ИК-спектроскопия решеточных колебаний и сравнительный анализ сверхрешеток ZnTe/CdTe с квантовыми точками на подложке GaAs с буферными слоями ZnTe и CdTe

© С.П. Козырев¶

Физический институт им. П.Н. Лебедева Российской академии наук, 119991 Москва, Россия

(Получена 8 декабря 2008 г. Принята к печати 17 декабря 2008 г.)

Представлен сравнительный анализ многопериодных сверхрешеток ZnTe/CdTe с квантовыми точками CdTe, выращенных методом молекулярно-лучевой эпитаксии на подложке GaAs с буферными слоями ZnTe и CdTe. Сопоставлялись индуцированные упругими напряжениями сдвиги собственных частот мод CdTe- и ZnTe-подобных колебаний материалов, образующих аналогичные сверхрешетки, но выращенные на разных буферных слоях ZnTe и CdTe. Условия формирования квантовых точек в сверхрешетках ZnTe/CdTe на буферных слоях ZnTe и CdTe радикально отличаются.

PACS: 78.67.Hc, 78.40.Fy

Многие электронные приборы включают в себя напряженные слои, образующиеся в процессе роста полупроводникового слоя на подложке с отличающимися решеточными параметрами. Напряженные слои в таких приборах являются метастабильными или нестабильными (в зависимости от величины решеточного рассогласования) по отношению к частичной релаксации упругих напряжений через образование трехмерных островков в плоском слое. Подобная релаксация напряжений приводит к грубому интерфейсу и развитию дислокаций несоответствия. Однако тот же механизм релаксации напряжений в гетероструктурах с большим решеточным рассогласованием через образование бездислокационных островков в плоском слое приводит к созданию наноструктур с самоорганизующимися "квантовыми точками", если островки из полупроводника с малой шириной запрещенной зоны внедрены в матрицу с большей шириной запрещеной зоны [1]. Понятно, что структуры с квантовыми точками (КТ) привлекают внимание исследователей по причине, что физические свойства КТ отличны от свойств объемного материала. Для исследования структур с КТ в основном используются методы электронной микроскопии высокого разрешения, а из спектроскопических методов — фотолюминесценция. Инфракрасная (ИК) спектроскопия решеточных колебаний позволяет оценить распределение упругих напряжений в гетероструктурах с напряженными слоями по сдвигам частот собственных колебаний для материалов, образующих гетероструктуры. Но толщина этих гетероструктур должна составлять ~ 1 мкм. Поэтому исследования КТ с использованием ИК спектроскопии решеточных колебаний ограничиваются сверхрешетками с большим числом повторений (~ 100).

Система ZnTe/CdTe характеризуется большим рассогласованием по решеточному параметру (6.4%). Первая попытка наблюдать колебательные возбуждения в KT CdTe в сверхрешетках ZnTe/CdTe была предпринята в [2] при исследовании методом отражательной ИК спектроскопии многопериодных (число периодов равно 200) сверхрешеток ZnTe/CdTe с КT CdTe, выращенных на подложке GaAs с буферным слоем CdTe. Поскольку исследования проводятся ИК излучением с длиной волны 30-80 мкм, спектр решеточного ИК отражения несет в себе интегральную характеристику обо всех слоях, составляющих исследуемую сверхрешетку, и о подложке с буферным слоем. В спектре наблюдалась сильная мода ~ 140 см⁻¹, соответствующая решеточным колебаниям толстого буферного слоя CdTe, а выделить моду, соответствующую колебательным возбуждениям в КТ CdTe, не удалось.

Замена буферного слоя CdTe на буферный слой ZnTe привела к положительному результату. В предыдущей статье I [3] был представлен анализ спектров решеточных колебаний для многопериодных сверхрешеток ZnTe/CdTe с КТ CdTe, выращенных методом молекулярно-лучевой эпитаксии на подложке GaAs с буферным слоем ZnTe. Для этих сверхрешеток квантовых точек (СРКТ) на буферном слое ZnTe удалось наблюдать колебательные возбуждения КТ CdTe (в действительности это моды твердого раствора CdZnTe, обогащенного CdTe) с частотой мод ~ 150 и ~ 156 см⁻¹, характеризуемые большим сдвигом собственной частоты по отношению к объемному значению (140 см⁻¹). Частотный сдвиг решеточных колебаний вызван упругими напряжениями, возникшими в слоях сверхрешетки из-за большого различия решеточных параметров ZnTe

Таблица 1. Параметры исследуемых структур СРКТ

Структура	b05	b50	b12	b25	b75
Буферный слой	ZnTe	ZnTe	CdTe	CdTe	CdTe
Толщина слоя CdTe, ML	3	3	2.5	2.5	2.5
Толщина спейсера ZnTe, ML	5	50	12	25	75
Число слоев CdTe	400	100	200	200	100

[¶] E-mail: skozyrev@sci.lebedev.ru

Структура	b05	b50	b12	b25	b75
CdTe-подобные моды $\omega_t \operatorname{cm}^{-1}/S/\gamma \operatorname{cm}^{-1}$	150/0.8/12 157/0.25/11	149/0.4/13 156/0.5/13	140/1.1/9	140.5/1.1/10	140/0.55/8
ZnTe-подобные моды $\omega_t \operatorname{cm}^{-1}/S/\gamma \operatorname{cm}^{-1}$	174/1.2/13 178/0.7/10	175/1.1/8 179/0.8/11	169/0.65/6 173.5/0.3/7	169/1.0/8 174/0.4/8	164/2.2/8 175/0.3/7

Таблица 2. Параметры решеточных колебаний (частота ТО моды ω_{ij} , ее сила осциллятора S_j и параметр затухания γ_j), рассчитанные из дисперсионного анализа спектра решеточного отражения

Примечание. Объемные значения частот ТО колебательных мод $\omega_t^{\text{CdTe}} = 140 \text{ см}^{-1}, \, \omega_t^{\text{ZnTe}} = 179 \text{ см}^{-1}.$

(a = 0.610 нм) и CdTe (a = 0.648 нм). Параметры CPKT СdТе на буферном слое ZnTe и СdTe представлены в табл. 1, а параметры решеточных колебаний (частота моды, ее сила осциллятора и параметр затухания) для этих СРКТ CdTe, рассчитанные из дисперсионного анализа спектров решеточного отражения, — в табл. 2. Параметры сверхрешеток и результаты анализа спектров решеточного отражения для сверхрешеток **b05** и **b50** на буферном слое ZnTe взяты из [3], а для сверхрешеток **b12**, **b25** и **b75** на буферном слое CdTe из [2]. Из дисперсионного анализа спектра решеточных колебаний, рассмотренного в статье I [3], и результатов электронно-микроскопических исследований подобной системы ZnSe/CdSe с таким же рассогласованием по решетке (6.8%) [4] установлено, что при формировании сверхрешетки из тонких слоев CdTe между толстыми барьерными слоями ZnTe в процессе осаждения CdTe образуется вместо чистого CdTe более толстый слой твердого раствора переменного состава Zn_{1-x}Cd_xTe c преимущественным составом $x \approx 0.2$. И в нем распределены наноостровки (ZnCd)Те с повышенным содержанием CdTe (квантовые точки). Особенностью этой системы сверхрешеток ZnTe/CdTe с КТ CdTe на буферном слое ZnTe является то, что она физически понятна и доступна для модельных расчетов. В сверхрешетке ZnTe/CdTe тонкий слой CdTe с ростовой толщиной 3 монослоя (ML), из которого в процессе осаждения формируются упругонапряженные бездислокационные наноостровки, внедрен между толстыми барьерными слоями ZnTe, а сама сверхрешетка ZnTe/CdTe выращивалась на буферном слое ZnTe. Из табл. 2 для структур b05 и b50 видно, что частоты ZnTe решеточных мод буферного и барьерного слоев не разрешаются между собой и равны 179 см⁻¹ — собственной частоте объемного ненапряженного ZnTe. Мода $\sim 175 \, \mathrm{cm}^{-1}$ соответствует твердому раствору $Zn_{1-x}Cd_xTe$ с $x \approx 0.2$, в слое такого состава сформированы упругонапряженные наноостровки, обогащенные CdTe, с частотой колебательного возбуждения $\sim 150 \,\mathrm{cm}^{-1}$. Таким образом, формирование КТ CdTe (наноостровков) происходит в толстой матрице ZnTe. Между сверхрешеткой и буферным слоем если и есть напряжения, то они незначительны, и это позволило выполнить в статье I [3] модельные расчеты деформаций в слоях квантовых точек и упругих напряжений, приводящих к сдвигу частот собственных колебаний в них, в приближении модели жестких ионов.

Для сверхрешеток ZnTe/CdTe с KT CdTe на буферном слое CdTe ситуация совершенно иная, и необходимо понять отличительные особенности процесса формирования наноструктур самоорганизующихся КТ в этой системе. На буферный слой CdTe осаждается барьерный слой ZnTe с толщиной, значительно превышающей критическую величину (для ZnTe на CdTe она составляет 2-3 ML), и только после этого осаждается тонкий (2.5 ML) слой CdTe. Таким образом, слой CdTe, при осаждении которого должны формироваться КТ CdTe, осаждается на уже напряженный барьерный слой ZnTe. Из табл. 2 для структур b12 и b25 можно видеть, что частота решеточной моды барьерного слоя ZnTe составляет 169 см⁻¹ (для объемного ZnTe она равна 179 см $^{-1}$). Еще одна особенность для структур **b12** и b25: наблюдается только одна мода CdTe-подобных колебаний на частоте 140 см⁻¹, совпадающей с частотой собственных колебаний объемного CdTe. Естественно приписать моду 140 см⁻¹ толстому (4.5 мкм) буферному слою. Моду колебательных возбуждений КТ CdTe идентифицировать не удалось, хотя сила осциллятора этой моды для сверхрешетки ZnTe/CdTe с числом повторений, равных 200, должна быть достаточно большой, чтобы моду можно было наблюдать.

Колебательные возбуждения в КТ СdTe структур b12 и b25 удалось наблюдать методом комбинационного рассеяния света (КРС) в работе [5]. В спектроскопии КРС возбуждение спектра происходит излучением видимого диапазона с глубиной проникновения 100-200 нм. Доступная информация ограничивается верхней частью структуры, представляющей собственно сверхрешетку, без буферного слоя. Для конфигурации измерений в геометрии обратного рассеяния активация разрешена, согласно правилам отбора по симметрии, только для продольных оптических (LO) фононов. В спектре КРС полосу, соответствующую LO-моде CdTe на $\sim 170 \,\mathrm{cm}^{-1}$, обнаружить не удалось. Но обнаружена мода $\sim 140 \,\mathrm{cm}^{-1}$, активная в КРС. По мнению авторов [5], природа этой моды колебаний существенно отличается от природы фононов в объемных кристаллах, она связана с квазинульмерной формой квантовых точек CdTe. Рассчитывался спектр колебательных возбуждений в КТ CdTe сферической формы. Возникающий при попе-

речных колебаниях внутри сферы симметричный заряд на поверхности сферы не создает (согласно теореме Гаусса) электрического поля внутри сферы, но влияет на колебания вне сферы, что приводит к появлению LO-колебаний с частотой, равной ТО-колебаниям внутри сферы. Рассмотренный механизм также справедлив для сфероида. Если квантовым точкам CdTe соответствует колебательная мода ~ 140 см⁻¹, то они оказываются ненапряженными и их колебательную моду действительно невозможно выделить в ИК спектрах решеточного отражения из-за экранирования ее сильной CdTe-модой буферного слоя. Но возможно ли существование ненапряженных квантовых точек CdTe между напряженными барьерными слоями ZnTe (частота колебательной моды в них уменьшилась до 169 см⁻¹ по сравнению со $179 \, \text{см}^{-1}$ для ненапряженного ZnTe)?

В работе [6] представлены результаты электронномикроскопических исследований, выполненных для аналогичных сверхрешеток ZnTe/CdTe на буферном слое CdTe с толщиной барьерного слоя ZnTe от 3 до 75 ML. Исследования показали, что между барьерными слоями ZnTe с толщиной менее 25 ML в системе ZnTe/CdTe с большим решеточным рассогласованием образуются квазинульмерные наноостровки CdTe, локальные положения которых с наноостровками CdTe в соседних слоях оказываются коррелированными через поля упругих напряжений в барьерных слоях ZnTe. Теория вертикальных и латеральных корреляций, индуцированных упругими напряжениями в СРКТ, рассматривалась в [7]. После осаждения на слой с наноостровками CdTe барьерного слоя ZnTe на его поверхности проявляется рельеф распределения упругих напряжений с четко выраженными минимумами и максимумами в латеральных направлениях. При последующем осаждении тонкого слоя CdTe это приводит к диффузионным смещениям осаждаемых адатомов в определенные локальные места на поверхности, определяемые потенциальным рельефом, и образованию зародышей новых наноостровков CdTe. Положения новых наноостровков CdTe оказываются коррелированными с наноостровками CdTe в предыдущем слое.

Авторы [6] считают, что наблюдаемые ими при электронно-микроскопическом анализе особенности в распределении наноостровков CdTe в сверхрешетках ZnTe/CdTe на буферном слое CdTe в полной мере объясняются теорией, изложенной в [7]. Возможно, этой же теорией можно объяснить и другие особенности формирования сверхрешеток ZnTe/CdTe с KT CdTe на буферном слое CdTe. При осаждении барьерного слоя ZnTe на толстый буферный слой CdTe сначала осаждается смачивающий упругонапряженный слой ZnTe, в котором при дальнейшем осаждении упругие напряжения частично релаксируются через образование упругонапряженных наноостровков ZnTe. Они распределены в слое твердого раствора ZnCdTe, образующемся в результате усиленной взаимодиффузии Cd и Zn из-за большого рассогласования решеточных параметров CdTe и ZnTe. При последующем осаждении ZnTe в слое создается

очень неоднородное поле упругих напряжений, индуцированное упругонапряженными наноостровками ZnTe на границе с толстым буферным слоем CdTe. На поверхности барьерного слоя ZnTe с ростовой толщиной $\sim 10\,ML$ создается рельеф распределения упругих напряжений. При последующем осаждении тонкого (2.5 ML) слоя CdTe на поверхности барьерного слоя ZnTe образуются наноостровки CdTe в наиболее напряженных местах там в наибольшей степени достигается решеточное согласование с ненапряженными наноостровками CdTe. А в менее напряженных местах поверхности барьерного слоя ZnTe, где рассогласование по решетке между слоем CdTe и барьерным слоем ZnTe наибольшее, в результате взаимодиффузии Zn и Cd из барьерного слоя ZnTe и остатков слоя CdTe формируется напряженная среда ZnCdTe, в которой оказываются распределенными ненапряженные островки CdTe. Частота моды ZnTeподобных колебаний твердого раствора ZnCdTe равна $\sim 174 \,\mathrm{cm}^{-1}$. Отклонение от значения объемного ZnTe 179 см⁻¹ вызвано тем, что это мода твердого раствора ZnCdTe и сам слой ZnCdTe — напряженный. Дальнейшее формирование сверхрешетки соответствует механизму, ранее рассмотренному в соответствии с [7].

Таким образом, условия формирования квантовых точек CdTe в аналогичных сверхрешетках ZnTe/CdTe, но на подложках с разным буферным слоем ZnTe и CdTe, радикально отличаются. В CPKT на буферном слое ZnTe KT CdTe формируются между ненапряженными барьерными слоями ZnTe (конечно, за исключением тонких переходных слоев ZnCdTe переменного состава). В CPKT на буферном слое CdTe KT CdTe формируются ненапряженными в результате осаждения слоя CdTe на поверхность напряженного барьерного слоя ZnTe с очень неоднородным рельефом распределения упругих напряжений. Источником этих напряжений является граничная область между толстым буферным слоем CdTe и барьерным слоем ZnTe.

Работа выполнена при финансовой поддержке программы президиума РАН "Низкоразмерные квантовые структуры" и РФФИ, проект № 07-02-00899-а.

Список литературы

- [1] J. Tersoff. Phys. Rev. Lett., 81, 3183 (1998).
- [2] Л.К. Водопьянов, С.П. Козырев, Г. Карчевски. ФТТ, 45, 1713 (2003).
- [3] С.П. Козырев. ФТП, 43, 342 (2009).
- [4] N. Peranio, A. Rosenauer, D. Gerthsen, S.V. Sorokin, I.V. Sedova, S.V. Ivanov. Phys. Rev. B, 61, 16015 (2000).
- [5] Л.К. Водопьянов, В.С. Виноградов, Н.Н. Мельник, Г. Карчевски. Письма ЖЭТФ, 77 (3–4), 171 (2003).
- [6] S. Mackowski, G. Karczewski, T. Wojtowicz, J. Kossut, S. Kret, A. Szczepanska, P. Dluzewski, G. Prechtl, W. Heiss. Appl. Phys. Lett., 78, 3884 (2001).
- [7] V. Holy, G. Springholz, M. Pinczolits, G. Bauer. Phys. Rev. Lett., 83, 356 (1999).

Редактор Л.В. Беляков

IR spectroscopy of the lattice vibrations and the comparative analysis of ZnTe-CdTe quantum-dot superlattices on a GaAs substrate with a ZnTe and CdTe buffer layers

S.P. Kozyrev

Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia

Abstract The comparative analysis of the IR lattice vibration spectra of the multiperiod ZnTe/CdTe superlattices with CdTe quantum dots is presented. The superlattices were grown by molecular-beam epitaxy on a GaAs substrate with ZnTe and CdTe buffer layer. The strain-induced shifts of the TO-phonon frequencies of CdTe- and ZnTe-like vibrations are compared for the similar superlattices grown on the different buffer layers (ZnTe and CdTe). The conditions for the formation of quantum dots in ZnTe/CdTe superlattices on the ZnTe and CdTe buffer layers were found to be radically different.