# Возможность получения пленок $(GaSb)_{1-x}(Si_2)_x$ на кремниевых подложках методом жидкофазной эпитаксии

© Ш.Н. Усмонов<sup>¶</sup>, А.С. Саидов, А.Ю. Лейдерман, Д. Сапаров, К.Т. Холиков

Физико-технический институт им. С.В. Стародубцева Академии наук Республики Узбекистан 100084 Ташкент, Узбекистан

(Получена 12 января 2009 г. Принята к печати 19 января 2009 г.)

Показана возможность выращивания непрерывного твердого раствора  $(GaSb)_{1-x}(Si_2)_x$  (x = 0-1) на кремниевых подложках методом жидкофазной эпитаксии из оловянного раствора—расплава. Исследованы рентгенограммы, спектральные и вольт-амперные характеристики полученных структур p-Si—n-(GaSb) $_{1-x}(Si_2)_x$  в интервале температур 20–200°С. На вольт-амперных характеристиках обнаружен протяженный участок типа  $V \propto \exp(JaW)$ , соответствующий эффекту инжекционного обеднения.

PACS: 73.40.Kp, 78.20.-e, 78.66.Fd, 81.40.Tv

### 1. Введение

Узкозонный полупроводник GaSb является одним из активно исследуемых перспективных материалов для создания различных оптоэлектронных приборов в инфракрасной области спектра (1.0-2.5 мкм), в том числе термофотоэлектрических элементов [1], светодиодов [2], фотодиодов [3] и т.д. Однако GaSb является дорогим полупроводниковым материалом и разработка технологии выращивания пленок антимонида галлия с толщинами 5-10 мкм на дешевой полупроводниковой подложке, какой является монокристаллический кремний, снизила бы стоимость активного элемента на основе GaSb. В связи с этим разработка технологии получения тонких совершенных эпитаксиальных пленок GaSb на кремниевых подложках и исследования их электрических и фотоэлектрических характеристик представляют несомненный интерес.

Эпитаксиальные слои CaSb и его твердых растворов были выращены методом жидкофазной эпитаксии (ЖФЭ) из Ga-, Sb-, Pb- и Bi-расплавов на подложках из GaSb [4], кремния, кварца, сапфира и поликристаллического CdTe [5], а также методами газофазной эпитаксии из металлорганических соединений на подложках из GaSb, GaAs [6] и молекулярно-пучковой эпитаксии [7]. Качество пленок зависело от материала подложки и от приведенной концентрации сурьмы

$$X_{\rm Sb} = \frac{[\rm Sb]}{[\rm Sb + Ga]}$$

в галлиевом растворе-расплаве или газофазной среде. Пленки с зеркальными поверхностями и с наименьшими структурными дефектами выращивались, как и следовало ожидать, на подложках из антимонида галлия, тогда как на подложках GaAs поверхность пленок была более матовая с большей концентрацией структурных дефектов [6]. В работе [5] при ЖФЭ из Ga-растворарасплава на подложках монокристаллического кремния наблюдался островковый рост слоев с металлическими включениями, и поверхность подложки не была полностью покрыта пленкой. Гексагональные микрокристаллики GaSb различной ориентации росли на Ga, и, когда остаточный Ga-слой удалялся с подложки горячей водой, эти микрокристаллики также исчезали.

В данной работе мы сообщаем результаты по выращиванию и исследованию фотоэлектрических характеристик эпитаксиальных слоев GaSb, выращенных на монокристаллических кремниевых пластинках.

### 2. Методика выращивания эпитаксиальных слоев антимонида галлия

Слои GaSb выращивались методом жидкофазной эпитаксии по технологии, описанной в работе [8]. Подложками служили кремниевые шайбы диаметром 20 мм и толщиной ~ 400 мкм, вырезанные из монокристаллического кремния р- и п-типа проводимости с ориентацией (111) и с удельными сопротивлениями 0.5 и 0.01 Ом · см соответственно. Для выращивания слоев нами был использован кварцевый реактор вертикального типа с горизонтально расположенными подложками. Рост эпитаксиального слоя осуществлялся из малого объема оловянного раствора-расплава, ограниченного двумя подложками в атмосфере очищенного палладием водорода, что дало возможность минимизировать количество расходуемого раствора-расплава. Сначала в реакторе создавали вакуум до остаточного давления 10<sup>-2</sup> Па, затем в течение 15 мин через реактор пропускался очищенный водород и после этого начинался процесс нагревания. Когда температура доходила до необходимого значения, система переключалась в автоматический режим. В течение 40 мин производилась гомогенизация раствора-расплава. Потом подложки на графитовом держателе приводились в контакт с растворомрасплавом и после заполнения зазоров между подложками раствором-расплавом поднимались на 1 см выше уровня раствора. Состав раствора-расплава был получен на основе предварительных исследований системы

<sup>¶</sup> E-mail: Sh\_usmonov@rambler.ru



**Рис. 1.** Пространственная конфигурация тетраэдрических связей молекул непрерывного твердого раствора замещения  $(GaSb)_{1-x-y}(Si_2)_x(GaAs)_y$ .

Sn-GaSb-GaAs-Si-Al и литературных данных [9-11]. В начальный момент роста из раствора-расплава происходит кристаллизация Si, поскольку при выбранной температуре эпитаксии раствор является насыщенным по отношению к Si. При более низких температурах создаются условия для выращивания твердого раствора  $(GaSb)_{1-x}(Si_2)_x$ , так как при этих температурах растворрасплав становится пересыщенным кремнием и антимонидом галлия. Образцы выращивались при различных значениях параметров жидкофазной эпитаксии. Варьировались расстояние между верхними и нижними подложками, начало температуры кристаллизации и скорость охлаждения оловянного раствора-расплава. Эпитаксиальные слои с наилучшими параметрами получались при расстоянии между верхними и нижними подложками, равном 1.5 мм, температуре начала кристаллизации оловянного раствора-расплава 650°С и скорости охлаждения подложки 1 град/мин. Выращенные пленки имели *п*-тип проводимости с удельным сопротивлением  $\sim 0.01 \, \text{Ом} \cdot \text{см}$  и толщину  $8 - 10 \, \text{мкм}$ .

Поскольку периоды кристаллических решеток Si (5.41 Å) и GaSb (6.09 Å) отличаются, выращивание GaSb на кремниевых подложках без буферного или без варизонного  $(GaSb)_{1-x}(Si_2)_x$  (x = 0-1) слоя, повидимому, будет очень сложным [12,13]. Поэтому для сглаживания параметров решетки и плавного перхода от Si-подложки к эпитаксиальному слою GaSb мы использовали буферный слой, состоящий из компонентов Si<sub>2</sub>, GaAs и GaSb. Компоненты буферного слоя изовалентны между собой, суммы ковалентных радиусов атомов кремния  $r_{Si} + r_{Si} = 2.34$  Å, арсенида галлия  $r_{Ga} + r_{As} =$ = 2.44 Å и антимонида галлия  $r_{\text{Ga}} + r_{\text{Sb}} = 2.62$  Å близки и их взаимное замещение не сильно деформирует кристаллическую решетку. Подобно тому как отмечалось в [14], для твердого раствора  $(Si_2)_{1-x}(CdS)_x$  эти компоненты, образуя непрерывный твердый раствор замещения [15] в виде  $(GaSb)_{1-x-y}(Si_2)_x(GaAs)_y$ , снимают механическое напряжение в переходной области подложка-пленка, постепенно уменьшается отрицательная роль несоответствия параметров решетки и происходит плавный переход от Si к GaSb. Следует отметить, что период кристаллической решетки GaAs (5.65 Å) имеет промежуточное значение между Si и GaSb. Переходная область представляет собой варизонный слой с изменяющимся составом. На рис. 1 представлена пространственная конфигурация тетраэдрических связей молекул переходного слоя, состоящая из Si, GaAs и GaSb, который охватывает связи 3 Si–As, 1 Ga–As, 2 Ga–Si и 4 Ga–Sb.

Исследования химического состава поверхности скола выращенных эпитаксиальных И слоев  $(GaSb)_{1-x}(Si_2)_x$  были проведены на рентгеновском микроанализаторе "Jeol" JSM 5910 LV-Japan. Результаты рентгеновского микроанализа и растровых картин по сколу и по поверхности показали, что эпитаксиальные слои не содержат металлических включений, распределение компонентов по поверхности эпитаксиального слоя однородное и в объеме твердого раствора  $(GaSb)_{1-x}(Si_2)_x$  изменяется в пределах x = 0-1. Вся поверхность подложки была покрыта прочно соединенной с ней пленкой, а поверхность слоя была зеркальная. Как видно из рис. 2, а, эпитаксиальный слой является сплошным. Рис. 2, b свидетельствует об образовании подслоя



**Рис. 2.** Растровые картины скола эпитаксиального слоя  $(GaSb)_{1-x}(Si_2)_x$ , полученные методами: a — вторичной электронной эмиссии (SEI), b —  $Si_{K_a}$ , c —  $Ga_{K_a}$ , d —  $Sb_{K_a}$ .

твердого раствора  $(GaSb)_{1-x}(Si_2)_x$ , обеспечивающего достаточную адгезию с Si-подложкой, что является предметом дальнейшего исследования. Ga (рис. 2, *c*) и Sb (рис. 2, *d*) содержатся по всей толщине слоя.

## 3. Фотоэлектрические измерения параметров эпитаксиального слоя

# 3.1. Фоточувствительность структур $p-Si-n-(GaSb)_{1-x}(Si_2)_x$

В результате эпитаксии были получены изотипные  $(n-Si-n-(GaSb)_{1-x}(Si_2)_x)$ и неизотипные  $(p-Si-n-(GaSb)_{1-x}(Si_2)_x)$  переходы с буферным слоем, состоящим из непрерывного твердого раствора замещения  $(GaSb)_{1-x-y}(Si_2)_x(GaAs)_y$ . Состав переходного слоя меняется по толщине пленки, ближе к подложке преобладает Si, и по мере роста пленки в кристаллической решетке начинают увеличиваться молярные доли GaAs и GaSb. Для выяснения роли компонентов буферного слоя экспериментально определили спектральную зависимость фоточувствительности структур [16].

Поскольку состав буферного слоя меняется по толщине пленки, мы сделали косой шлиф эпитаксиального слоя под углом 3° и снимали спектральную фоточувствительность структур, подавая световой зонд на различные участки по толщине слоя (по косому шлифу). Эти зависимости приведены на рис. 3. Спектр I на рис. 3 соответствует случаю, когда излучение подавалось на близлежащие к подложке участки пленки, где основной компонентой является Si. Спектр 2 — когда излучение подавалось в среднюю область, где толщина эпитаксиальной пленки составляла ~ 5 мкм, а спектр 3 — на верхние слои пленки, где основной компонентой является GaSb.



**Рис. 3.** Спектральная фоточувствительность структур p-Si-n-(GaSb)<sub>1-x-y</sub>(Si<sub>2</sub>)<sub>x</sub>(GaAs)<sub>y</sub> при попадании света на различные участки пленки при 300 К: 1 — близлежащий к подложке (с преобладанием Si), 2 — средняя часть пленки, 3 — верхние слои пленки (с преобладанием GaSb).



**Рис. 4.** Спектральная фоточувствительность структур p-Si-n-(GaSb)<sub>1-x-y</sub>(Si<sub>2</sub>)<sub>x</sub>(GaAs)<sub>y</sub>-n-(GaSb) при 300 K.

Видно, что в спектральных зависимостях 2, 3 на рис. З присутствует пик фоточувствительности в коротковолновой области спектра при значениях энергии фотонов  $E_{\rm ph} \approx 1.3$  эВ. Приближенная оценка химического состава поверхности и скола выращенных эпитаксиальных слоев  $(GaSb)_{1-x-y}(Si_2)_x(GaAs)_y$  на рентгеновском микроанализаторе показала, что молярное содержание GaAs и Si в слое толщиной ~ 5 мкм составляет 0.5 и 7.4% соответственно. GaAs при таких содержаниях представляет собой изовалентную примесь в твердом растворе  $(GaSb)_{0.926}(Si_2)_{0.074}$ . По-видимому, подъем чувствительности при  $E_{\rm ph} \approx 1.3\,{
m sB}$  обусловлен примесью GaAs. Известно, что ширина запрещенной зоны GaAs  $E_{g,GaAs} = 1.44$  эВ больше, чем  $E_{g,GaSb} = 0.67$  эВ и  $E_{g,Si} = 1.1$  эВ. Ковалентная связь между атомами молекул Ga-As прочнее, чем связь Ga-Sb и Si-Si. Однако, когда молекула GaAs замещает GaSb в тетраэдрической решетке антимонида галлия (см. рис. 1), связь Ga-As ослабляется под влиянием окружающих ее молекул GaSb до значения ~ 1.3 эВ, что обусловливает возникновение примесного уровня GaAs, расположенного в валентной зоне твердого раствора  $(GaSb)_{1-x}(Si_2)_x$ . Фоточувствительность верхнего слоя структуры, относящегося к GaSb, начинается с энергией фотонов  $E_{\rm ph} \approx 1.0$  эВ (кривая 3 на рис. 3); это связано с тонкостью верхнего слоя GaSb.

Для улучшения кристаллического совершенства и полноты поглощения на буферном слое в отдельном процессе был выращен дополнительный эпитаксиальный слой GaSb *n*-типа проводимости с толщиной 10 мкм. На рис. 4 приведена спектральная зависимость фоточувствительности структуры *p*-Si-*n*-(GaSb)<sub>1-x-y</sub>(Si<sub>2</sub>)<sub>x</sub>(GaAs)<sub>y</sub> – *n*-GaSb при 300 К. Как видно из рисунка, фоточувствительность охватывает диапазон энергии фотонов от 0.62 до 1.15 эВ. Это свидетельствует о фотогенерации электронно-дырочных пар в слое GaSb, которые, достигая разделяющего поля *p*-*n*-перехода, создают фототок. Отсутствие фотоотклика в коротковолновой области спектра с энергией фотонов  $h\nu \ge 1.2$  эВ, по-видимому, связано с тем, что носители тока, фотогенерированные в приповерхностной области структуры коротковолновыми фотонами, не достигают разделяющего поля p-n-перехода, глубина залегания которого составляет  $\sim 18$  мкм.

### 3.2. Вольт-амперная характеристика структур *p*-Si-*n*-(GaSb)<sub>1-x</sub>(Si<sub>2</sub>)<sub>x</sub>

Для исследования вольт-амперной характеристики (ВАХ) структуры p-Si-n-(GaSb)<sub>1-x</sub>(Si<sub>2</sub>)<sub>x</sub> (x = 0-1) методом вакуумного напыления создавались омические контакты — сплошные с тыльной стороны и четырехугольные с площадью 4 мм<sup>2</sup> из серебра со стороны эпитаксиального слоя. ВАХ в прямом направлении, представленные на рис. 5, измерялись в температурном диапазоне 20–200°С.

Начальный участок ВАХ хорошо описывается известной зависимостью Стафеева [17], полученной им для p-n-диодных структур с омическим тыловым контактом:

$$J = J_0 \exp\left(\frac{qV}{ckT}\right) \tag{1}$$

и уточненной в [18] для p-i-n-структур. Показатель c в экспоненте, вычисленный из ВАХ, имеет значение  $\sim 8.5$  и описывается выражением

$$c = \frac{2b + \operatorname{ch}\left(\frac{W}{L_p}\right) + 1}{b+1},\tag{2}$$

где  $b = \mu_n / \mu_p$  — отношение подвижностей электронов и дырок, W — толщина базовой области, L<sub>p</sub> — диффузионная длина неосновных носителей. Используя для W = 10 мкм, для b = 6 (что соответствует данным для GaSb [19,20]), из (2) находим значение  $L_p = 2.2$  мкм. Подвижность основных носителей, найденная по эффекту Холла, имела при комнатной температуре значение  $\mu_n = 170 \,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$ , что позволяет определить подвижность неосновных носителей  $\mu_p = \mu_n/b$ , которая оказалась равной 28.3 см<sup>2</sup>/(В · с). Это в свою очередь позволило определить время жизни неосновных носителей из соотношения  $au_p = L_p^2/D_p$ , которое оказалось равным 2.7 · 10<sup>-7</sup> с. С другой стороны, время, измеренное по релаксации фотопроводимости  $\tau_{\rm ph} \approx 3.7 \cdot 10^{-7}$  с, т.е. находится в хорошем согласии со значением  $\tau_p$ , вычисленным из показателя с экспоненциальной зависимости (1).

Последующий участок ВАХ хорошо описывается зависимостью

$$V = V_0 \exp(JaW), \tag{3}$$

впервые теоретически предсказанной в [21] и затем наблюдавшейся экспериментально на многих полупроводниковых материалах и структурах. В частности, недавно подобная зависимость наблюдалась на гетероструктурах CdSe-CdTe [22] и непрерывных твердых растворах  $(Si_2)_{1-x}(CdS)_x$  [23]. Известно (см. [18,21,24]), что такая



Рис. 5. Вольт-амперные характеристики структур *p*-Si-*n*-(GaSb)<sub>1-x</sub>(Si<sub>2</sub>)<sub>x</sub> (x = 0-1) в прямом направлении (*a*) и их сублинейные участки (*b*) при температурах, °С: *I* — 20, 2 — 50, 3 — 80, 4 — 110, 5 — 140, 6 — 170, 7 — 200.

ВАХ (3) реализуется в полупроводниковых структурах, содержащих высокие концентрации глубоких примесей, в условиях встречных направлений амбиполярной диффузии и дрейфа, причем в этом случае параметр *a* описывается простым выражением:

$$a = \frac{1}{2qD_pN},\tag{4}$$

где *N* — концентрация глубоких примесей.

Для реализации этого режима, получившего впоследствии название эффекта инжекционного обеднения (см. [18,21,24]), необходимо соблюдение условия JaW > 2. В нашем случае при комнатной температуре JaW > 3.1, т.е. это требование выполняется.

Параметр *а* легко вычислить из соответствующих сублинейных участков ВАХ рис. 5:

$$a = \frac{\ln\left(\frac{V_2}{V_1}\right)S}{(I_2 - I_1)W},\tag{5}$$

где S — площадь поперечного сечения;  $(I_1, V_1)$ ,  $(I_2, V_2)$  — точки, выбранные на экспериментальных кривых участков инжекционного обеднения.

| T, °C   | 20               | 50               | 80                | 110               | 140               | 170              | 200              |
|---------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|
| а, см/А | $9.90\cdot 10^4$ | $9.03\cdot 10^4$ | $7.14 \cdot 10^4$ | $5.11 \cdot 10^4$ | $5.33 \cdot 10^4$ | $2.98\cdot 10^4$ | $2.03\cdot 10^4$ |

Значения параметра *а* в зависимости от температуры

Поскольку мы располагаем набором ВАХ, соответствующих различным температурам, мы можем по формуле (5) вычислить значения параметра a при различных температурах, которые приведены в таблице.

Знание величины а позволяет из формулы (4) определить концентрацию глубоких примесей, ответственных за появление сублинейного участка (3), которая при комнатной температуре составляет  $N = 4.3 \cdot 10^{13} \, {\rm cm}^{-3}$ , что, по-видимому, соответствует акцепторному уровню, создаваемому оловом [25]. Поскольку в исследуемом диапазоне температур эта концентрация вряд ли может заметно измениться, можно предположить, что изменения a(T) обусловлены изменением подвижности неосновных носителей с температурой. Используя данные таблицы, мы нашли зависимость подвижности от температуры, которая представлена на рис. 6. Из этого рисунка видно, что в интервале от 20 до 110°C подвижность медленно возрастает с ростом температуры, а затем начинается спад, т.е. в этом интервале мы имеем достаточно обычную зависимость  $\mu(T)$ (см., например, [26]). Далее в интервале температуры от 140 до 200°C начинается область нового, более резкого роста  $\mu(T)$ . Подобная зависимость для *p*-GaSb впервые наблюдалась в [19,27] в области температур 100-400°С. По-видимому, это связано с увеличением роли рассеяния носителей заряда на ионизованных примесях.



**Рис. 6.** Зависимость подвижности неосновных носителей тока эпитаксиального слоя непрерывного твердого раствора n-(GaSb)<sub>1-x</sub>(Si<sub>2</sub>)<sub>x</sub> (x = 0-1) от температуры, построенная по данным таблицы.

### 4. Заключение

Таким образом, показана принципиальная возможность выращивания методом жидкофазной эпитаксии пленок GaSb на кремниевой подложке через буферный слой (GaSb) $_{1-x-y}$ (Si<sub>2</sub>) $_x$ (GaAs) $_y$ . Показано, что промежуточная переходная область обладает рядом интересных свойств. Выращенные эпитаксиальные слои могут быть использованы как подложечный материал для дальнейшего осаждения на них полупроводниковых пленок на основе антимонида галлия.

#### Список литературы

- В.П. Хвостиков, О.А. Хвостикова, П.Ю. Газарян, М.З. Шварц, В.Д. Румянцев, В.М. Андреев. ФТП, 38(8), 988 (2004).
- [2] Т.Н. Данилова, Б.Е. Журтанов, А.Н. Именков, Ю.П. Яковлев. ФТП, 39(11), 1231 (2005).
- [3] А.П. Астахова, Б.Е. Журтанов, А.Н. Именков, М.П. Михайлова, М.А. Сиповская, Н.Д. Стоянов, Ю.П. Яковлев. Письма ЖТФ, 33(19), 8 (2007).
- [4] Т.И. Воронина, Б.Е. Джуртанов, Т.С. Лагунова, М.А. Силовская, В.В. Шерстнев, Ю.П. Яковлев. ФТП, 32(3), 278 (1998).
- [5] C.M. Ruiz, J.L. Plaza, V. Berm'udez, E. Di'eguez. J. Phys.: Condens. Matter, 14, 12755 (2002).
- [6] Р.В. Лёвин, А.С. Власов, Н.В. Зотова, Б.А. Матвеев, Б.В. Пушный, В.М. Андреев. ФТП, 40(12), 1427 (2006).
- [7] C.A. Wang, D.A. Shiau, A. Lin. J. Cryst. Growth, 261, 385 (2004).
- [8] A.S. Saidov, A.Sh. Razzakov, V.A. Risaeva, E.A. Koschanov. Mater. Chem. Phys., 68, 1 (2001).
- [9] В.М. Андреев, Л.М. Долгинов, Д.Н. Третьяков. Жидкостная эпитаксия в технологии полупроводниковых приборов (М., Сов. радио, 1975).
- [10] М. Хансен, К. Андерко. Структуры двойных сплавов (М., Металлургиздат, 1962) т. II. [Пер. с англ.: М. Hansen, K. Anderko. Constitution of binary alloys (Toronto–London– N.Y., 1985) v. II].
- [11] А.С. Саидов, М.С. Саидов, Э.А. Кошчанов. Жидкостная эпитаксия компенсированных слоев арсенида галлия и твердых растворов на его основе (Ташкент, Фан, 1986).
- [12] Ж.И. Алфёров. Наука и общество (СПб., Наука, 2005).
- [13] А.С. Сандов. Матер. 3-й Межд. конф., посвященной 15-летию независимости Узбекистана "Фундаментальные и прикладные вопросы физики" (Ташкент, 2006) с. 279.
- [14] А.С. Саидов, Ш.Н. Усмонов, К.Т. Холиков, Д. Сапаров. Письма ЖТФ, **33**(20), 5 (2007).
- [15] М.С. Саидов. Гелиотехника, 5-6, 57 (1997).

Физика и техника полупроводников, 2009, том 43, вып. 8

- [16] А.С. Саидов, М.С. Саидов, Ш.Н. Усмонов, К.Т. Холиков, Д. Сапаров. Гелиотехника, 3, 85 (2007).
- [17] В.И. Стафеев. ЖТФ, **28**(8), 1631 (1958).
- [18] Э.И. Адирович, П.М. Карагеоргий-Алкалаев, А.Ю. Лейдерман. Токи двойной инжекции в полупроводниках (М., Сов. радио, 1978).
- [19] О. Моделунг. Физика полупроводниковых соединений элементов III и V групп (М., Мир, 1967). [Пер. с англ.: О. Modelung. Physics of III-V Compounds (N.Y.-London-Sydney, 1964)].
- [20] А.С. Саидов, В.М. Тучкевич, Ю.М. Шмарцев. ФТП, 2(6), 891 (1968).
- [21] A.Yu. Leiderman, P.M. Karageorgy–Alkalaev. Sol. St. Commun., 27, 339 (1978).
- [22] Х.Х. Исмоилов, А.М. Абдугафуров, Ш.А. Мирсагатов, А.Ю. Лейдерман. ФТТ, 50(11), 1953 (2008).
- [23] А.С. Саидов, А.Ю. Лейдерман, Ш.Н. Усмонов, К.Т. Холиков. ФТП, 43(4), 436 (2009).
- [24] П.М. Карагеоргий-Алкалаев, А.Ю. Лейдерман. Фоточувствительность полупроводниковых структур с глубокими примесями (Ташкент, Фан, 1981).
- [25] С. Зи. Физика полупроводниковых приборов (М., Мир, 1984) т. І. [Пер. с англ.: S.M. Sze. Physics of Semiconductor Devices (N.Y.-Chichester-Brisbane-Toronto-Singapore, 1981)].
- [26] К.В. Шалимов. Физика полупроводников (М., Энергоиздат, 1985).
- [27] H. Welker. Physics, 20, 893 (1954).

Редактор Т.А. Полянская

# Possibility of growing of $(GaSb)_{1-x}(Si_2)_x$ films on silicon substrates by liquid-phase epitaxy method

Sh.N. Usmonov, A.S. Saidov, A.Yu. Leyderman, D. Saparov, K.T. Kholikov

Physicotechnical Institute, Academy of Sciences of the Republic of Usbekistan, 100084 Tashkent, Uzbekistan

**Abstract** It has been shown possibility of growing of continuous solid solution  $(GaSb)_{1-x}(Si_2)_x$  (x = 0-1) on silicon substrates by liquid-phase epitaxy method from tin solution-melting. It has been researched radiographs, spectral characteristics and current-voltage characteristics of obtained p-Si-n-(GaSb)<sub>1-x</sub>(Si<sub>2</sub>)<sub>x</sub> structures at temperature interval 20–200°C. On the current-voltage characteristics it has been observed extended part of type  $V \propto \exp(JaW)$  related with injection depletion effect.