Фазовый распад и безызлучательная рекомбинация носителей в активных областях светоизлучающих приборов на основе квантовых точек InGaN в матрице GaN или AIGaN

© В.С. Сизов^{*†¶}, А.А. Гуткин^{*}, А.В. Сахаров^{*†}, В.В. Лундин^{*†}, П.Н. Брунков^{*}, А.Ф. Цацульников^{*†}

 * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия
 † Научно-технический центр микроэлектроники и субмикронных гетероструктур при ФТИ им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия

(Получена 20 октября 2008 г. Принята к печати 31 октября 2008 г.)

Исследованы структуры, содержащие нанослои InGaN в матрицах GaN и AlGaN, представляющие собой активные области светоизлучающих приборов. Измерены спектры и относительная интенсивность фотолюминесценции в диапазоне температур 20–300 К и зависимость положения пика фотолюминесценции от энергии фотонов возбуждающего света. Показано, что для объяснения температурной зависимости фотолюминесценции требуется, помимо безызлучательной рекомбинации через дефекты в матрице и в остаточной квантовой яме, учитывать дополнительный канал рекомбинации с малой энергией активации, по-видимому, связанный с дефектами, находящимися вблизи квантовых точек. Обнаружено, что структуры с матрицей AlGaN имеют более сильное падение интенсивности фотолюминесценции при увеличении температуры от 50 до ~ 200 К, чем структуры с матрицей GaN. Анализ температурной зависимости интенсивности фотолюминесценции в модели, рассматривающей 3 указанных канала безызлучательной рекомбинации, показывает, что она связана с уменьшением энергии локализации носителей относительно остаточной квантовой ямы. Такое уменьшение вызвано подавлением фазового распада слоев InGaN, выращенных в матрице AlGaN. Последнее подтверждается измерениями фотолюминесценции при различной энергии возбуждающего фотона и, кроме уменьшения энергии локализации, приводит также к наблюдавшемуся для этих структур уменьшению концентрации центров рекомбинации.

PACS: 85.60.Jb, 78,67.Hc, 78.55.Cr

Несмотря на значительный прогресс в технологии нитридов элементов III группы, получение на их основе излучающих видимый свет гетероструктур с высокой квантовой эффективностью на коммерчески доступных подложках (сапфир) до сих пор затруднительно. Причиной этого является большая плотность дефектов в слоях GaN (буферный слой и матрица), создающих в них эффективные центры безызлучательной рекомбинации (БР) [1]. Для подавления этой рекомбинации может быть использовано ограничение латерального транспорта носителей в активной области [2] путем создания флуктуаций локализующего потенциала, ограничивающего движение обоих типов носителей в латеральном направлении. Такие флуктуации образуются за счет неоднородностей состава и возникают при осаждении тонких слоев InGaN, обычно представляющих собой активную область и имеющих тенденцию к фазовому распаду твердого раствора [2]. В зависимости от степени фазового распада и средней концентрации индия в слоях InGaN достигаются различные по глубине области локализации, играющие роль квантовых точек (КТ). Однако использование слоев InGaN с высоким содержанием индия приводит к образованию дополнительных дефектов, связанных с рассогласованием по парамет-

Экспериментальные исследования были проведены на многослойных эпитаксиальных гетероструктурах, содержащих слои InGaN-КТ с разным содержанием In в матрице GaN или AlGaN. Структуры выращивались методом MOC-гидридной эпитаксии на сапфировых подложках ориентации (0001) с использованием технологии низкотемпературного зародышевого слоя GaN. Аммиак, триметилгаллий, триэтилгаллий, триметилалюминий и триметилиндий использовались в качестве источников.

Для обеспечения корректности сравнения свойств InGaN-структур в AlGaN- и GaN-матрицах режимы их формирования должны совпадать. Для выполнения этого требования была проведена оптимизация режимов роста с целью подавления паразитных реакций между триметилалюминием и аммиаком при формировании барьерных слоев AlGaN.

ру решетки слоев InGaN и GaN. Темп БР определяется концентрацией безызлучательных центров (БЦ) и глубиной локализации, которые зависят от дизайна структуры и режимов роста. При этом, как показывают исследования [3,4], существует несколько каналов безызлучательной рекомбинации, проявляющих себя в различных условиях и ограничивающих эффективность приборов. Цель данной работы заключается в изучении механизмов БР и определении факторов, влияющих на их проявление.

[¶] E-mail: sizovviktor@mail.ru

Рис. 1. Схемы исследованных в работе структур: *a* — с матрицей GaN, структуры типа A; *b* — с матрицей AlGaN, структуры типа B.

Рис. 2. Спектры фотолюминесценции структур A (a) и B (b), измеренные в диапазоне температур 20–300 К.

Конструкция структур была выбрана таким образом, чтобы можно было наблюдать эффекты, связанные с транспортом носителей, а применение разных матриц позволило выявить различия в процессах безызлучательной рекомбинации, связанные с изменением материала матрицы. Для анализа этих различий была предложена простая модель, позволяющая описать изменение интенсивности фотолюминесценции (ФЛ) в широком диапазоне температур.

Исследованные структуры имели 5 слоев InGaN-КТ (рис. 1). Среднее содержание In в верхнем слое было больше, чем в нижних слоях, и он располагался либо в матрице GaN (структуры типа A), либо AlGaN (структуры типа B). Нижние слои КТ для обоих типов структур выращивались при идентичных условиях в матрице GaN. Спектры ФЛ этих структур при температурах 20–300 К и возбуждении светом He–Cd-лазера (длина волны 325 нм, мощность 10 мВт, диаметр сфокусированного пучка 100 мкм) представлены на рис. 2. Длинноволновая полоса в структурах обоих типов связана с излучательной рекомбинацией в верхнем слое КТ, коротковолновая — с рекомбинацией в остальных четырех слоях КТ.

Зависимости интегральной интенсивности ФЛ в каждой из полос от температуры в диапазоне 20–300 К показаны на рис. 3. Видно, что эти зависимости в структурах обоих типов для нижних слоев КТ практически совпадают, тогда как для верхних слоев, выращенных в различных матрицах, значительно различаются.

Как правило, поведение интенсивности ФЛ с изменением температуры для слоев КТ описывается в модели, рассматривающей транспорт носителей между слоями КТ, а также 2 канала безызлучательной рекомбинации носителей: через состояния в матрице и через состояния в остаточной квантовой яме (ОКЯ) [3–6]. Однако для слоев InGaN во многих случаях [5,6], как и в данной работе, при низких температурах (менее 150 K) наблюдается падение интенсивности фотолюминесценции с увеличением температуры, что соответствует энергиям активации БР 5–20 мэВ. Описать такое поведение в рамках выше указанной модели [3–6] оказывается затруднительным.

Поэтому для анализа полученных результатов нами был введен дополнительный канал БР (ДКБР), имеющий малую энергию активации. Рассматриваемая модель для исследованных в работе структур выглядела следующим образом. Электронно-дырочные пары генерируются в матрице со скоростью Р. Далее они имеют три возможности: безызлучательно прорекомбинировать со скоростью R_n непосредственно в матрице и захватиться на уровни нижнего или верхних слоев КТ со скоростью U. C уровней КТ в свою очередь пары могут излучательно прорекомбинировать со скоростью R, термически выброситься обратно в матрицу или на уровни, располагающиеся в ОКЯ, с последующим транспортом к центрам безызлучательной рекомбинацией в ней, а также прорекомбинировать через ДКБР. Выброшенные в матрицу пары могут захватиться в другие слои КТ, тем самым обеспечивая транспорт между слоями КТ. Рассматривался случай слабого возбуждения, при котором отношение заполненных КТ к незаполненным много меньше 1, и предполагалось, что все КТ являются

Параметры		Нижние слои КТ, матрица GaN	Верхний слой КТ	
			Матрица GaN	Матрица AlGaN
Энергия активации БР	для дефектов вблизи КТ E_m , E_n , мэВ в ОКЯ E_M , E_N , мэВ в матрице E_b , E_g , мэВ	5 135 220	110 210 500	25 110 520
Коэффициенты	D_m, D_n для КТ, с $^{-1}$ B_m, B_n для ОКЯ, с $^{-1}$	$\begin{array}{c} 6\cdot 10^7 \\ 10^{12} \end{array}$	$\begin{array}{c} 2 \cdot 10^{10} \\ 5 \cdot 10^{12} \end{array}$	$\frac{1.3\cdot10^9}{2\cdot10^{10}}$

Значения параметров

Примечание. БР — безызлучательная рекомбинация, КТ — квантовые точки, ОКЯ — остаточные квантовые ямы.

нейтральными [3,4]. Эта модель в стационарном случае описывается системой скоростных уравнений:

$$\frac{dT}{dt} = P - N(U + R_n) + mU\beta + \frac{1}{5}nU\gamma = 0, \quad (1)$$

$$\frac{dm}{dt} = NU - m(U\beta + D_m\delta_m + B_m\eta_m) - mR = 0, \quad (2)$$

$$\frac{dn}{dt} = NU - n(U\gamma + D_n\delta_n + B_n\eta_n) - nR = 0.$$
(3)

Здесь N, m, n — объемные концентрации электроннодырочных пар в матрице, нижних и верхнем слоях КТ соответственно; $D_{m,n}$ — коэффициенты, описывающие рекомбинацию через ДКБР в нижних и верхнем слоях КТ, $B_{m,n}$ — соответствующие коэффициенты для рекомбинации через дефекты в ОКЯ;

$$\begin{split} \delta_m &= \exp(-E_m/kT), \quad \delta_n = \exp(-E_n/kT), \\ \eta_m &= \exp(-E_M/kT), \quad \eta_n = \exp(-E_N/kT), \\ \beta &= \exp(-E_b/kT), \quad \gamma = \exp(-E_g/kT), \end{split}$$

*Е*_{*m,n,M,N,b,g*} — соответствующие энергии активации.

Интенсивность ФЛ пропорциональна m(T) — для нижних слоев КТ, n(T) — для верхних. Уравнения (1)-(3) использовались при аппроксимации экспериментальных зависимостей, представленных на рис. 3. При этом значения R_m , R и U принимались равными 10^9 , $3 \cdot 10^8$, $10^{12} c^{-1}$ соответственно [7,8], значение $P = 10^{23} cm^{-3} c^{-1}$ рассчитывалось из плотности накачки, энергии активации БР в матрицу брались равными разрыву зон проводимости на гетерогранице матрица-слой InGaN. Остальные значения подбирались исходя из наилучшего согласия расчета и экспериментальных данных.

При низких температурах безызлучательная рекомбинация в ОКЯ и в матрице пренебрежимо мала вследствие локализации носителей на уровнях КТ, поэтому параметры БР через канал с малой энергией активации определялись по низкотемпературной части зависимостей интенсивности ФЛ от температуры. Параметры БР в ОКЯ определялись по высокотемпературной части. Результаты такой аппроксимации представлены на рис. 3, а полученные величины параметров приведены в таблице. Как видно из таблицы, как содержание In в слоях КТ, так и материал матрицы оказывают качественно одинаковое влияние на параметры рекомбинации через до-

Рис. 3. Экспериментальные (1' -верхний слой, 2' -нижние слои) и рассчитанные с учетом всех каналов безызлучательной рекомбинации (сплошные линии) зависимости интенсивности фотолюминесценции от температуры для структур A (a) и B (b). Пунктирные линии: расчет без учета ДКБР: 1 -для верхнего слоя, 2 -для нижних слоев; 3 -расчет без учета транспорта между слоями квантовых точек. Штрихпунктирные линии 4 -рассчитанные значения концентрации электроннодырочных пар в матрице с учетом всех каналов безызлучательной рекомбинации.

Рис. 4. Схемы безызлучательной рекомбинации в слое квантовых точек: *а* — случай низких температур: носители локализованы на квантовых точках и не могут достичь удаленных дефектов; *b* — случай высоких температур: пары выбрасываются выше уровня протекания в квантовых ямах и способны достичь удаленных дефектов, двигаясь в латеральном направлении.

полнительный канал и ОКЯ. При этом параметры $D_{n,m}$, пропорциональные концентрации центров рекомбинации для ДКБР, всегда меньше, чем соответствующие величины для рекомбинации через ОКЯ. Указанные закономерности позволяют предположить, что ДКБР представляет собой рекомбинацию через дефекты, расположенные в непосредственной близости к КТ, на которые носители могут попасть, не преодолевая барьеры между КТ за счет термического выброса выше уровня протекания в ОКЯ (рис. 4).

Для иллюстрации влияния этих дефектов на поведение интенсивности ФЛ от температуры на рис. З также представлены зависимости, вычисленные без учета ДКБР. Как показывают расчеты, при различных значениях подгоночных параметров пренебрежение этим каналом в большинстве исследованных нами случаев приводит к неустранимому расхождению рассчитанных и экспериментальных зависимостей при температурах ниже 150 К.

Исключение в расчете транспорта между верхним и нижними слоями КТ, которое достигается решением системы уравнений (1) и (3) при $m \equiv 0$, также приводит к расхождению вычисленных и экспериментальных зависимостей интенсивности ФЛ от температуры, при температурах, достаточных для эффективного выброса носителей из нижних слоев КТ в матрицу (рис. 3). Это расхождение заключается в более сильном падении рассчитанной интенсивности ФЛ от верхнего слоя КТ с увеличением температуры. Оно объясняется исключением вклада от нижних слоев КТ в рост концентрации электронно-дырочных пар в матрице при повышении температуры (рис. 3), в то время как локализация пар

в верхнем слое InGaN еще достаточно эффективна. Следует отметить, что, поскольку энергия локализации для КТ относительно матрицы значительно больше энергии локализации относительно ОКЯ, а скорость БР (R_n) в матрице не слишком велика, доминирующим каналом БР в диапазоне температур 150–400 К, являющимся рабочим для большинства приборов, оказывается канал, связанный с дефектами в ОКЯ. Это, в частности, находит выражение в перераспределении носителей между слоями InGaN с разным составом In при повышении температуры.

Из сопоставления величин параметров, полученных для верхних слоев КТ, видно, что для слоев в матрице AlGaN энергия активации БР через ОКЯ и через дефекты вблизи КТ значительно меньше, чем для слоев в матрице GaN. Для объяснения этого эффекта можно предположить, что использование матрицы AlGaN приводит к подавлению фазового распада слоя InGaN. Следствием этого является уменьшение неоднородностей потенциала, приводящее к уменьшению энергетического зазора между уровнями носителей в КТ и в ОКЯ, а также на дефектах, расположенных вблизи КТ.

Так как D_n и B_n пропорциональны плотности центров БР, источником которых могут являться дислокации, возникающие в результате релаксации напряжений несоответствия [1], меньше значения D_n и B_n для КТ в матрице AlGaN по сравнению с КТ в матрице GaN также можно объяснить подавлением фазового распада.

Для подтверждения этого предположения были проведены исследования зависимости положения максимума спектра ФЛ подобных слоев при температуре 77 К от энергии возбуждающих фотонов. Измерения были проведены на структурах, содержащих 5 одинаковых слоев InGaN-КТ в матрице AlGaN или GaN. Полученные зависимости представлены на рис. 5. Видно, что у структуры с матрицей AlGaN положение максимума ФЛ с изменением энергии возбуждения изменяется значительно слабее, чем для структуры с матрицей GaN. Сдвиг

Рис. 5. Зависимости положения максимума фотолюминесценции при 77 К от длины волны возбуждающего света для двух типов структур: *1* — слоя InGaN-КТ, в матрице GaN, *2* — слои InGaN-КТ а матрице AlGaN.

положения максимума ФЛ при уменьшении энергии возбуждения вызван тем, что носители, родившиеся на уровнях соответствующих КТ, не успевают статистически распределиться по всему ансамблю КТ через уровни в ОКЯ из-за сильной локализации на КТ. Чем сильнее изменение положения максимума ФЛ с уменьшением энергии возбуждения, тем больше локализация на уровнях КТ относительно ОКЯ, т.е. больше энергия активации выброса электронно-дырочной пары в ОКЯ. Поэтому меньший сдвиг максимума ФЛ соответствует меньшей степени фазового распада.

Таким образом, приведенные данные показывают, что введение дополнительного канала БР с малой энергией активации позволяет количественно описать изменение интенсивности ФЛ слоев InGaN-КТ в матрицах (Al)GaN при температурах в диапазоне 20–300 К и численно оценить вклад в БР от каждого канала. По-видимому, канал с малой энергией активации БР связан с дефектами, расположенными вблизи КТ, для транспорта к которым не требуется возбуждение выше уровня протекания.

Использование матрицы AlGaN вместо GaN приводит к подавлению фазового распада слоев InGaN и, как следствие, к уменьшению неоднородности потенциала в этом слое. Другим следствием подавления фазового распада является снижение плотности центров БР в слоях КТ из-за уменьшения напряжений несоответствия. Поскольку доминирующие центры БР располагаются в КТ и ОКЯ, а уменьшение флуктуации потенциала приводит к уменьшению энергии активации БР через ОКЯ, использование матрицы AlGaN вызывает более сильное относительное падение интенсивности ФЛ при повышении температуры в диапазоне 50–200 К.

Разработка технологии выращивания гетероструктур с активными областями InGaN проводилась в НТЦ МЭ в рамках Государственного контракта № 02.523.12.3017 от 14 августа 2008 г. Исследование свойств гетероструктур с активными областями InGaN и анализ результатов проводились в ФТИ им. Иоффе РАН при поддержке программы фундаментальных исследований президиума РАН "Квантовые наноструктуры".

Список литературы

- [1] S.V. Karpov, Yu.N. Makarov. Appl. Phys. Lett., 81, 4721 (2002).
- [2] S. Nakamura. *OIDA Solid-State Lighting Workshop* (Albuquerque, May 30, 2002).
- [3] M. Vening, D.J. Dunstan, K.P. Homewood. Phys. Rev. B, 48, 4 (1993).
- [4] S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, S. Franchi. Phys. Rev. B, 60, 114 (1999).
- [5] Yong-Hoon Cho, T.J. Schmidt, S. Bidnyk, G.H. Gainer, J.J. Song, S. Keller, U.K. Mishra, S.P. DenBaars. J. Phys. Rev. B, 61, 11 (2000).
- [6] Josh Abell, T.D. Moustakas. Appl. Phys. Lett., 92, 091 901 (2008).

- [7] M. Vehse, P. Michler, I. Gösling, M. Röwe, J. Gutowski, S. Bader, A. Lell, G. Brüderl, V. Härle. Phys. Status Solidi A, 188 (1), 109 (2001).
- [8] J.S. Hwang, A. Gokarna, Yong-Hoon Cho, J.K. Son, S.N. Lee, T. Sakong, H.S. Paek, O.H. Nam, Y. Park, S.H. Park. Appl. Phys. Lett., 85, 8 (2004).

Редактор Т.А. Полянская

Phase separation and non-radiative carrier recombination in active regions of light emitting devices based on InGaN quantum bots in GaN or AlGaN matrix

V.S. Sizov^{*†}, A.A. Gutkin^{*}, A.V. Sakharov^{*†}, V.V. Lundin^{*†}, P.N. Brunkov^{*}, A.F. Tsatsul'nikov^{*†}

* Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
† Center for Microelectronics at Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Samples with nano-layers InGaN in matrix GaN and AlGaN, which is active region of light emitting devices, was investigated. Spectrum and relative intensity of photoluminescence (PL) in temperature range 20-300 K and energy pumping photon dependence of PL peak position were measured. It was shown, that it is necessary to take account an additional non-radiative channel with small activation energy, obviously concerned with defects closed to quantum dots, besides non-radiative channels in matrix and residual quantum well, for explaining temperture dependence of PL behavior. In was descovered that samples with AlGaN matrix has a stronger PL intensity drop with temperature increasing in range 50-200K than samples with GaN matrix. Analysis of temperature dependence of PL intensity by model which include the three, pointed out above, non-radiative channel show that it connected with decreasing of localization energy of carrier relative to residual quantum well. Such decrease is affected by suppression of InFGaN phase-separation in matrix AlGaN. The last is confirmed by measuring of PL with different excitation photon energy. Decrease of licalization energy causes reducing of non-radiative centers density.