Особенности электропроводимости и фотопроводимости полимерных композитов, содержащих гетерополиядерные комплексы M(II)/Cr(III)

© Н.А. Давиденко[¶], С.В. Дехтяренко, В.Н. Кокозей, А.В. Козинец, В.В. Семенака, В.А. Скрышевский, О.В. Третяк

Киевский национальный университет им. Тараса Шевченко, 01033 Киев, Украина

(Получена 23 июня 2008 г. Принята к печати 14 июля 2008 г.)

Исследованы электрические и фотоэлектрические свойства полимерных композитов с добавками гетерополиядерных комплексов Zn(II)/Cr(III) или Co(II)/Cr(III). При возбуждении d-d-переходов Cr³⁺ внутренний фотоэффект в пленках исследуемых композитов для комплекса цинка больше, чем для комплекса кобальта. Фотопроводимость возрастает при введении в состав композитов акцепторной добавки C₆₀. Энергия активации электропроводимости и фотопроводимости > 1 эВ и слабо зависит от внешнего электрического поля. Фототок уменьшается при включенном внешнем магнитном поле, и это в большей степени проявляется для композитов, содержащих комплекс Co(II)/Cr(III). Различия в фотопроводимости связываются с различными магнитными свойствами металлических центров в гетерополиядерных комплексах.

PACS: 72.40.+w, 72.80.Tm, 75.70.Ak, 73.61.Ph, 75.50.Xx

1. Введение

Пленки полимерных композитов (ППК) с малоразмерными частицами гетерополиядерных комплексов Cr(III) могут быть перспективными при разработке светочувствительных материалов для регистрации и обработки оптической информации [1]. Признаком изменения зарядового состояния является внутренний фотоэффект, проявляющийся в фотопроводимости ППК. Для усиления фотопроводимости ППК могут быть использованы акцепторные или донорные добавки, способствующие переносу электронов или дырок [1,2] между частицами гетерополиядерных комплексов. Эти добавки в электронейтральном полимерном связующем создают энергетические зоны транспорта неравновесных носителей заряда между частицами гетерополиядерных комплексов. Известно, что гетерополиядерные, а также гетерометаллические комплексы Cr(III) проявляют обменные взаимодействия [3-7], характер и величина которых зависят от магнитных свойств металлических центров, входящих в их состав. Поэтому целью настоящей работы было исследовать влияние внешнего магнитного поля и температуры на электро- и фотопроводимость ППК на основе электронейтрального полимерного связующего с добавками комплексов M(II)/Cr(III), содержащих магнитные центры различной природы.

2. Образцы и методика эксперимента

В качестве электронейтрального полимерного связующего ППК использовали поливинилбутираль (PVB) (рис. 1). Пленки PVB без добавок прозрачны во всей видимой области спектра, характеризуются низкой электропроводностью и отсутствием эффекта фо-

топроводимости, что обусловлено высоким значением потенциала ионизации и низким значением энергии сродства к электрону PVB. Поэтому PVB зачастую используется в качестве электронейтрального полимерного связующего для исследований фотопроцессов в ППК со специально введенными добавками. Комплексы $[Zn_2Cr_2(NCS)_4(HDea)_2(Dea)_2] \cdot CH_3CN$ (Sub1) и $[Co_2Cr_2(NCS)_4(HDea)_2(Dea)_2] \cdot 4ДМФА$ (Sub2) (здесь HDea, Dea — моно- и дидепротонированные остатки диэтаноламина, ДМФА — диметилформамид),

Рис. 1. Строение гетерополиядерных комплексов и полимера.

[¶] E-mail: daviden@ukrpack.net

полученные согласно [8], имеют подобное строение (рис. 1) и близкие значения минимальных расстояний между металлическими центрами: 3.007 и 3.019 Å для Cr(III)–Cr(III), 3.330 и 3.266 Å для Cr(III)–M(II), 5.960 и 5.815 Å для M(II)–M(II) [8]. В качестве акцепторной добавки в ППК использовали фуллерен C₆₀.

Образцы для исследований готовили в виде структур со свободной поверхностью (стеклянная подложка) – (пленка ППК) и сэндвич-структур (стеклянная подложка) – (электропроводящий слой SnO₂: In₂O₃) – (пленка ППК) – Ад. Методика приготовления образцов описана в [2]. Массовая концентрация Sub1, Sub2 составляла 33%, массовая концентрация Sub1, Sub2 составляла 33%, массовая концентрация C₆₀ — 3%. Толщина пленок ППК равнялась 3–4 мкм. Согласно результатам наших исследований [9], среднестатистический радиус частиц гетерополиядерных комплексов составлял ~ 500 Å, а среднестатистическое расстояние между границами частиц этих комплексов было ~ 70 Å.

На образцах со свободной поверхностью измеряли спектры поглощения в области длин волн λ = = 400-1000 нм. Образцы сэндвич-структур использовали для измерений плотности тока до облучения светом (j_d) и плотности тока во время и после облучения (j) в зависимости от электрического напряжения (U), приложенного к контактам, напряженности магнитного поля (H), температуры (T), времени облучения (t). В качестве источника света использовали лампу накаливания со стеклянным светофильтром, обеспечивающим пропускание в области длин волн λ > 530 нм. Величину ј_d определяли после окончания переходных процессов в результате приложения внешнего электрического напряжения. Величину максимальной плотности фототока (j_{PHmax}) определяли как добавку к j_d при освещении после установления квазистационарного значения *j*. Величину *U* изменяли в диапазоне 0-300 В. Кинетику тока регистрировали с помощью запоминающего осциллографа. Облучение проводили со стороны электропроводящего слоя SnO_2 : In_2O_3 . При температурных измерениях использовали термостат с оптическим окном. Температуру изменяли в диапазоне T = 293 - 355 К. Для получения воспроизводимых результатов каждый образец перед измерениями нагревали до $T = 355 \,\mathrm{K}$ с приложенным электрическим напряжением $U = 300 \, \mathrm{B}$ и затем охлаждали до начальной комнатной температуры. Для измерений *j*_d и *j*_{PHmax} в магнитном поле использовали электромагнит, между полюсами которого величину напряженности Н можно было изменять в диапазоне 0-5.5 кЭ. Рассчитывали относительную величину изменения *ј*_{РНтах} под действием магнитного поля $\delta j_{PHmax} = [j_{PHmax}(H) - j_{PHmax}(0)] / j_{PHmax}(0)$, где *j*_{PHmax}(0) — максимальное значение плотности тока фотопроводимости без магнитного поля, $j_{PHmax}(H)$ максимальное значение плотности тока фотопроводимости при магнитном поле Н. Направление силовых линий внешнего магнитного поля в исследуемых образцах было перпендикулярно направлению силовых линий электрического поля и направлению распространения световой волны.

3. Результаты экспериментов

Максимумы поглощения ППК находятся вблизи $\lambda = 600$ нм (рис. 2) и обусловлены d-d-переходами в Cr³⁺. Добавка C₆₀ увеличивает поглощение света в коротковолновой области спектра и несущественно влияет на поглощение ППК при $\lambda > 530$ нм. В образцах сэндвич-структур с пленками РVВ без добавок величина j_d составляет не более 10^{-6} A/м², а фототок в исследуемом диапазоне λ не наблюдается. В образцах ППК с Sub1, Sub2 значение j_d увеличивается на несколько порядков по сравнению с пленками PVB без добавок и не зависит от полярности U. Последнее позволяет исключить из рассмотрения эффекты термополевой инжекции носителей заряда из электрических контактов Ag и SnO2: In2O3 в ППК. В двойных логарифмических координатах зависимости *j*_d от U линейны с тангенсом угла наклона $m_d > 1$ (см. таблицу). Это позволяет представить указанную зависимость функцией вида $j_d \propto U^{m_d}$, используемой для анализа токов, ограниченных объемным зарядом, в полупроводниковых материалах [10]. Зависимости j_d от T, представленные в координатах Аррениуса, можно аппроксимировать прямыми линиями, что позволяет рассчитать значения энергии активации (W_d) электропроводимости (см. таблицу). Величина W_d слабо зависит от U. Введение в ППК акцептора С₆₀ приводит к возрастанию j_d , но W_d изменяется незначительно.

Во всех исследованных образцах обнаружено изменение тока под действием света. Время изменения j до достижения j_{PHmax} составляет несколько десятков секунд и уменьшается в 2–3 раза при введении в состав ППК добавки С₆₀ (рис. 3). Кинетика изменения тока под действием света несимметрична (рис. 3), но характер кинетики и величина j_{PHmax} не зависят от полярности

Рис. 2. Нормированные на максимальную амплитуду A_{max} спектры оптической плотности A пленок PVB + 33% Sub1 (1), PVB + 33% Sub2 (2).

Физика и техника полупроводников, 2009, том 43, вып. 4

Рис. 3. Зависимости фототока $j_{\rm PH}/j_{\rm PHmax}$ от времени *t* после начала облучения светом в образцах сэндвич-структуры с пленками PVB + 33% Sub1 (*1*), PVB + 33% Sub1 + 3% C₆₀ (*2*). T = 293 K, U = 60 B. Момент выключения света показан вертикальной стрелкой.

Рис. 4. Зависимости максимального фототока $j_{\text{РHmax}}$ от напряжения U (1-4) при T = 293 K и от температуры T(1'-4') при U = 60 В и H = 0 в образцах сэндвич-структур с пленками PVB + 33% Sub1 (1, 1'), PVB + 33% Sub2 (2, 2'), PVB + 33% Sub1 + 3% C₆₀ (3, 3'), PVB + 33% Sub2 + 3% C₆₀ (4, 4'). Интенсивность света ~ 60 Вт/м².

электрического напряжения. Зависимость j_{PHmax} от U можно представить степенной функцией $j_{PHmax} \propto U^{m_{PH}}$, где показатель степени $m_{PH} > 1$ (см. таблицу). При этом наблюдается различие в зависимостях j_{PHmax} и j_d от T. При T < 320 K зависимости $j_{PHmax}(T)$, пред-

Puc. 5. Зависимости δj_{PHmax} от магнитного поля *H* при T = 293 K, U = 60 B и интенсивности света ~ 60 BT/m² в образцах сэндвич-структур с пленками PVb + 33% Sub1 (*I*), PVB + 33% Sub2 (*2*), PVB + 33% Sub1 + 3% C₆₀ (*3*), PVB + + 33% Sub2 + 3% C₆₀ (*4*).

ставленные в координатах Аррениуса, линейны, что позволяет определить энергию активации (W_{PH}) фототока (рис. 4, таблица); при T > 320 К сделать это уже невозможно из-за уменьшения тока фотопроводимости с ростом T. Увеличение температурного диапазона, в котором с увеличением T возрастает j_{PHmax} , происходит при введении C₆₀ в ППК (рис. 4). Зависимости j_d от T, представленные в координатах Аррениуса, линейны во всем исследуемом диапазоне температур.

Основные электрические и фотоэлектрические характеристики исследованных ППК

Композит	m_d	$m_{ m PH}$	$W_d,$ $\Im \mathbf{B}$	$W_{ m PH}, \Im { m B}$
PVB+Sub1	1.8 ± 0.02	1.6 ± 0.02	1.11 ± 0.05	1.12 ± 0.05
PVB+Sub2	2.9 ± 0.03	3.0 ± 0.03	1.41 ± 0.05	1.42 ± 0.05
$PVB\!+\!Sub1\!+\!C_{60}$	1.5 ± 0.02	1.3 ± 0.01	1.23 ± 0.05	1.16 ± 0.05
$PVB\!+\!Sub2\!+\!C_{60}$	1.2 ± 0.01	1.1 ± 0.01	1.32 ± 0.05	1.34 ± 0.05

Ток фотопроводимости больше для комплекса Zn(II)/Cr(III) по сравнению с Co(II)/Cr(III), и для последнего комплекса наблюдается более сильное уменьшение фототока во внешнем магнитном поле (рис. 5). Во всех исследованных образцах не обнаружено влияния H на j_d . Величина j_{PHmax} уменьшается тогда, когда магнитное поле включено до начала облучения. Приложение магнитного поля после длительного облучения образцов практически не влияет на j_{PHmax} . Величина δj_{PHmax} изменяется при введении в состав ППК добавки C₆₀ (рис. 5).

4. Обсуждение результатов

Можно предположить, что фотопроводимость ППК с добавками частиц гетерополиядерных комплексов переходных металлов соответствует следующим модельным представлениям. После возбуждения светом металлического центра происходит электронный переход между этим и ближайшим металлическим центром. Во внешнем электрическом поле переходы образовавшихся неравновесных носителей заряда создают ток фотопроводимости. Если между отдельными частицами комплексов находится полимерное органическое связующее с диэлектрическими свойствами (в нашем случае PVB), то носители заряда, образовавшиеся в объеме частицы, достигают границы этой частицы и для дальнейшего передвижения должны преодолеть расстояние до границы соседней частицы. В нашем случае, когда среднестатистический радиус частиц ~ 500 Å [9], среднестатистическое расстояние между границами этих частиц составляет $\sim 70 \,\text{\AA}$ и допустимо для туннельных электронных переходов. На границах частиц носители заряда могут быть захвачены в энергетические ловушки. Накопление носителей заряда на ловушках сопровождается возрастанием показателя степени зависимости $j_{PHmax}(U)$ и уменьшением абсолютной величины этого тока, что объясняет несимметричный характер кинетики фототока (рис. 3). Последнее проявляется в большей степени для ППК с Sub2 по сравнению с Sub1 (рис. 4). Это можно объяснить образованием более глубоких ловушек в случае Sub2 из-за дополнительных обменных взаимодействий между парамагнитными центрами Cr³⁺ и Co²⁺, которые отсутствуют в случае диамагнитного Zn^{2+} (Sub1).

Подтверждением правильности приведенной модели может служить увеличение фототока в присутствии акцепторной добавки С₆₀ в полимерном связующем, так как молекулы акцептора создают дополнительные энергетические зоны транспорта электронов для переходов носителей заряда между частицами гетерополиядерных комплексов. При этом большое время нарастания фототока после начала облучения и его уменьшение при наличии С₆₀ в составе ППК (рис. 3) означает, что в механизме фотопроводимости наиболее медленным процессом является перенос неравновесных носителей заряда между границами частиц гетерополиядерных комплексов. Вероятность выхода неравновесного носителя заряда из ловушки на границе частицы гетерополиядерного комплекса и перехода этого носителя на соседнюю частицу уменьшается при замене парамагнитных ионов металла M(II) на диамагнитные из-за возрастания обменных взаимодействий. Взаимодействия неравновесного носителя заряда с M(II) могут усиливаться при наложении внешнего магнитного поля, что увеличивает глубину ловушек и приводит к более сильному падению фототока в случае Sub2 (рис. 5). Важно отметить, что на зависимостях $\delta j_{PHmax}(H)$ не наблюдается установление стационарного значения δj_{PHmax} для $H \leq 1$ кЭ, которое характерно в случае регистрации спин-зависимых эффектов для процесса фотогенерации неравновесных носителей заряда в аморфных ППК [11–13]. Последнее обстоятельство указывает на необходимость учитывать спиновые состояния металлических центров на границах раздела частиц гетерополиядерных комплексов. Роль акцепторной добавки в магнитном поле не изменяется и также заключается в образовании дополнительной энергетической зоны транспорта электронов, что приводит к увеличению фотопроводимости.

5. Заключение

Таким образом, различия в фотопроводимости ППК с исследованными гетерополиядерными комплексами можно объяснить различными магнитными свойствами металлических центров, входящих в их состав. Присутствие двух парамагнитных центров способствует появлению дополнительных обменных взаимодействий, которые можно рассматривать как основную причину образования более глубоких ловушек. Это приводит к уменьшению фотопроводимости ППК, содержащих комплекс с двумя парамагнитными центрами, по сравнению с ППК с комплексом, содержащим диа- и парамагнитный центры.

Список литературы

- [1] Н.А. Давиденко, В.Н. Кокозей, О.В. Нестерова, В.В. Семенака, С.В. Дехтяренко, Н.Г. Спицына, А.С. Лобач, Л.И. Костенко, Г.В. Маркин. Химия высоких энергий, 42 (3), 264 (2008).
- [2] Н.А. Давиденко, В.Н. Кокозей, А.А. Ищенко, А.А. Безнищенко, В.Г. Маханькова, Н.Г. Спицына, А.С. Лобач, И.И. Давиденко, А.Н. Попенака. ФТП, 41 (6), 654 (2007).
- [3] J. Mrozinski. Coord. Chem. Rev., 249, 2534 (2005).
- [4] Y.-Z. Zhang, Z.-M. Wang, S. Gao. Inorg. Chem., 45, 5447 (2006).
- [5] G. Novitchi, V. Ciornea, S. Shova, A. Gulae, J.P. Costes, A.K. Powell. Eur. J. Inorg. Chem., 1778 (2008).
- [6] W. Kaneko, M. Mito, S. Kitagawa, M. Ohba. Chem. Eur. J., 14, 3481 (2008).
- [7] Y.-S. Ma, Y.-Z. Li, L.-M. Zheng. Inorg. Chem., 47, 4536 (2008).
- [8] В.Н. Кокозей, Д.В. Шевченко, В.Н. Никитина, В.В. Семенака. Декларационный патент Украины № 23337 (Украина, Бюл. № 7, 2007).
- [9] Н.А. Давиденко, В.Н. Никитина, Д.В. Шевченко, В.Н. Кокозей, С.Л. Студзинский, С.В. Дехтяренко. ФТП, 49 (12), 2151 (2007).
- [10] М. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973).
- [11] А.Л. Бучаченко. Успехи химии, 72 (5), 419 (2003).
- [12] Я.Ф. Зельдович, А.Л. Бучаченко, Е.Л. Франкевич. УФН, 55 (1), 3 (1988).
- [13] N.A. Davidenko, N.G. Kuvshinsky. J. Chem. Phys., 106 (15), 6507 (1997).

Редактор Л.В. Шаронова

Peculiarities of conductivity and photoconductivity of polimer composites containing heteropolynuclear complexes M(II)/Cr(III)

N.A. Davidenko, S.V. Degtyarenko, V.N. Kokozay, A.V. Kozinets, V.V. Semenaka, V.A. Skryshevsky, O.V. Tretyak

National Taras Shevchenko University, 01033 Kyiv, Ukraine