Фазовые превращения в полупроводниках А^{II}В^V при высоком давлении

© А.Ю. Моллаев, Л.А. Сайпулаева [¶], А.Г. Алибеков, С.Ф. Маренкин*, А.Н. Бабушкин⁺

Институт физики Дагестанского научного центра Российской академии наук, 367003 Махачкала, Россия

* Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук,

119991 Москва, Россия

⁺ Уральский государственный университет,

620083 Екатеринбург, Россия

(Получена 2 июля 2008 г. Принята к печати 8 октября 2008 г.)

При гидростатическом давлении до 9 ГПа и квазигидростатическом до 50 ГПа в области комнатных температур измерены удельное электросопротивление и коэффициент Холла в *n*-CdAs₂ и *p*-ZnAs₂. В *n*-CdAs₂ обнаружен фазовый переход при P = 5.5 ГПа, для *p*-ZnAs₂ имеют место два фазовых перехода — первый при P = 10-15 ГПа и второй при P = 35-40 ГПа.

PACS: 62.50.-p, 71.18.+y, 71.20.Nr, 72.80.Ey

1. Введение

Диарсениды цинка и кадмия относятся к полупроводникам $A^{II}B^{V}$ и кристаллизуются в моноклинной и тетрагональной сингониях соответственно [1]. Особенностью этих структур является наличие наряду со связями Cd–As, Zn–As связей As–As, которые образуют зигзагообразные цепочки, вытянутые вдоль оси *C*, что обусловливает значительную анизотропию электрических и оптических свойств [2]. Кристаллические структуры этих соединений представлены на рис. 1 и 2.

Вместе с тем для практики, наряду с высокой оптической прозрачностью, CdAs₂ и ZnAs₂ в широком интервале длин волн ИК-спектра (1.3-20 мкм) наибольший интерес представляет значительное двулучепреломление, величина которого почти в 2 раза больше, чем у кристаллов исландского шпата, и существенно выше, чем у рутила, что может быть использовано для создания поляризационных призм в поляризационнонезависимых магнитных переключателях в волоконнооптических линиях связи с $\lambda = 1.3 - 1.5$ мкм и выше. ZnAs₂ представляет наибольший инетерс для создания твердотельного лазера, вынужденное излучение на длине волны 1.235 мкм было получено при электронной накачке. Электрические и оптические свойства диарсенидов кадмия и цинка довольно подробно изучены, данные опубликованы в ряде обзоров [1,2].

Результаты исследований электрических свойств диарсенидов кадмия и цинка при высоком давлении крайне скудны и противоречивы, проводились они на поликристаллических образцах при квазигидростатике. В работе [3] были исследованы поликристаллы *n*-CdAs₂ ($n = 1.85 \cdot 10^{16}$ см⁻³). С ростом давления сопротивление падало, при давлении $P \approx 5 \Gamma \Pi a$ наблюдался пик на кривой зависимости сопротивления от давления, который был интерпретирован как фазовый переход, в [4] фазовый переход I–II был зафиксирован при $P \approx 6 \Gamma \Pi a$. Получение современных монокристаллов диарсенида кадмия в ИОНХ РАН позволило нам провести исследования электрических свойств диарсенида кадмия на более высоком качественном уровне.

2. Техника эксперимента

Монокристаллы *n*-CdAs₂, *p*-ZnAs₂ были изготовлены способом направленной кристаллизации расплава по

Рис. 1. Проекции xy и xz кристаллической структуры CdAs₂ (пространственная группа $I4_122$, a = 7.954, c = 4.678 Å, z = 4 (пунктирной линией показаны наиболее характерные линии скола)).

[¶] E-mail: a.mollaev@mail.ru

Рис. 2. Кристаллическая структура ZnAs₂.

методу Бриджмена [5]. Впервые на образцах *n*-CdAs₂ и *p*-ZnAs₂ одновременно измерены удельное электросопротивление и эффект Холла при гидростатическом давлении до $P \le 5$ ГПа. Измерения проводились при подъеме и сбросе давления в области комнатных температур. Гидростатическое давление генерировалось в аппарате высокого давления типа "тороид" который помещался в соленоид с напряженностью магнитного поля $H \le 5$ кЭ. Более подробно методика эксперимента описана в работах [5,7].

Таблица 1. Основные характеристики измеренных образцов

N⁰	Образцы	ρ , Ом · см	$R_{\rm H}, \mathrm{cm}^3/\mathrm{c}\cdot\mathrm{e}$	N, cm^{-3}	Ориентация
1	n-CdAs ₂	11.2	16892	$3.7\cdot 10^{14}$	[100]
2	n-CdAs ₂	8.6	21750	$2.9\cdot 10^{14}$	[100]
3	n-CdAs ₂	7.4	15037	$4.0\cdot10^{14}$	[100]
4	n-CdAs ₂	27	5840	$4.28\cdot 10^{15}$	[001]
5	n-CdAs ₂	40	3289	$1.9\cdot 10^{15}$	[001]
6	n-CdAs ₂	40	3500	$1.8\cdot 10^{15}$	[001]
7	p-ZnAs ₂	6.3	725	$8.6\cdot10^{16}$	—

Давления от 15 до 50 ГПа создавали с помощью камеры высокого давления с наковальнями типа "закругленный конус—плоскость" [8], изготовленными из синтетических поликристаллических алмазов типа "карбонадо". Такие наковальни хорошо проводят электрический ток. Это позволяет измерять барические и температурные зависимости сопротивления образца, помещенного между наковальнями, используя их в качестве контактов. Измерения проводили в интервале температур 77–400 К. Детально методика измерений описана в [9].

Образцы *n*-CdAs₂, *p*-ZnAs₂ вырезались из монокристаллов таким образом, чтобы ребра параллелепипедов совпадали с кристаллографическими направлениями [001] и [100]. Параметры исследованных образцов представлены в табл. 1, где ρ — удельное сопротивление, $R_{\rm H}$ — коэффициент Холла.

3. Экспериментальные результаты

На рис. 3 и 4 представлены типичные кривые зависимостей $\rho(P)$ и $R_{\rm H}(P)$ монокристаллов *n*-CdAs₂, ориентированных по кристаллографическим направлениям [100] и [001]. На образцах вырезанных в направлении [100], удельное сопротивление и коэффициент Холла с ростом давления падали. На зависимостях $\rho(P)$ и $R_{\rm H}(P)$ при давлении P = 3 и 5.5 ГПа наблюдаются два четких пика (рис. 3).

Рис. 3. Зависимость удельного сопротивления (кривая *1*) и коэффициента Холла (кривая *2*) от давления для образца *n*-CdAs₂ в направлении [001] (черные точки — подъем, светлые сброс давления).

Рис. 4. Зависимость удельного сопротивления (кривая *1*) и коэффициента Холла (кривая *2*) от давления для образца *n*-CdAs₂ в направлении [100] (черные точки — подъем, светлые сброс давления).

N₂	Образцы	$P_s, \Gamma \Pi a$	$P'_s, \Gamma \Pi a$	$P_e, \Gamma \Pi a$	$P'_e, \Gamma \Pi a$	$P_0, \Gamma \Pi a$	$P_{ms}, \Gamma \Pi a$	P'_{ms} , ГПа	$P_{th}, \Gamma \Pi a$	$P_{fh}, \Gamma \Pi a$	$P_{fh}^{\prime}, \Gamma \Pi$ а
1	n-CdAs ₂	5.34	4.1	7.34	1.7	4.62	6.34	2.9	3.44	2.04	2.4
2	n-CdAs ₂	5.32	4.0	7.32	1.6	4.56	6.33	2.8	3.52	2.03	2.4
3	n-CdAs ₂	5.31	4.0	7.31	1.6	4.65	6.31	2.8	3.71	2.03	2.4
4	n-CdAs ₂	5.3	3.9	7.34	1.8	4.59	6.32	2.85	3.65	2.04	2.1
5	n-CdAs ₂	5.2	3.8	7.33	1.5	4.47	6.27	2.65	3.62	2.13	2.3
6	n-CdAs ₂	5.2	3.7	7.31	1.6	4.45	6.26	2.65	3.6	2.11	2.1

Таблица 2. Некоторые характеристические параметры исследованных образцов в области фазового превращения

Зависимость удельного сопротивления для образцов *n*-CdAs₂, ориентированных в направлении [100], имеет более сложный характер. Удельное сопротивление с ростом давления увеличивается, на зависимости $\rho(P)$ наблюдаются три пика при P = 1.8, 3 и 5.5 ГПа. Анализ полученных экспериментальных результатов позволил предположить, что максимумы при P = 1.8 и 3 ГПа, вероятно, связаны с особенностями зонной структуры CdAs₂, так как известно, что в запрещенной зоне диарсенида кадмия имеется один мелкий и два глубоких донорных уровня:

$$egin{aligned} &\mathrm{Cd}_i = \mathrm{Cd}_i^+ + e, & arepsilon_{1c} \leq 0.02\, \mathrm{sB}, \ &\mathrm{Cd}_i^+ = \mathrm{Cd}_i^{++} + e, & arepsilon_{3c} \leq 0.42\, \mathrm{sB}, \ &V_{\mathrm{As}} = V_{\mathrm{As}}^+ + e, & arepsilon_{2c} pprox 0.26\, \mathrm{sB} \end{aligned}$$

(Здесь индекс с означает, что энергия отсчитывается от дна зоны проводимости). Максимум при $P = 5.5 \,\Gamma\Pi a$ может быть идентифицирован как структурный фазовый переход, который наблюдался в работах [3]. Измерение $\rho(P)$ и $R_{\rm H}(P)$ при сбросе давления происходит с большим гистерезисом. На барических зависимостях $\rho(P)$ и $R_{\rm H}(P)$ при сбросе давления также наблюдался фазовый переход при P = 3.6 ГПа. Совпадение значений начальных точек зависимостей $\rho(P)$ и $R_{\rm H}(P)$ при подъеме давления со значениями конечных точек этих кривых при сбросе давления свидетельствует об обратимости фазового превращения и об отсутствии диссоциации и изменения фазового состава в исследованных образцах. Величины концентраций и подвижностей до и после фазового превращения позволяют сделать вывод — в диарсениде кадмия при давлении $P = 5.5 \Gamma \Pi a$ имеет место фазовый переход полупроводник-полупроводник. Отсутствие рентгеноструктурных исследований при высоких давлениях $P \leq 9 \Gamma \Pi a$ не дает возможности более определенно судить о фазовом превращении в CdAs₂.

Согласно представлениям, изложенным в работах [10–15], рассмотрена динамика фазового перехода образца, находящегося в однородном внешнем поле, при условии, что не происходят релаксации внутренних напряжений.

Из работ [10–15] следует, что по мере отклонения от точки термодинамического равновесия (P_0) на некоторую минимальную величину ($P_s - P_0$) при $P > P_s$ в исходной фазе 1 образца появляются зародыши новой

фазы. Фазовый переход заканчивается в точке P_e . Точки P_s и P_e соответствуют началу и концу фазового перехода. При P_s $C_1 = 1$, а $C_2 = 0$; при P_e $C_1 = 0$, а $C_2 = 1$. Здесь C_1 и C_2 — относительные объемы фаз: $C_1 = V_1/(V_1 + V_2)$, $C_2 = V_2/(V_1 + V_2)$, $C_1 + C_2 = 1$, где V_1 — объем исходной фазы, V_2 — объем образующейся фазы.

При декомпрессии характерные точки P'_0 , P'_s и P'_e соответствуют точкам P_s и P_e . Согласно [10–15], при фиксированном давлении величина $C_2 = 1 - C_1$ при подъеме давления меньше, чем при сбросе давления, и соответственно в области фазового превращения будет иметь место гистерезис.

Из эксперимента были определены точки P_s и P_e начала и конца фазового перехода при подъеме давления и P'_s и P'_e — начала и конца фазового перехода при сбросе давления. На основе теоретических положений, изложенных в работах [10–15], и методологии, описанной в работе [11], определены некоторые параметры, характеризующие фазовый переход:

$$P_0 = P'_0 = 0.5(P_s + P'_s) = 0.5(P_e + P'_e).$$
(1)

Точки метастабильного равновесия P_{ms} при компрессии и P'_{ms} при декомпрессии определяются как

$$P_{ms} = 0.5(P_e + P_s)$$
 a $P'_{ms} = 0.5(P'_e + P'_s)$. (2)

Величина термодинамического гистерезиса

$$P_{th} = P_s - P'_e \approx P_e - P'_s \approx P_{ms} - P'_{ms}.$$
 (3)

Флуктуационный гистерезис P_{fh} , обусловленный неоднородным распределением давления, температуры и дефектов по объему образца, определяется как

$$P_{fh} = P_e - P_s$$
 is $P'_{fh} = P'_e - P'_s$. (4)

Рассчитанные из кривых $\rho = f(P)$ и $\rho = f(R_{\rm H})$ (рис. 3) характеристические параметры, показывающие динамику фазового перехода, представлены в табл. 2.

Из данных, представленных в табл. 2, видно, что характеристические параметры фазового перехода в *n*-CdAs₂ не зависят от кристаллографического направления и концентрации носителей заряда.

Согласно модели гетерофазная структура–эффективная среда [14], рассчитана барическая зависимость относительного объема исходной фазы I $C_1 = V_1/V$ от давления ($V = V_1 + V_2$, V_2 — объем образующейся фазы II).

На рис. 5 представлена зависимость $C_1(P)$ для образца *n*-CdAs₂, вырезанного в направлении [100]. Зависимость $C_1(P)$ для образца *n*-CdAs₂, вырезанного в направлении [001] аналогична.

Рис. 5. Зависимость объемной доли исходной фазы C_1 от давления при подъеме и сбросе давления в области фазового перехода в *n*-CdAs₂.

Рис. 6. Зависимость сопротивления R от давления $(10-50 \ \Gamma \Pi a)$ при подъеме (черные точки) и сбросе давления (светлые точки). На вставке — зависимость удельного сопротивления $\rho(P)$ (кривая I) и коэффициента Холла $R_{\rm H}$ (кривая 2) от давления $(1-9 \ \Gamma \Pi a)$ для образца n-ZnAs₂.

Монокристаллы *p*-ZnAs₂ вырезались по кристаллографическому направлению [001]. Кристаллическая структура ZnAs₂ представлена на рис. 2. Основные параметры исследованных образцов представлены в табл. 1. Барические зависимости удельного сопротивления $\rho(P)$ и коэффициента Холла $R_{\rm H}(P)$ представлены на рис. 6.

Из рис. 6 (на вставке) видно, что с ростом давления удельное электросопротивление падает на порядок, а коэффициент Холла падает на 2 порядка, и при $P = 7 \Gamma \Pi a$ удельное электросопротивление и коэффициент Холла выходят на насыщение.

Так как ожидаемого фазового перехода по аналогии с $CdAs_2$ в $ZnAs_2$ не было обнаружено, мы предположили, что фазовый переход должен наблюдаться при более высоких давлениях. Были проведены исследования в алмазных камерах до 50 ГПа.

При увеличении давления (рис. 6), начиная с некоторого значения $P \ge 10$ ГПа, сопротивление образца *p*-ZnAs₂ уменьшается и при 35–40 ГПа имеет максимум, т. е. наблюдается фазовый переход. Сравнение результатов, полученных при гидростатическом давлении, с данными, полученными в алмазных камерах, позволяет предположить, что в диапазоне давлений P = 7-10 ГПа, по всей видимости, имеет место растянутый фазовый переход.

Таким образом, можно отметить, что барическая зависимость электросопротивления для ZnAs₂ претерпевает два фазовых перехода, $P_1 = 7-10 \Gamma \Pi a$ и $P_2 = 35-40 \Gamma \Pi a$.

Полученные данные свидетельствуют о том, что при обработке давлением в диарсениде цинка возникают необратимые изменения, и образующаяся фаза высокого давления остается устойчивой при нормальных условиях.

4. Заключение

Впервые при гидростатическом давлении до 9 ГПа на монокристаллических образцах диарсенида кадмия и диарсенида цинка одновременно исследованы удельное электросопротивление и коэффициент Холла в области фазового превращения. Определены характеристические точки, параметры фазового перехода и динамика изменения фазового состава с давлением. Выяснено, что положение точки фазового перехода и характеристические точки и параметры фазового превращения не зависят от концентрации носителей, ориентации образцов (для *n*-CdAs₂) и лишь слабо (в пределах ошибки эксперимента) сдвигаются в область слабых давлений с увеличением концентрации примесей, что может быть объяснено увеличением концентрации дефектов.

Изучение влияния высоких давлений до 50 ГПа на электрические характеристики ZnAs₂ показало, что под влиянием таких давлений в образце происходят необратимые изменения электрофизических характеристик. Полученные результаты свидетельствуют о возможности существования в диарсениде цинка структурного перехода при давлениях 35–40 ГПа.

Список литературы

- В.Б. Лазарев, В.Я. Шевченко, Я.Х. Гринберг, В.В. Соболев. Полупроводниковые соединения группы А^{II}В^V (М., Наука, 1978).
- [2] С.Ф. Маренкин, В.А. Морозова. Неорг. матер., 35 (10), 1190 (1999).
- [3] В.Б. Шипило, Е.М. Плышевский, И.М. Бельский. Физика газовых и твердофазных давлений (М., Наука, 1978).
- [4] J.B. Clark, C.W.F.T. Pisrorius. High Temp. High Pressures, 5, 319 (1973).
- [5] С.Ф. Маренкин, А.М. Раухман, А.Б. Маймасов, В.А. Попов. Неорг. матер., 33 (12), 1439 (1997).
- [6] L.G. Khvostantsev, L.P. Vereshchagin, A.P. Novikov. High Temp. — High Pressures, 9 (6), 637 (1977).
- [7] А.Ю. Моллаев, Л.А. Сайпулаева, Р.К. Арсланов, С.Ф. Маренкин. Неорг. матер., 37 (4), 405 (2001).
- [8] Л.Ф. Верещагин, Е.Н. Яковлев, Г.Н. Степанов, К.Ч. Бибаев,
 Б.В. Виноградов. Письма ЖЭТФ, 16 (4), 240 (1972).
- [9] A. Babushkin. High Pressure Res., 6, 349 (1992).
- [10] А.Л. Ройтбурд. УФН, **113** (1) 69 (1974).
- [11] А.Л. Ройтбурд. ФТТ, **25** (1) 33 (1983).
- [12] А.Л. Ройтбурд. ФТТ, 26 (7) 2025 (1984).
- [13] В.Н. Козлов, Г.Р. Умаров, А.А. Фирсов. ФТВД, 23, 9 (1986).
- [14] М.И. Даунов, А.Б. Магомедов, А.Ю. Моллаев, С.М. Салихов, Л.А. Сайпулаева. СТМ, **3**, 3 (1992).
- [15] А.Ю. Моллаев, Р.К. Арсланов, Р.И. Ахмедов, Л.А. Сайпулаева. ФТВД, **4**, 3 (1994).

Редактор Л.В. Беляков

Phase transitions in $A^{II}B^{V}$ semiconductors at high pressure

A.Yu. Mollaev, L.A. Saypulaeva, A.G. Alibekov, S.F. Marenkin*, A.N. Babushkin⁺

Institute of Physics, Daghestan Scientific Center, Russian Academy of Sciences, 367003 Makhachkala, Russia * Institute of Common and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia + Ural State University, 620083 Ekaterinburg, Russia

Abstract Resistivity and Hall coefficient have been measured in the *n*-CdAs₂ and *p*-ZnAs₂ at hydrostatic pressure up to 9 GPa and quasi-hydrostatic pressure up to 50 GPa in a room temperature range. The phase transition have been detected for *n*-CdAs₂ at P = 55 GPa. Two phase transitions occur for *p*-ZnAs₂. First have been observed at P = 10-15 GPa and second at P = 35-40 GPa.