удк 621.315.592 Электрические свойства диарсенида цинка—олова (ZnSnAs₂), облученного ионами H⁺

© В.Н. Брудный [¶], Т.В. Ведерникова

Томский государственный университет, 634050 Томск, Россия

(Получена 20 мая 2008 г. Принята к печати 10 июня 2008 г.)

Представлены результаты исследования электрофизических свойств и изохронного отжига *p*-ZnSnAs₂, облученного ионами H⁺ (энергия E = 5 МэВ, доза $D = 2 \cdot 10^{16}$ см⁻²). Определены предельные электрофизические характеристики облученного материала: коэффициент Холла $R_{\rm H}(D)_{\rm lim} \approx -4 \cdot 10^3$ см³/Кл, проводимость $\sigma(D)_{\rm lim} \approx 2.9 \cdot 10^{-2}$ Ом⁻¹ · см⁻¹ и положение уровня Ферми $F_{\rm lim} \approx 0.58$ эВ выше потолка валентной зоны при 300 К. Вычислено энергетическое положение "нейтральной" точки соединения ZnSnAs₂.

PACS: 61.80.Jh, 73.61.Le

Соединение ZnSnAs₂ (ширина запрещенной зоны $E_{g} \approx 0.70 \, \text{эB}$ при 0 K) — один из представителей полупроводников группы II-IV-V2, характерной особенностью которого является отсутствие тетрагонального сжатия кристаллической решетки. По этой причине в зависимости от скорости охлаждения расплава данный материал легко кристаллизуется не только в халькопиритной, но и в сфалеритной модификации, для которой характерно сильное разупорядочение ("перемешивание") атомов катионной подрешетки. Более того, халькопиритная кристаллохимическая фаза может содержать сфалеритные включения — домены [1]. Получаемый в настоящее время ZnSnAs₂ является материалом, содержащим, предположительно, вакансии летучих компонентов Zn и As, неконтролируемые химические примеси, а также дефекты разупорядочения в катионной подрешетке. Согласно термодинамическим оценкам в рамках формализма квазихимических реакций, такие кристаллы могут содержать дефекты разупорядочения в катионной подрешетке в концентрациях, превышающих 10¹⁹ см⁻³ [2]. Этим, в частности, объясняются устойчивый р-тип проводимости и высокая концентрация свободных дырок, $\sim (5 \cdot 10^{17} - 10^{20}) \, \mathrm{cm}^{-3}$, для халькопиритных кристаллов ZnSnAs₂. Все попытки получения материала *n*-типа проводимости путем отклонения состава расплава соединения от стехиометрического при выращивании, за счет легирования расплава химическими примесями или диффузией примесей в выращенный материал, а также с помощью последующей термообработки выращенного материала были безуспешны. В то же время показано, что облучение p^+ -ZnSnAs₂ халькопиритной модификации реакторными нейтронами приводит к уменьшению концентрации свободных дырок [3], а в экспериментах по облучению такого материала электронами (энергия $E \approx 2 \,\mathrm{M}$ эB) были впервые получены образцы *n*-типа проводимости [4-7]. В настоящее время облучение высокоэнергетичными частицами является единственным способом получения объемных образцов *n*-ZnSnAs₂ [8].

Представленная работа является продолжением работ [4-7] по исследованию влияния радиационных дефектов (РД) на электрофизические свойства ZnSnAs₂ в условиях высокой плотности РД. Исследовались электрофизические свойства специально не легированных кристаллов p-ZnSnAs₂ халькопиритной модификации с концентрацией свободных дырок $p = (3.0-3.8) \cdot 10^{18} \,\mathrm{cm}^{-3}$, выращенных прямым синтезом из стехиметрического состава с последующим медленным охлаждением. Облучение образцов толщиной ~ 100 мкм, что меньше среднего проецированного пробега протонов с энергией E = 5 MэВ в ZnSnAs₂ ~ 120 мкм, проводилось при плотностях тока $j = 10^{-8} - 10^{-6}$ А/см², температурах не выше 320 К, интегральными потоками ионов $\mathrm{H^{+}}$ до $D = 2 \cdot 10^{16} \,\mathrm{cm^{-2}.^{1}}$ После облучения образцы выдерживались от нескольких недель до 1-2 лет в зависимости от дозы облучения для спада наведенной активности.

Дозовые изменения коэффициента Холла R_H и проводимости σ при протонном облучении кристаллов *p*-ZnSnAs₂ представлены на рис. 1. Как и при электронном облучении ($E \approx 2 \,\mathrm{M}$ эB), наблюдаются уменьшение концентрации свободных дырок *p*, переход материала в высокоомное состояние, близкое к собственной проводимости, с последующей конверсией типа проводимости исходного p-ZnSnAs₂ $p \rightarrow n$. При этом эффективность протонного облучения ($E = 5 \text{ M} \Rightarrow \text{B}$) более чем в 10³ раз выше эффективности облучения материала электронами (E = 2 МэВ). В области больших доз протонов, $D \approx 2 \cdot 10^{16} \,\mathrm{cm}^{-2}$, на кривых зависимостей $R_{\mathrm{H}}(D)$ и $\sigma(D)$ наблюдаются участки насыщения, соответствующие предельным значениям $R_{\rm H}(D)_{\rm lim} \approx -4\cdot 10^3 \,{\rm cm}^3$ /Кл и $\sigma(D)_{\rm lim} \approx 2.9\cdot 10^{-2} \,{\rm Om}^{-1}\cdot {\rm cm}^{-1}$ вблизи температуры $T = 300 \, \text{K}$. Уровень Ферми *F* в результате облучения смещается из своего начального положения вблизи потолка валентной зоны $E_v + 0.03$ эВ в верхнюю половину запрещенной зоны ZnSnAs₂ и закрепляется в "предель-

[¶] E-mail: brudnyi@mail.tsu.ru

¹ Облучение осуществлялось на циклотроне Научно-исследовательского института ядерной физики при Томском политехническом университете (г. Томск).

 E_c $\stackrel{I-10^6}{\underset{I=1}{\overset{I-10^6}}{\overset{I-10^6}{\overset{I-10^6}}{\overset{I-10^6}}{\overset{I-10^6}{\overset{I}$ 0.6 6.5 °C 0.4 °C 0.3 °C 0.2 °C 2 0.1 E_{v} 1015 10^{16} 10^{14} Proton fluence, cm^{-2}

Рис. 1. Дозовые изменения постоянной Холла $|R_{\rm H}|$ (1), электропроводности σ (2) и положения уровня Ферми (3) при протонном облучении *p*-ZnSnAs₂ ($p = 3.6 \cdot 10^{18}$ см⁻³, $\sigma = 6.7 \cdot 10^1 \,\mathrm{Om} \cdot \mathrm{cm}$). Температура измерений $T = 295 \,\mathrm{K}$.

ном" положении $F_{
m lim} \approx E_v + 0.58 \, {
m sB}$ вблизи комнатных температур (рис. 1).

Были проведены температурные измерения R_H в образцах ZnSnAs₂, облученных протонами. Характерная особенность кривых $R_{\rm H}(T)$ для исходного *p*-ZnSnAs₂ наличие максимума в области низких температур, который смещается в область комнатных температур по мере роста дозы протонного облучения. Этот максимум на кривых $R_{\rm H}(T)$ связывают со сложным строением валентной зоны — наличием тяжелых и легких дырок (эффективные массы $m_p = 0.65m_0$ и $m_p = 0.065m_0$ соответственно) с учетом возможной величины кристаллического расщепления для этих зон $\sim 10^{-2}$ эВ [9], либо с присутствием "примесной" зоны вблизи потолка валентной зоны в специально не легированных образцах p-ZnSnAs₂ [10]. Эта особенность кривых $R_{\rm H}(T)$ была изучена нами при исследовании кристаллов *p*-ZnSnAs₂, компенсированных с помощью электронного облучения [7]. При этом анализ модели "примесной" зоны показал, что в исследованных исходных специально не легированных кристаллах p-ZnSnAs2 имеется зона акцепторных состояний вблизи $E_v + 0.03$ эВ с плотностью $\sim 3\cdot 10^{19}\,{
m cm^{-3}}$ и глубокие доноры в верхней половине запрещенной зоны в концентрациях до $\sim 7 \cdot 10^{18} \, \mathrm{cm}^{-3}$. По-видимому, эти донорные и акцепторные состояния обусловлены присутствием собственных дефектов решетки в исходном специально не легированном p-ZnSnAs₂. В частности, зона акцепторных состояний в соответствии с термодинамическими расчетами для соединений II-IV-V2 [2] может принадлежать антиструктурным дефектам катионной подрешетки. Очевидно также, что именно эти особенности исследуемого материала обусловливают его р-тип проводимости и нечувствительность к легированию химическими примесями.

Анализ изменения электрофизических параметров при протонном облучении был проведен на основе сопоставления полученных результатов с соответствующими данными для "перекрестных" бинарных аналогов ZnSnAs₂ — соединений InAs и GaAs. Исходя из близости запрещенной зоны ZnSnAs₂ и его аналога InGaAs₂ можно оценить величину

$$E_g^*(\text{ZnSnAs}_2) \approx (1/2)[E_g(\text{InAs}) + E_g(\text{GaAs})] \approx 0.86 \, \Im \text{B}$$

и предельное положение уровня Ферми

$$F_{\text{lim}}^*(\text{ZnSnAs}_2) \approx (1/2)[F_{\text{lim}}(\text{InAs}) + F_{\text{lim}}(\text{GaAs})] \approx 0.56 \, \Im \text{B}.$$

Здесь были использованы значения $F_{\text{lim}}(\text{InAs}) = E_v$ +0.52 эВ и $F_{\text{lim}}(\text{GaAs}) = E_v + 0.6$ эВ [11]. Экспериментальное значение $F_{\text{lim}}(\text{ZnSnAs}_2) \approx E_v + 0.58$ эВ близко к оцененной величине $F^*_{lim}(\text{ZnSnAs}_2) \approx 0.56$ эВ. Эти оценки предполагают также "близость" электронной структуры собственных дефектов решетки, ответственных за закрепление уровня Ферми в соответствующих тройных и бинарных аналогах, что подтверждено расчетами для вакансий и антиструктурных дефектов на примере GaP и ZnGeP₂ [12].

Поскольку величина Flim в облученных полупроводниках "проявляется" как энергетическое положение точки ветвления комплексной зонной структуры ("нейтральной" точки) кристалла, были проведены расчеты ее значения для ZnSnAs₂ в модели амфотерного дефектного уровня E_{ADL} [11], а также с помощью оценки величины $\langle E_G \rangle / 2$, отождествляемой с точкой ветвления одномерного кристалла [13]. Здесь $\langle E_G \rangle$ — средний энергетический зазор между нижней зоной проводимости и верхней валентной зоной в пределах первой зоны Бриллюэна полупроводника. Значения E_{ADL} и $\langle E_G \rangle/2$, вычисленные с использованием 10 спецточек в случае InAs, GaAs и 2 спецточек (1/4, 1/4, 1/4), (3/4, 1/4, 1/4) в случае ZnSnAs₂ [14], представлены в таблице. Как

 10^{1} 10^{4} $|R_{\rm H}|, \, {\rm cm}^3/{\rm C}$ 10^{3} 10^{2} 10^{1} 10^{-3} 200 300 500 100 400 Annealing temperature T_a , °C

 10^{2}

Рис. 2. Изменения при изохронном отжиге (10 мин) постоянной Холла $R_{\rm H}$ (1-3) и электропроводности σ (4) в кристаллах p-ZnSnAs₂ ($p = 3.6 \cdot 10^{18} \text{ см}^{-3}$), облученных протонами (5 МэВ), интегральными потоками D, 10^{15} см⁻²: I - 1, 2 - 2, (3, 4) - 20. Температура измерений T = 295 К.

Физика и техника полупроводников, 2009, том 43, вып. 4

Расчетные и экспериментальные (в скобках) значения минимальной запрещенной зоны E_g , расчетные значения E_{ADL} и $\langle E_G \rangle/2$ в InAs, GaAs, ZnSnAs₂; оценочные значения E_g^* и F_{lim}^* в ZnSnAs₂; экспериментальные значения F_{lim} и тип проводимости в облученных полупроводниках.

Полупроводник	E_g	E_g^*	$F_{ m lim}^*$	$E_{\rm ADL}$	$\langle E_G \rangle / 2$	$F_{ m lim}^*$	Тип проводимости
InAs	0.42(0.42)	-	-	0.51	0.50	0.52	n^+
GaAs	1.51(1.51)	_	_	0.63	0.70	0.60	i-p
ZnSnAs ₂	0.70(0.6-0.76)	0.86	0.56	0.54	0.68	0.58	n

Примечание. Энергетические величины приведены в эВ, энергии уровней отсчитаны от потолка валентной зоны.

следует из этих данных, положения предельного уровня Ферми F_{lim} и "нейтральной" точки в моделях E_{ADL} и $\langle E_G \rangle / 2$ неплохо соответствуют друг другу.

Результаты исследования влияния кратковременного (10 мин) изохронного отжига на электрофизические параметры облученного протонами ZnSnAs₂ представлены на рис. 2. Восстановление $R_{\rm H}$, σ и F протекает в широком температурном интервале $T_a = 20-500^{\circ}$ С, при этом обратная смена знака типа проводимости $n \rightarrow p$ имеет место в области температур $T_a \approx 220^{\circ}$ С. Следует отметить, что кривые "облучение–отжиг" зеркально подобны друг другу.

Таким образом, показано, что в то время как ростовые дефекты всегда задают *p*-тип проводимости ZnSnAs₂ за счет закрепления уровня Ферми вблизи потолка валентной зоны кристалла, радиационные дефекты определяют его *n*-тип проводимости за счет смещения уровня Ферми в верхнюю половину запрещенной зоны в положение $F_{\rm lim} \approx E_v + 0.58$ эВ. Можно отметить, что радиационные дефекты не только определяют *n*-тип проводимости ZnSnAs₂, но и фактически исчезают при кратковременном отжиге вблизи температуры $T_a \approx 500^{\circ}$ С, в то время как ростовые дефекты данного соединения устойчивы к длительному отжигу при температурах, близких к температуре плавления 775°С данного соединения, что указывает на их сложную природу.

Список литературы

- Ю.В. Рудь. Автореф. докт. дис. (Л., ФТИ им. А.Ф. Иоффе РАН, 1987).
- [2] О.В. Воеводина. Автореф. докт. дис. (Томск, СФТИ им. В.Д. Кузнецова при ТомГУ, 2002).
- [3] V. Popescu, O.J.A. Tianenen, T.O. Tuomi. Phys. Status Solidi A, 14, 541 (1972).
- [4] М.А. Кривов, В.Г. Мелев, В.Н. Климов, А.С. Хлыстова. ФТП, 9, 1211 (1975).
- [5] V.N. Brudnyi, D.L. Budnitskii, M.A. Krivov, V.G. Melev. Physica Status Solidi A, 35, 425 (1976).
- [6] М.А. Кривов, В.Г. Мелев. Изв. вузов. Физика, 19, 134 (1976).
- [7] V.N. Brudnyi, S.I. Borisenko, A.I. Potapov. Phys. Status Solidi A, 118, 505 (1990).
- [8] В.Н. Брудный, М.А. Кривов, В.Г. Мелев, А.И. Потапов. А. с. № 871680 (СССР), 1981.

- [9] Полупроводники А²В⁴С₅², под ред Н.А. Горюновой, Ю.А. Валова (М., Сов. радио, 1974).
- [10] S. Isomura, S. Tomioka. Memoirs of the Faculty of Engineering Ehime University, 10, 67 (1983).
- [11] V.N. Brudnyi, S.N. Grinyaev, N.G. Kolin. Physica B, 348, 213 (2004).
- [12] В.Н. Брудный, В.Г. Воеводин, С.Н. Гриняев. ФТТ, 48, 1949 (2006).
- [13] V.N. Brudnyi, S.N. Grinyaev, V.E. Stepanov. Physica B: Condens. Matter, 212, 429 (1995).
- [14] В.Н. Брудный. Автореф. докт. дис. (Томск, ТомГУ, 1993).

Редактор Л.В. Шаронова

Electrophysical properties of zinc-tin diarsenide (ZnSnAs₂) irradiated with H⁺ ions

V.N. Brudnyi, T.V. Vedernikova

Tomsk State University, 634050 Tomsk, Russia

Abstract The electrophysical properties and isochronal annealing results for H⁺ ions irradiated (energy E = 5 MeV, dose $D = 2 \cdot 10^{16}$ cm⁻²) *p*-ZnSnAs₂ are presented. The limit electrophysical characteristics in the irradiated material have been estimated: Hall coefficient $R_{\rm H}(D)_{\rm lim} \approx -4 \cdot 10^3$ cm³/C, conductivity $\sigma(D)_{\rm lim} \approx 2 \cdot 10^{-2} \Omega^{-1} \cdot \text{cm}^{-1}$ and Fermi level position $F_{\rm lim} \approx 0.58$ eV above the top of valence band. The energy of the "neutral" point for ZnSnAs₂ has been calculated.