняется наличием двумерного магнитного упорядочения в парамагнитной области сильно слоистых ферромагнетиков TICrS<sub>2</sub>, TICrSe<sub>2</sub>. Обнаружено влияние магнитного фазового перехода на перенос заряда в TICrS<sub>2</sub>, TICrSe<sub>2</sub>.

PACS: 75.30 Gw, 75.50 Dd, 75.50.Pp

### 1. Введение

Исследование влияния магнитного фазового перехода на перенос заряда в магнитоупорядоченных кристаллах является одной из центральных задач в физике магнитных явлений. Проблема стала более актуальной в связи с появлением сильно анизотропных (слоистых, цепочечных) магнетиков, в которых при исследовании их физических свойств обнаруживаются особенности, вытекающие из модели Изинга–Гейзенберга [1].

Эти особенности, прежде всего такие как явное отклонение от  $\lambda$ -типа аномалии на температурной зависимости теплоемкости (в адиабатическом калориметре) [2–4], могут наблюдаться в магнетиках, кристаллическая структура которых низкосимметрична, при этом кристаллохимическая формула таких магнетиков должна содержать, как минимум, 3 атома.

Низкосимметричность кристаллической структуры магнетиков типа TlMeX<sub>2</sub> (где Me = 3d-металл, X = S, Se, Te) [5–9] предопределяет зависимость их магнитных и электрических свойств от основных кристаллографических направлений, в некоторых случаях вплоть до возникновения низкоразмерного эффекта, когда спиновая система (магнитная структура) магнетика в парамагнитной области, в определенном температурном интервале, находится в квазидвумерном или квазиодномерном магнитном упорядочении (модель Изинга–Гейзенберга) [1–4,10].

В работе [8] были синтезированы соединения TlCrS<sub>2</sub>, TlCrSe<sub>2</sub> и проведены рентгено-, нейтронографические и магнитные исследования, которые показали, что оба соединения имеют кристаллическую решетку ромбоэдрической сингонии и являются ферромагнетиками. Следует отметить, что проведенные в этой работе рентгеновские исследования предполагают низкоразмерность магнитной структуры слоистых ферромагнетиков TlCrS<sub>2</sub> и TlCrSe<sub>2</sub>, хотя некоторые магнитные характеристики (например, намагниченность) не согласуются с этим предположением. Так, магнитный момент ферромагнетика TlCrS<sub>2</sub> оказался равным  $2.4 \,\mu_{\rm B} \,(\mu_{\rm B}$  — магнетон Бора), что близко к магнитному моменту свободного иона хрома (Cr<sup>3+</sup>). Это обстоятельство противоречит приведенной в работе [8] модели слоистой кристаллической структуры TlCrS<sub>2</sub>. Кроме того, в [8] электрические свойства TlCrS<sub>2</sub>, TlCrSe<sub>2</sub> не были изучены. Соответственно не был рассмотрен такой фундаментальный вопрос: влияет или нет магнитный фазовый переход на перенос заряда в ферромагнетиках TlCrS<sub>2</sub>, TlCrSe<sub>2</sub>.

Учитывая вышеизложенное, мы синтезировали кристаллы  $TlCrS_2$ ,  $TlCrSe_2$  по отличной от использованной в [8] технологии и провели их рентгенографические, магнитные и электрические исследования.

# 2. Синтез и рентгенографический анализ

Составы TlCrS<sub>2</sub> и TlCrS<sub>2</sub> были синтезированы из навесок химических элементов, взятых в стехиометрическом соотношении, в электрической печи, в эвакуированных до остаточного давления  $\sim 10^{-3}$  Па кварцевых ампулах. Предварительно хром (Cr) в шаровой мельнице приводился в порошкообразное состояние. Синтез проводился методом наклонной печи при температуре  $\sim 1050$  К и длился 72 ч. Затем продукт твердотельной реакции тщательно измельчался и синтез повторялся. После этого полученные составы приводились в порошкообразное состояние, спрессовывались и в эвакуированных кварцевых ампулах подвергались гомогенизирующему отжигу при температуре  $\sim 600$  К в течение 480 ч.

<sup>&</sup>lt;sup>¶</sup> E-mail: ekerimova@physics.ab.az

0.8

0.6

0.4

Рентгенографический анализ образцов TlCrS2 и TlCrSe<sub>2</sub>, специально подготовленных после отжига, проводился при комнатной температуре  $(\sim 300\,{\rm K})$  на дифрактометре ДРОН-3М (Си $K_{\alpha}$ -излучение, Ni-фильтр, длина волны  $\lambda = 1.5418$  Å, режим 35 кВ, 10 мА). Угловое разрешение съемки составляло ~ 0.01°. Использовался режим непрерывного сканирования. Углы дифракции определены по максимуму интенсивности. В экспериментах ошибка определения углов отражений не превышала  $\Delta \theta = \pm 0.02^{\circ}$ .

В интервале углов  $10 < 2\theta < 70^{\circ}$  были зафиксированы дифракционные отражения от образцов TlCrS2 и TlCrSe<sub>2</sub>, которые, в отличие от данных [8], индицируются как соответствующие гексагональной сингонии со следующими параметрами кристаллической решетки: a = 3.538 Å, c = 21.962 Å,  $c/a \approx 6.207$ , z = 3, pentгеновская плотность  $\rho_x = 6.705 \,\text{г/см}^3$  и  $a = 3.6999 \,\text{\AA}$ , c = 22.6901 Å,  $c/a \approx 6.133$ , z = 3, рентгеновская плотность  $\rho_x = 6.209 \, \text{г/см}^3$  соответственно.

#### 3. Приготовление образцов и методики исследования

Намагниченность ( $\sigma$ ) соединений TlCrS<sub>2</sub>, TlCrSe<sub>2</sub> измерялась на маятниковом магнитометре Доменикалли, а парамагнитная восприимчивость ( $\chi$ ) — методом Фарадея на магнитоэлектрических весах. Образцы для измерений имели цилиндрическую форму высотой  $h \approx 3$  мм, диаметром  $d \approx 2.5$  мм.

Электропроводность ( $\sigma_e$ ) и коэффициент термоэдс (S) TlCrS<sub>2</sub>, TlCrSe<sub>2</sub> исследовались четырехзондовым компенсационным методом. Образцы для измерений имели форму параллелепипеда с размерами  $7.15 \times 4.57 \times 2.53$  мм (TlCrS<sub>2</sub>) или  $8.95 \times 5.25 \times 2.78$  мм (TlCrSe<sub>2</sub>). Омические контакты создавали путем электролитического осаждения меди на торцы образцов. Исследования проводились в температурном интервале  $T = 77 - 400 \, \text{K}$  в квазистатическом режиме, при этом скорость изменения температуры составляла 0.2 К/мин. Во время измерений образцы находились внутри азотного криостата и в качестве датчика температуры применялась медь-константановая термопара, спай которой стационарно закреплялся на кристаллодержателе вблизи образца. Опорный спай термопары стабилизировался при температуре тающего льда.

#### 4. Экспериментальные результаты и их обсуждение

На рис. 1 приведены температурные зависимости удельной намагниченности  $\sigma(T)$  TlCrS<sub>2</sub>, TlCrSe<sub>2</sub> в магнитном поле 10 кЭ. Из рисунка видно, что значения намагниченности как TlCrS2, так и TlCrSe2, в отличие от данных работы [8], малы и с понижением температуры при  $T \approx 100 \,\mathrm{K}$  для обоих соединений наблюдается ее



Рис. 1. Температурные зависимости удельной намагниченности TlCrS<sub>2</sub> (a) и TlCrSe<sub>2</sub> (b).



**Рис. 2.** Зависимости удельной намагниченности  $TlCrS_2(a)$ , TlCrSe<sub>2</sub> (b) от магнитного поля при 77 К.

резкий рост. Отсутствие насыщения зависимости намагниченности от магнитного поля Н при 77 К (рис. 2) свидетельствует о близости температуры измерения к области магнитного превращения. Действительно, обработка экспериментальных результатов в области магнитного превращения по методу термодинамических коэффициентов [11] показала, что температура Кюри  $T_{\rm C} \approx 90 \,\mathrm{K}$  в TlCrS<sub>2</sub> и  $T_{\rm C} \approx 105 \,\mathrm{K}$  в TlCrSe<sub>2</sub>.



**Рис. 3.** Температурные зависимости обратной парамагнитной восприимчивости TlCrS<sub>2</sub> (a), TlCrSe<sub>2</sub> (b).

Температурные зависимости обратной парамагнитной восприимчивости  $\chi^{-1}(T)$  TlCrS<sub>2</sub>, TlCrSe<sub>2</sub> (рис. 3) имеют вид, характерный для ферромагнитных материалов. Парамагнитная температура Кюри (Т<sub>р</sub>), определенная экстраполяцией зависимости  $\chi^{-1}(T)$  на ось температур, равна  $\sim 115$  К для TlCrS<sub>2</sub> и  $\sim 120$  К для TlCrSe<sub>2</sub>. Из зависимостии  $\chi^{-1}(T)$  (рис. 3) рассчитан эффективный магнитный момент ( $\mu_{eff}$ ), который оказался равным 3.26  $\mu_{B}$ для TlCrS<sub>2</sub> и  $3.05 \mu_B$  для TlCrSe<sub>2</sub>. Теоретическое значение, рассчитанное с учетом чисто спинового значения магнитного момента трехвалентного иона Cr<sup>3+</sup>, равно  $3.85\,\mu_{\rm B}$ . Отметим, что в работе [8] получены более близкие к теоретическому значению величины экспериментального эффективного магнитного момента — 3.59 µ<sub>В</sub> и  $3.71 \,\mu_{\rm B}$  соответственно для TlCrS<sub>2</sub> и TlCrSe<sub>2</sub>. В нашем случае достаточно большое отклонение  $\mu_{\rm eff}$  TlCrS<sub>2</sub> и TlCrSe<sub>2</sub> от теоретического значения, по-видимому, указывает на наличие квазидвумерного магнитного упорядочения в парамагнитной области сильно слоистых ферромагнетиков TlCrS2, TlCrSe2. О низкомерности магнитной структуры TlCrS<sub>2</sub>, TlCrSe<sub>2</sub> делается заключение и в работах [3,4] на основании исследования низкотемпературной теплоемкости (в адиабатическом калориметре) этих ферромагнетиков. На температурной зависимости теплоемкости при постоянном давлении  $C_p(T)$  TlCrS<sub>2</sub>, TlCrSe2 наблюдалась аномалия с явным отклонением от λ-типа.

Отличие магнитных характеристик ( $T_{\rm C}$ ,  $T_p$ ,  $\mu_{\rm eff}$ ) ферромагнетиков TlCrS<sub>2</sub> и TlCrSe<sub>2</sub>, определенных в [8], от

полученных в наших исследованиях связано с различием в технологии синтеза образцов и продолжительности их отжига — 480 ч по нашей технологии и 12 ч в работе [8]. Длительный гомогенизирующий отжиг вносит достаточно существенные коррективы в формирование спиновой системы магнетика со сложным химическим составом.

На рис. 4 представлены температурные зависимости электропроводности,  $\sigma_e(T)$ , и коэффициента термоэдс, S(T), ферромагнетика TlCrS<sub>2</sub>. Как видно из рисунка, температурная зависимость электропроводности TlCrS<sub>2</sub> имеет полупроводниковый ход, а поведение коэффициента термоэдс от температуры свидетельствует о переносе заряда дырками. При этом на зависимости S(T) TlCrS<sub>2</sub> в окрестности температуры  $T \approx 340 \,\mathrm{K}$  наблюдается аномалия, которая связана с делокализацией 3d-электронов и участием их в переносе заряда. Отметим, что температура, при которой происходит делокализация 3*d*-электронов (~ 340 K), превышает температуру Кюри  $(\sim 90 \,\mathrm{K})$  ферромагнетика TlCrS<sub>2</sub> почти в 4 раза, тем самым косвенно подтверждая наши результаты магнитных исследований, указывающие на наличие двумерного магнитного упорядочения в парамагнитной области сильно слоистого ферромагнетика TlCrS<sub>2</sub>.

Температурные зависимости электропроводности,  $\sigma_e(T)$ , и коэффициента термоэдс, S(T), ферромагнетика TlCrSe<sub>2</sub> приведены на рис. 5. Как видно из рисунка, зависимость  $\sigma_e(T)$  в целом имеет полупроводниковый характер. Однако начиная с температуры  $T \approx 125$  К на зависимости  $\sigma_e(T)$  появляется излом с температурной протяженностью ~ 110 К. Отметим, что парамагнитная температура Кюри TlCrSe<sub>2</sub>, определенная нами из магнитных исследований, равна ~ 120 К. По-видимому, излом на зависимости  $\sigma_e(T)$  TlCrSe<sub>2</sub> связан с рассеянием носителей заряда на спиновых флуктуационных неоднородностях [12], возникающих при переходе спиновой системы слоистого ферромагнетика TlCrSe<sub>2</sub> из трехмерно-



**Рис. 4.** Температурные зависимости электропроводности (*a*) и коэффициента термоэдс (*b*) TICrS<sub>2</sub>.



**Рис. 5.** Температурные зависимости электропроводности (*a*) и коэффициента термоэдс (*b*) TICrSe<sub>2</sub>.

го магнитного упорядочения в парамагнитное состояние. Зависимость коэффициента термоэдс от температуры TlCrSe<sub>2</sub> свидетельствует о переносе заряда дырками, при этом положительные численные значения S растут в исследованном температурном интервале. Это обстоятельство свидетельствует о том, что 3*d*-электроны остаются локализованными в парамагнитной области слоистого ферромагнетика TlCrSe<sub>2</sub> до температуры, приблизительно в 3.5 раза превышающей  $T_{\rm C} \approx 105 \, {\rm K}$ , тем самым косвенно подтверждая наши результаты магнитных исследований, указывающие на наличие двумерного магнитного упорядочения в парамагнитной области сильно слоистого ферромагнетика TlCrSe<sub>2</sub>. Из рис. 4, 5 видно, что проводимость в TlCrSe<sub>2</sub> значительно выше (на 2 порядка), чем в TlCrS<sub>2</sub>. Однако флуктуационная область  $(T_p - T_C)$  перехода из магнитоупорядоченного состояния в парамагнитное в TlCrSe<sub>2</sub> уже, чем в TlCrS<sub>2</sub>  $(\sim 15 \text{ и } 25 \text{ K } \text{ соответственно})$ . Этим и объясняется наличие излома на температурной зависимости электропроводности TlCrSe<sub>2</sub> и отсутствие такового в случае TlCrS<sub>2</sub>.

## 5. Заключение

Таким образом, исследования магнитных и электрических свойств слоистых соединений TlCrS<sub>2</sub>, TlCrSe<sub>2</sub> в интервале температур 77–400 К показали, что данные соединения являются ферромагнетиками и обладают полупроводниковым характером электропроводности. Достаточно большое отклонение значения экспериментального эффективного магнитного момента TlCrS<sub>2</sub> ( $3.26 \mu_B$ ) и TlCrSe<sub>2</sub> ( $3.05 \mu_B$ ) от теоретического ( $3.85 \mu_B$ ) объясняется наличием двумерного магнитного упорядочения в парамагнитной области сильно слоистых ферромагнетиков TlCrS<sub>2</sub>, TlCrSe<sub>2</sub>. Обнаружено влияние магнитного фазового перехода на перенос заряда в TlCrS<sub>2</sub>, TlCrSe<sub>2</sub>.

## Список литературы

- К.С. Александров, Н.В. Федоссева, И.П. Спевакова. Магнитные фазовые переходы в галоидных кристаллах (Новосибирск, Наука, 1983) гл. 2, §4, с. 48.
- [2] M.A. Aldzhanov, N.G. Guseinov, G.D. Sultanov, M.D. Nadzafzade. Phys. Status Solidi B, 159, K107 (1990).
- [3] М.А. Алджанов, А.А. Абдуррагимов, С.Г. Султанова, М.Д. Наджафзаде. ФТТ, 49 (2), 309 (2007).
- [4] M. Aljanov, M. Nadjafzade, Z. Seidov, M. Gasumov. Turkish J. Phys., 20 (9), 1071 (1996).
- [5] A. Kutoglu. Naturwissenchaften B, 61 (3), 125 (1974).
- [6] K. Klepp, H. Boller. Monatsh. Chem. B, 110 (5), 1045 (1979).
- [7] M. Zabel, K. Range. Z. Naturforsch. B, 34 (1), 1 (1979).
- [8] M. Rosenberg, A. Knulle, H. Sabrowsky, C. Platte. J. Phys. Chem. Sol., 43 (2), 87 (1982).
- [9] Г.И. Маковецкий, Е.И. Касинский. Неорг. матер., 20 (10), 1752 (1984).
- [10] Z. Seidov, H. Krug von Nidda, A. Loidl, G. Sultanov, E. Kerimova, A. Panfilov. Phys. Rev. B, 65, 014433 (2001).
- [11] К.П. Белов, А.Н. Горяга. ФММ, 2 (3), 441 (1956).
- [12] Г.В. Лосева, С.Г. Овчинников. В сб. Физика магнитных материалов, под ред. В.А. Игнатченко, Г.А. Петраковского (Новосибирск, Наука, 1983) с. 60.

Редактор Л.В. Шаронова

## Influence of magnetic phase transition on charge transport in layered semiconductor ferromagnetics TICrS<sub>2</sub> and TICrSe<sub>2</sub>

R.G. Veliyev, R.Z. Sadikhov, E.M. Kerimova, Yu.G. Asadov, A.I. Jabbarov

Institute of Physics, National Academy of Sciences of Azerbaijan, Az-1143 Baku, Republic of Azerbaijan

**Abstract** TlCrS<sub>2</sub> and TlCrS<sub>2</sub> crystals were synthesized by solid state reaction, examined by *X*-ray, and studied with regard to their magnetic and electric properties. They were found to be of hexagonal syngony with lattice parameters a = 3.538 Å, c = 21.962 Å,  $c/a \approx 6.207$ , z = 3, roentgen density  $\rho_x = 6.705$  g/cm<sup>3</sup> and a = 3.6999 Å, c = 22.6901 Å,  $c/a \approx 6.133$ , z = 3, roentgen density  $\rho_x = 6.209$  g/cm<sup>3</sup> for TlCrS<sub>2</sub> and TlCrSe<sub>2</sub>, respectively. The compounds were found to be semiconductor ferromagnetics over the temperature interval 77–400 K. Rather large deviation of the experimental value of the effective magnetic momentum TlCrS<sub>2</sub> ( $3.26 \mu_B$ ) and TlCrSe<sub>2</sub> ( $3.05 \mu_B$ ) from the theoretical value ( $3.85 \mu_B$ ) was accounted for two-dimensional magnetic ordering in paramagnetic phase. The influence of the magnetic phase transition on charge transport in TlCrS<sub>2</sub> and TlCrSe<sub>2</sub> was revealed.