# Энергонезависимая память, основанная на кремниевых нанокластерах

#### © Ю.Н. Новиков¶

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

(Получена 4 сентября 2008 г. Принята к печати 16 января 2009 г.)

Моделировались характеристики записи/стирания и хранения заряда в элементе памяти для электрически перепрограммируемого постоянного запоминающего устройства на основе структуры кремний/оксид\_1/оксид\_2/кремниевая\_точка/оксид/полупроводник. В качестве блокирующего и второго туннельного слоя использовался альтернативный диэлектрик с высокой диэлектрической проницаемостью (ZrO<sub>2</sub>). В качестве первого туннельного оксида использовался тонкий слой из диэлектрика с низким значением диэлектрической проницаемости (SiO<sub>2</sub>). Благодаря такой конфигурации можно значительно улучшить инжекционные характеристики туннельного SiO<sub>2</sub> в режиме записи/стирания и, следовательно, повысить быстродействие, увеличить инжектируемый заряд. В то же время использование достаточно толстых блокирующего и второго туннельного слоев позволяет удержать инжектированный заряд длительное время. Программирование импульсом с амплитудой  $\pm 11$  В и длительностью 10 мс позволяет получить через 10 лет окно памяти ~ 6 В.

PACS: 77.55.+f, 77.84.Bw, 78.66.Db, 78.66.Nk, 78.67.Hc, 85.90.+h

#### 1. Введение

В настоящее время являются перспективными электрически перепрограммируемые постоянные запоминающие устройства (ЭППЗУ), основанные на проводящих нанокластерах, встроенных в диэлектрик [1-4]. В качестве запоминающей среды в таких ЭППЗУ выступают наноразмерные (1–10 нм) полупроводниковые (Si, Ge, Si<sub>v</sub>Ge<sub>v</sub>) или металлические кластеры. Нанокластеры изолированы друг от друга вдоль границы раздела кремний/диэлектрик, что приводит к отсутствию проводимости в этом направлении. Известно, что основным недостатком ЭППЗУ с плавающим затвором является как раз проводимость вдоль границы раздела кремний/диэлектрик. При наличии пробоя (поры) в туннельном оксиде весь заряд из "плавающего" затвора стекает в подложку и информация теряется. В то же время стекание заряда из одного кластера в матрице кластеров ЭППЗУ не приводит к полной потере информации. Другой недостаток ЭППЗУ с плавающим затвором это емкостная связь между плавающими затворами соседних ближайших элементов памяти, которая становится существенной при масштабировании (уменьшении размеров). Этот недостаток менее значителен в ЭППЗУ, основанном на матрице кластеров.

В работах [5,6] был предложен элемент ЭППЗУ, основанный на структуре кремний/оксид/точка(Si-кластер)/оксид/полупроводник (КОТОП — рис. 1, *a*), в котором в качестве блокирующего оксида был использован альтернативный диэлектрик с высокой диэлектрической проницаемостью (high-*к* dielectric). Было показано, что использование альтернативных диэлектриков в качестве блокирующего слоя в ЭППЗУ ведет к ряду преимуществ по сравнению с ЭППЗУ, в которых в качестве блокирующего диэлектрика используется SiO<sub>2</sub> (диэлектрическая проницаемость  $\varepsilon \approx 3.9$ ), а именно: усиление электрического поля в туннельном оксиде, возрастание инжекционного тока, снижение паразитной инжекции через блокирующий слой. Основной недостаток предложенной КОТОП структуры — это использование достаточно толстого туннельного слоя SiO<sub>2</sub> (5.0 нм), толщина которого обеспечивает длительное хранение заряда в Si-кластере ( $\sim 10$  лет при  $85^{\circ}$ C). Предложенная КОТОП структура не позволяет накапливать положительный заряд в Si-кластере по причине большого дырочного барьера на границе Si/SiO<sub>2</sub>. Как следствие, использование толстого туннельного слоя SiO<sub>2</sub> приводило в режиме записи/стирания ( $\pm 11$  B) [5] к небольшому окну памяти ~ 3 В (разница пороговых напряжений элемента памяти в состояниях логический "0" и "1"). Отметим, что, если принять во внимание отношение площади, занимаемой кластерами под затвором, к площади самого затвора, окно памяти будет еще меньше. Для устранения этого недостатка в настоящей работе предложена другая структура, именно кремний/оксид\_1/оксид\_2/кремниевая точка(кластер)/оксид/полупроводник (КООТОП — рис. 1, *b*), в которой в качестве туннельного оксида используется не один слой  $SiO_2$ , а два слоя: один из них  $SiO_2$ , а второй слой — из диэлектрика с высокой диэлектрической проницаемостью. Блокирующий слой в КООТОП структуре, так же как и в КОТОП структуре, выполнен из диэлектрика с высокой диэлектрической проницаемостью. В качестве диэлектрика с высокой диэлектрической проницаемостью был взят  $ZrO_2$  ( $\varepsilon \approx 25$ ), т.е. такой же, как в работах [5,6]. Цель данной работы — показать преимущества использования дополнительного к туннельному SiO<sub>2</sub> слоя диэлектрика с высокой диэлектрической проницаемостью (на примере ZrO<sub>2</sub>) в ЭППЗУ по сравнению

<sup>¶</sup> E-mail: nov@isp.nsc.ru



**Рис. 1.** Элементы памяти, основанные на локализации электронов в кремниевом кластере. *а* — КОТОП структура из [5], в которой блокирующий слой выполнен из ZrO<sub>2</sub>; достаточно толстый туннельный слой выполнен из SiO<sub>2</sub>. *b* — КООТОП структура с блокирующим и дополнительным туннельными слоями, выполненными из ZrO<sub>2</sub>; достаточно тонкий туннельный слой выполнен из SiO<sub>2</sub>.

с рассмотренным ранее ЭППЗУ, в котором в качестве туннельного слоя использован только SiO<sub>2</sub> [5,6].

# 2. Энергетическая диаграмма КООТОП структуры

На рис. 2 представлена энергетическая диаграмма КООТОП структуры без приложенного напряжения (a), при отрицательном (b) и положительном (c) потенциалах на поликремниевом затворе (poly-Si). Высота энергетического барьера для электронов (e) и дырок (h) на границе Si/SiO<sub>2</sub> составляет 3.1 и 3.8 эВ соответственно [7,8]. Для электронных и дырочных барьеров на границе Si/ZrO<sub>2</sub> брались величины такие же, как и в работе [5,6], т. е. 2.0 и 2.4 эВ соответственно. В качестве контрольного



**Рис. 2.** Энергетическая диаграмма КООТОП структуры с блокирующим и вторым туннельным диэлектриком из  $ZrO_2$ : a — без приложенного напряжения, b — при отрицательном потенциале (-V) на затворе, c — при положительном потенциале (+V) на затворе. a — энергии приведены в эВ. Для простоты на рисунке не показано падение напряжения на кремниевой подложке и кремниевом затворе.

параметра, так же как и в [5,6], который можно измерять в запоминающей структуре, использовалось напряжение плоских зон  $U_{\rm FB}$ .

### 3. Теоретическая модель

В настоящей работе за основу была взята численная модель из работы [5]. Использовался Si-кластер, в котором Si — собственный полупроводник. Концентрация акцепторов в кремниевой подложке составляла  $2 \cdot 10^{14} \, \text{см}^{-3}$ , концентрация акцепторов в поликремниевом затворе 2 · 10<sup>14</sup> см<sup>-3</sup>. Размер кремниевых кластеров был фиксирован и во всех случаях составлял 5.0 нм. Квантованием электронного и дырочного спектров, а также эффектом кулоновской блокады в Si-кластерах пренебрегалось. Для определения оптимальной геометрии КООТОП структуры толщина первого туннельного слоя SiO<sub>2</sub> (1T на рис. 2, a) варьировалась в диапазоне 1.5-5.0 нм, толщины второго туннельного и блокирующего слоев из  $ZrO_2$  (B2T на рис. 2, *a*) изменялись в диапазоне 3.0-20 нм. В работе использовались равные толщины второго туннельного и блокирующего слоев. В данной работе, так же как и в [5], использовалась одномерная двухзонная модель, учитывающая инжекцию электронов из отрицательно смещенного и инжекцию дырок из положительно смещенного электрода (рис. 2).

Для расчета туннельного тока использовалась модифицированная формула Фаулера–Нордгейма. Для одного слоя диэлектрика ток рассчитывался как

$$j = AE_1^2 P_1. \tag{1}$$

Здесь  $A = 2.2 \cdot 10^{-6} \text{ A/B}^2$ ,  $E_1$  — электрическое поле в диэлектрике,  $P_1$  — вероятность туннелирования через слой диэлектрика.

Для электрических полей и толщины диэлектрика  $d_1$  таких, что  $E_1d_1 > \Phi_1$ , где  $\Phi_1$  — величина энергетического барьера на границе Si/диэлектрик, туннелирование осуществляется через треугольный барьер; в этом случае

$$P_1 = \exp\left\{-\frac{4}{3} \frac{\sqrt{2m^*}}{\hbar e} \frac{\Phi_1^{3/2}}{E_1}\right\},\tag{2}$$

где e — заряд электрона. Величины туннельной эффективной массы  $m^*$  для электронов и дырок в SiO<sub>2</sub> и ZrO<sub>2</sub> принимались равными  $0.5m_0$  [7].

В случае трапецеидального барьера  $(E_1d_1 < \Phi_1)$  для расчета туннельного тока использовалась формула

$$P_1 = \exp\left\{-\frac{4}{3} \frac{\sqrt{2m^*}}{\hbar e} \frac{\left[\Phi_1^{3/2} - (\Phi_1 - E_1 d_1)^{3/2}\right]}{E_1}\right\}.$$
 (3)

Туннельный ток через два слоя разнородных диэлектриков рассчитывался по формуле

$$j = A E_1^2 P_1 P_2. (4)$$

Здесь *P*<sub>2</sub> — вероятность туннелирования через второй слой диэлектрика, которая определялась своим набором

параметров:  $E_2$ ,  $d_2$ ,  $\Phi_2$ . Расчет вероятности туннелирования для треугольного и трапецеидального барьеров осуществлялся по формулам, аналогичным (2), (3). Электрические поля  $E_1$ ,  $E_2$  в туннельных слоях, представляющих собой два диэлектрика, связаны соотношением  $E_1\varepsilon_1 = E_2\varepsilon_2$ , где  $\varepsilon_1$  и  $\varepsilon_2$  — соответствующие диэлектрические проницаемости диэлектриков.

# 4. Характеристики записи/стирания и хранения КООТОП структуры

Для определения оптимальной толщины 1T  $(D_{1T})$  было рассчитано окно памяти в режимах записи/стирания и хранения КООТОП структуры с толщиной В2Т 8.0 нм [5] (рис. 3). Для записи структуры использовались импульсы +11 В (данные 1), для стирания -11 В (данные 2). Длительность записывающего и стирающего импульсов, используемая в данной работе, была такая же, как в [5], — 10 мс. На рисунке также приведено окно памяти в режиме хранения, т.е. его значения через 10 лет (retention — закороченное состояние). Для тонкого 1Т, менее 1.0 нм, окно памяти небольшое по величине, так как инжекция заряда через туннельный слой в Si-кластер из подложки примерно равна инжекции заряда через блокирующий слой из Si-кластера в поликремниевый затвор. Для толщины 1Т в диапазоне 1.5-2.0 нм окно памяти в режиме записи/стирания достигает макси-



**Рис. 3.** Зависимость окна памяти в режимах записи/стирания и хранения КООТОП структуры от толщины первого туннельного слоя SiO<sub>2</sub>  $D_{1T}$ . В качестве блокирующего и второго туннельного слоев использовался ZrO<sub>2</sub> толщиной 8.0 нм. Напряжение импульса записи/стирания  $\pm 11$  В, длительность 10 мс. Показано накопление отрицательного заряда (*I*) и положительного (*2*). Показано также окно памяти через 10 лет (retention).

Физика и техника полупроводников, 2009, том 43, вып. 8



**Рис. 4.** Зависимость окна памяти в режимах записи/стирания и хранения КООТОП структуры от толщины блокирующего и второго туннельного слоев B2T ( $ZrO_2$ ). Толщина туннельного слоя SiO<sub>2</sub> 1.5 нм. Напряжение импульса записи/стирания  $\pm 11$  В, длительность 10 мс. Показано накопление отрицательного заряда (1) и положительного (2). Показано также окно памяти через 10 лет (retention).

мального значения  $\sim 7.0$  В. Эта величина более чем в 2 раза превышает значение окна памяти, полученного в работе [5]. При этих же значениях 1Т в режиме хранения окно памяти максимально и составляет  $\sim 6.5$  В. С увеличением толщины 1Т (более 2.0 нм) окно памяти в режимах записи/стирания и хранения уменьшается, так как уменьшается прозрачность туннельного барьера. В качестве оптимальной величины для толщины 1Т было выбрано значение 1.5 нм.

Для определения оптимальной толщины B2T (D<sub>B2T</sub>) рассчитывалась зависимость окна памяти КООТОП структуры от толщины в режимах записи/стирания (±11 В) и хранения (рис. 4). Для 1T использовалась толщина 1.5 нм. Толщина В2Т изменялась в диапазоне 3.0-20 нм. При толщинах В2Т между 3.0 и 7.0 нм в режиме записи/хранения наблюдалось увеличение окна памяти от 5.4 до 7 В. Для этого диапазона толщин В2Т характерна паразитная инжекция через блокирующий диэлектрик. Максимальное окно памяти 7 В соответствует толщинам В2Т, при которых достигается оптимальное соотношение между инжекцией заряда через двойной туннельный слой в Si-кластер и паразитной инжекцией через блокирующий слой из Si-кластера в поликремниевый затвор. Дальнейшее увеличение толщин В2Т ведет к уменьшению окна памяти. Уменьшение окна памяти с увеличением толщины В2Т связано с уменьшением падения напряжения на 1T и, следовательно, с подавлением инжекционного тока в Si-кластер. В режиме хранения для толщин В2Т менее 5.0 нм окно памяти близко к нулю. Это связано со стеканием (туннелированием) заряда через достаточно тонкие туннельный и блокирующий слои в подложку и поликремниевый затвор [5]. Оптимальные толщины В2Т в режимах записи/стирания и хранения составляют ~ 8.0 нм.



**Рис. 5.** Зависимость окна памяти в режимах записи/стирания и хранения КООТОП структуры от напряжения перепрограммирования  $U_{w/e}$ . Толщина первого туннельного слоя SiO<sub>2</sub> 1.5 нм. Толщина второго туннельного и блокирующего слоев (ZrO<sub>2</sub>) 8.0 нм.



**Рис. 6.** Сравнение характеристик записи/стирания и хранения КОТОП (1) и КООТОП (2) структур. Геометрия КОТОП структуры [5]: толщина туннельного SiO<sub>2</sub> 5.0 нм, толщина блокирующего ZrO<sub>2</sub> 8.0 нм. Геометрия КООТОП структуры: толщина туннельного SiO<sub>2</sub> 1.5 нм, толщина дополнительного туннельного слоя ZrO<sub>2</sub> 8.0 нм, толщина блокирующего слоя ZrO<sub>2</sub> 8.0 нм. Толщина блокирующего слоя ZrO<sub>2</sub> 8.0 нм. толщина блокирующего слоя ZrO<sub>2</sub> 8.0 нм, толщина блокирующего слоя ZrO<sub>2</sub> 8.0 нм, толщина блокирующего слоя ZrO<sub>2</sub> 8.0 нм. Толщина блокирующего слоя ZrO<sub>2</sub> 8.0 нм. Напряжение импульса записи/стирания  $\pm 11$  В, длительность 10 мс.

На рис. 5 представлена зависимость окна памяти в режимах записи/стирания и хранения КООТОП структуры от напряжения перепрограммирования  $U_{w/e}$ . Для В2Т взята толщина 8.0 нм, для 1Т — 1.5 нм. Из рисунка видно, что ЭППЗУ на основе КООТОП структур остается работоспособной при снижении напряжения записи/стирания до 8 В. Окно памяти в режиме перепрограммирования ( $\pm 8$  В) и хранения соответствует ~ 2 В. Отметим, что туннелирование носителей преимущественно через туннельный SiO<sub>2</sub> в режиме записи/стирания будет происходить, когда падение напряжения на туннельном SiO<sub>2</sub> ( $E_{SiO_2}D_{SiO_2}$ ) будет превосходить высоту энергетического барьера для носителей на границе Si/ZrO<sub>2</sub> (здесь  $E_{SiO_2}$  — величина электрического поля в SiO<sub>2</sub>,  $D_{SiO_2}$  — толщина слоя SiO<sub>2</sub>).

На рис. 6 приведено сравнение характеристик записи/стирания и хранения для КОТОП (1) и КООТОП (2) структур. Для записи использовался импульс +11 В, для стирания -11 В. Для КОТОП структуры взята оптимальная геометрия, полученная в работе [5]: толщина туннельного SiO<sub>2</sub> 5.0 нм, толщина блокирующего слоя из ZrO<sub>2</sub> 8.0 нм. Для КООТОП структуры использовалась следующая геометрия: толщина 1Т 1.5 нм, толщины B2T 8.0 нм. Из рис. 6 видны явные преимущества в использовании двухслойного туннельного диэлектрика (SiO<sub>2</sub> и ZrO<sub>2</sub>) по сравнению с однослойным, выполненным из SiO<sub>2</sub>, а именно: окно памяти в режимах записи/стирания и хранения превышает более чем в 2 раза. Быстродействие в режиме записи/стирания превышается на 2–3 порядка.

#### 5. Обсуждение результатов

В работе [9] показано, что применение в микроэлектронике многослойных диэлектриков позволяет на несколько порядков изменять туннельный ток Фаулера-Нордгейма. Использование составного туннельного слоя рассмотрено в работе [10]. Рассматривалась ЭППЗУ со структурой кремний/(туннельный слой)/(нитрид кремния//(блокирующий слой)/затвор. Блокирующий слой был выполнен из SiO<sub>2</sub> толщиной 9 нм. Туннельный слой состоял из трех диэлектриков: SiO<sub>2</sub> толщиной 1.5 нм, Si<sub>3</sub>N<sub>4</sub> толщиной 2.0 нм и SiO<sub>2</sub> толщиной 2.5 нм. В предложенной работе не использовался эффект усиления электрического поля в туннельном слое за счет применения в качестве блокирующего диэлектрика с высокой диэлектрической проницаемостью. Инжекция носителей в процессе записи/стирания в такой структуре происходила преимущественно через два туннельных слоя SiO<sub>2</sub>, суммарная толщина которых составляет 4.0 нм. Как результат, в предложенной структуре наблюдалась проблема с записью положительного заряда, хотя применение составного туннельного оксида улучшало инжекционные характеристики по сравнению с одним слоем туннельного SiO<sub>2</sub>. Времена записи/стирания в такой структуре оказываются достаточно большими, ~ 1 мс.

В работе [2] в качестве блокирующего диэлектрика в КОТОП структуре использовался альтернативный диэлектрик (HfAlO). Однако эффекта усиления электрического поля в туннельном слое достигнуто не было, так как сам туннельный слой был выполнен из того же самого диэлектрика (HfAlO).

Эффект усиления электрического поля в туннельном  $SiO_2$  в КОТОП структуре за счет применения блокирующего диэлектрика с высокой диэлектрической проницаемостью был использован в работах [5,6]. Однако для надежного хранения инжектированного в Si-кластер заряда необходимо было использовать достаточно толстый туннельный слой SiO<sub>2</sub> (5.0 нм). Это не способствовало эффективной инжекции через туннельный SiO<sub>2</sub>.

В предложенном в настоящей работе ЭППЗУ, основанном на КООТОП структуре, в режиме записи/стирания инжекция происходит через достаточно тонкий ( $\sim 1.5$  нм) диэлектрик с низким значением диэлектрической проницаемости (на примере SiO<sub>2</sub>). Блокирующий слой, выполненный из диэлектрика с высокой диэлектрической проницаемостью (на примере ZrO<sub>2</sub>), обеспечивает усиление электрического поля в туннельном SiO<sub>2</sub> в режимах записи/стирания. Между туннельным SiO<sub>2</sub> и запоминающей средой (Si-кластер) использован диэлектрик с высоким значением диэлектрической проницаемости (на примере ZrO<sub>2</sub>), толщина которого соизмерима с толщиной блокирующего слоя. Это обеспечивает надежное хранение инжектируемого в Si-кластер заряда в течение 10 лет.

Отметим также еще одно достоинство технологического харатера предложенного ЭППЗУ по сравнению с ЭППЗУ из работы [5]. В КОТОП структурах нанокластеры (рис. 1, a) граничат с двумя диэлектриками — SiO<sub>2</sub> и ZrO<sub>2</sub>, т.е. имеют два переходных слоя на границах Si/SiO<sub>2</sub> и Si/ZrO<sub>2</sub>. В КООТОП структурах нанокластеры встроены в диэлектрик (рис. 1, b), т.е. имеют только один переходный слой Si/ZrO<sub>2</sub>.

#### 6. Заключение

На примере использования  $ZrO_2$  было показано, что применение альтернативного диэлектрика в качестве дополнительного к туннельному SiO<sub>2</sub> и блокирующего слоя в КООТОП структурах ведет к ряду преимуществ по сравнению с КОТОП структурами, в которых используется альтернативный диэлектрик только в блокирующем слое [5,6]. Преимущества состоят в следующем. 1) Появляется возможность использовать более тонкий слой туннельного SiO<sub>2</sub>, что позволяет улучшить инжекционные характеристики; благодаря этому удается значительно увеличить (более чем в 2 раза) окно памяти в режимах записи/стирания ( $\pm$ 11 В), которое составляет ~ 7 В. В то же время, так же как и в КОТОП структуре [5], паразитная инжекция в режимах записи/стирания через блокирующий слой ослаблена. 2) В режиме хранения достаточно толстые блокирующий и дополнительный туннельный слои препятствуют стеканию накопленного заряда из Si-кластера. При этом окно памяти через 10 лет более чем в 2 раза больше и составляет ~ 6 В. 3) Появляется возможность использовать более низкие напряжения записи/стирания.
4) На 2–3 порядка повышается быстродействие в режиме записи/стирания.

Настоящая работа поддержана интеграционным проектом № 70 СО РАН.

#### Список литературы

- C.-C. Wang, Y.-K. Chiou, C.-H. Chang, J.-Y. Tseng, L.-J. Wu, C.-Y. Chen, T.-B. Wu. J. Phys. D: Appl. Phys., 40, 1673 (2007).
- [2] J.H. Chen, Y.Q. Wang, W.J. Yoo, G. Samudra, D.S.H. Chan, A.Y. Du, D.-L. Kwong. IEEE Trans. Electron. Dev., 51 (11), 1840 (2004).
- [3] P.F. Lee, X.B. Lu, J.Y. Dai, H.L.W. Chan, E. Jelenkovic, K.Y. Tong. Nanotechnology, 17, 1202 (2006).
- [4] Jong Jin Lee, X. Wang, W. Bai, Nan Lu, Dim-Lee Kwong. IEEE Trans. Electron. Dev., 50 (10), 2067 (2003).
- [5] В.А. Гриценко, К.А. Насыров, Д.В. Гриценко, Ю.Н. Новиков, А.Л. Асеев, Д.-В. Ли, Ч.В. Ким. ФТП, **39** (6), 748 (2005).
- [6] V.A. Gritsenko, K.A. Nasyrov, D.V. Gritsenko, Yu.N. Novikov, J.-H. Lee, J.-W. Lee, C.W. Kim, Hei Wong. Microelectron. Engin., 81, 530 (2005).
- [7] V.A. Gritsenko, E.E. Meerson, Yu.N. Morokov. Phys. Rev. B, 57, R2081 (1997).
- [8] В.А. Гриценко. Строение и электронная структура аморфных диэлектриков в кремниевых МДП структурах (Новосибирск, Наука, 1993).
- [9] K.K. Likharev. Appl. Phys. Lett., 73 (15), 2137 (1998).
- [10] T.-H. Hsu, H.-T. Lue, Y.-C. King, J.-Y. Hsieh, E.-K. Lai, K.-Y. Hsieh, R. Liu, C.-Y. Lu. IEEE Electron. Dev. Lett., 28 (5), 443 (2007).

Редактор Л.В. Шаронова

# Nonvolatile memory based on silicon nanoclusters

## Yu.N. Novikov

Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia

**Abstract** The write/erase and retention characteristics of memory element based on silicon/oxide\_1/oxide\_2/silicon\_dot/oxide/silicon structure are simulated. The high- $\kappa$  dielectric (ZrO<sub>2</sub>) as blocking oxide and additional tunnel oxide were used. The thin tunnel oxide (SiO<sub>2</sub>) is used. Due to such configuration it is possible to improve the injection characteristics of the tunnel oxide under write/erase impulse and raised the speed of response, increased the injected charge. The using of thick blocking oxide and thick additional tunnel oxide allow keeping the injected charge for a long time. The programming with the impulse  $\pm 11$  V during 10 ms allows obtaining after 10 years the memory window ~ 6 V.

1083