Фото- и электрофизические свойства растворимых полифенилхинолинов, содержащих кислородную или фениламинную группу

© Е.Л. Александрова*, В.М. Светличный[¶], Л.А. Мягкова, Т.Н. Некрасова, А.Р. Тамеев⁺, А.В. Ванников⁺, В.В. Кудрявцев

Институт высокомолекулярных соединений Российской академии наук,

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

⁺ Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук,

119991 Москва, Россия

(Получена 27 мая 2008 г. Принята к печати 10 июня 2008 г.)

Исследованы фото- и электрофизические свойства полифенилхинолинов, различающихся строением донорных мостиковых групп между хинолиновыми циклами — кислородной и фениламинной. Показано, что пленки синтезированных полимеров обладают светочувствительностью на уровне 10^5 см^2 /Дж (интегральная чувствительность — $5 \cdot 10^{-4} (\text{лк} \cdot \text{c})^{-1}$), при этом квантовый выход фотогенерации носителей заряда равен 0.07, а их дрейфовая подвижность составляет по порядку величины $10^{-6} \text{ см}^2/(\text{B} \cdot \text{c})$. Сбалансированность дрейфовой подвижности электронов и дырок в полифенилхинолине с фениламинной мостиковой группой делает полимер перспективным при разработке пленочных устройств, основанных на биполярной проводимости материала (например, однослойного светодиода).

PACS: 72.40.+w, 73.61.Ph, 78.55.Qr, 78.66.Qn, 78.40.Me

При разработке новых полимеров для органических светодиодов первоочередной задачей является поиск полимеров, характеризующихся эффективной электролюминесценцией и стабильными к внешним воздействиям свойствами. С этой точки зрения интерес представляют ароматические азотсодержащие представители класса полифенилхинолинов:

Авторами работ [1,2] был синтезирован 2,6-полифенилхинолин, содержащий между хинолиновыми циклами кислородную мостиковую группу и 9,9-ди-*н*-гексилфлуорен в Ar-фрагменте:

где $R = C_6 H_{13} - .$

Было отмечено, что данный полимер обладает люминесценцией в области спектра 570-580 нм (с квантовой эффективностью до 0.035%) и может быть использован как электронно-транспортный слой в двухслойном светоизлучающем диоде [2]. Введение в структуру хинолиновых циклов алифатических заместителей вместо фенильных и использование в Ar-фрагменте производных, содержащих пара-фениленовые, 4, 4'-(бифениленовые), стильбеновые, 5, 5'-(битиениленовые), бис(тиенил)виниленовые и 3, 7-фенотиазиниленовые группировки, приводит к растворимости полимеров в легколетучих органических растворителях. Синтез и строение таких полихинолинов описаны в работе [3]:

Показано, что варьированием ариленового фрагмента в поли-(2, 2'-(арилен-6, 6'-*бис*(4-алкилхинолинах)) от *пара*-фенилена до *бис*(тиенил)винилена можно эффективно влиять на спектр электролюминесценции, смещая максимум полосы люминесценции (при квантовой эффективности электролюминесценции до 0.12%) от $\lambda = 513$ нм для *пара*-фенилена до $\lambda = 656$ нм для про-

¹⁹⁹⁰⁰⁴ Санкт-Петербург, Россия

¹⁹⁴⁰²¹ Санкт-Петербург, Россия

[¶] E-mail: valsvet@hq.macro.ru

изводного фенотиазина (при этом потенциал ионизации фрагмента изменяется от 5.96 до 5.17 эв) [3]. Двухслойные светоизлучающие диоды, содержащие в качестве транспортного слоя данные полихинолины, обладают люминесценцией от сине-зеленой до глубоко красной области спектра [3].

В работе [4] описаны полифенилхинолины, содержащие в своей структуре донорные фениламинные мостиковые группы, а в ариленовом фрагменте флуореновые и карбазольные группировки:

Для данных полимеров показаны наличие биполярной проводимости и сдвиг максимума полосы спектра люминесценции карбазолилсодержащего полимера в красную область по сравнению с положением максимума полосы люминесценции аналогичного полихинолина, имеющего кислородную донорную мостиковую группу, разделяющую хинолиновые звенья. Это может быть связано с эффектом межцепного зарядового переноса за счет более высокой электронной плотности на атоме азота по сравнению с атомом кислорода.

Таким образом, во-первых, модификация химического строения 2, 6-полифенилхинолинов за счет введения мостиковых групп между хинолиновыми циклами и за счет объемных фрагментов в повторяющееся звено полимера представляется перспективной при получении материалов для эффективных однослойных светоизлучающих диодов, а также для изменения области излучения и повышения эффективности электролюминесценции. Во-вторых, анализ спектров и интенсивности люминесценции синтезированных полифенилхинолинов [1–4] показывает, что нельзя заранее быть уверенным в электронодонорных свойствах мостикового бихинолинового фрагмента. Однако в том случае, когда в ариленовом Ar-фрагменте в качестве мостиковой группы содержится акцепторный атом кислорода, введение между хинолиновыми циклами донорных мостиковых групп, например фениламинной, должно приводить к увеличению интенсивности люминесценции и к смещению максимума ее полосы в инфракрасную область спектра. При этом фениламинную группу в окружении фенильных колец бихинолинового звена мы рассматриваем, с В данной работе исследованы фото- и электрофизические свойства нового синтезированного 2, 6-полифенилхинолина, содержащего между хинолиновыми циклами фениламинную мостиковую группу, в сравнении со свойствами полихинолина, имеющего кислородную мостиковую группу.

1. Объекты и методы исследования

В качестве объектов исследования в работе использованы 2,6-полифенилхинолины (ПФХ): поли-[2, 2'-n, n- (оксидифенилен)-6, 6'- (оксибис(4-фенилхинолин))] (ПФХ-1) и поли-[2, 2'-(n, n-(оксидифенилен)-6, 6'-(фениламинбис(4-фенилхинолин))] (ПФХ-2):

где $X = -O - для \Pi \Phi X$ -1 и X = N - Ph для $\Pi \Phi X$ -2.

Синтез ПФХ-1 и ПФХ-2 проводили по методике, указанной в работах [6,7]. Полимеры получали в виде порошков, которые растворимы в N-метил-2-пирролидоне (МП) и хлороформе и образуют пленочные покрытия с хорошей адгезией.

Измерение светочувствительности S_{0.1} и квантового выхода фотогенерации свободных носителей заряда *п* выполнено в электрофотографическом (ЭФ) режиме по методике [8-10] в спектральной области 400-700 нм при напряженности электрического поля $E = (0.2 - 1.0)E_0$ В/см, где E_0 — предельная напряженность поля для данного материала при T = 300 K. Светочувствительность S_{0.1} определяется по критерию спада поверхностного потенциала слоя V на 10% от начальной величины, т.е. $\Delta V/V = 0.1$. Интегральная светочувствительность $S_{0,1}^{\text{int}}$ измерена при освещении образца галогеновой лампой КГМ-300 (мощность 300 Вт). С использованием модели Онзагера [11], принятой для описания процесса фотогенерации в органических полупроводниках [1,2], определяли радиусы термализации $r_{\rm T}$, т.е. расстояния, на которых образовавшиеся при поглощении фотона связанные в пары носители заряда приходят в равновесие с решеткой, и квантовый выход образования связанных пар носителей заряда η_0 .

Для ЭФ измерений $S_{0.1}$ и η образцы наносили методом центрифугирования из 25–35 мас% раствора на стеклянные подложки с прозрачным проводящим слоем In₂O₃(Sn). Толщина слоев *d* составляла 1–3 мкм.

Характеристика	ПФХ-1	ПФХ-2
Потенциал ионизации молекулы, соответствующей мостиковой группе, входящей между хинолиновыми звеньями I _D , эВ [5]	7.8	6.9
Край полосы собственного поглощения λ ₀ , нм	385	460
Край полосы спектральной светочувствительности λ_0^s , нм	450	510
Интегральная светочувствительность $S_{0,1}^{\text{int}}$, (лк · c) ⁻¹	$1.1\cdot 10^{-4}$	$5.2 \cdot 10^{-4}$
Квантовый выход фотогенерации носителей заряда η (при $\lambda < \lambda_0$)	0.02 ± 0.01	0.07 ± 0.02
Квантовый выход образования связанных пар η_0	0.04 ± 0.02	0.14 ± 0.03
Радиус термализации <i>г</i> _т , нм	1.9 ± 0.02	2.2 ± 0.2

Фотофизические характеристики синтезированных полифенилхинолинов ПФХ-1 и ПФХ2

Спектры люминесценции снимали на люминесцентном спектрофотометре LS 100, фирма РТІ (Канада) в интервале длин волн 350–700 нм. Длина волны возбуждающего света — 337 нм, ширина щелей на входе и выходе — 4 нм. Измерения проводили для растворов полимеров в хлороформе (концентрация полимера 0.025 мг/мл) в кварцевой кювете толщиной 1 см.

Спектры ультрафиолетового (УФ) поглощения получены на спектрофотометре Specord М-400 в диапазоне длин волн 200–700 нм в растворах в МП и хлороформе, приготовленных для ЭФ измерений.

Измерение дрейфовой подвижности носителей заряда µ, характеризующей транспортные свойства материала, выполнено по времяпролетному (ВП) методу [13-16] в сандвич-структурах ІТО/ПФХ/А1 при комнатной температуре. При подготовке образцов на стеклянную подложку с проводящим слоем ITO поливали раствор ПФХ в хлороформе, высушивали его при комнатной температуре в течение суток и получали полимерные пленки толщиной *d* = 1.8 мкм. Затем на поверхность пленки ПФХ последовательно наносили генерационный слой (ГС) селена толщиной 0.1 мкм и верхний полупрозрачный электрод из алюминия. Se и Al наносили методом термического распыления вещества в вакууме на установке ВУП-4 при давлении 10⁻⁴ Па. При проведении ВП измерений на один электрод подавали постоянный потенциал, а другой электрод соединяли через нагрузочное сопротивление R_L с осциллографом (Tektronix TDS3032B/ADA400). Под действием импульса света (длительность на полувысоте 20 нс) от ксеноновой лампы (Xenon Corp., модель 437В) и приложенного электрического поля в ГС происходила фотогенерация носителей заряда. Узкий пакет дырок или электронов (в зависимости от полярности), инжектированный в полимерную пленку, дрейфовал до противоположного электрода. Таким образом, регистрировали переходные токи в режиме малого сигнала (искажение приложенного поля пренебрежимо мало), соблюдая условия $q \leq 0.05C_{\rm s}V$ и $R_L C \ll t_T$, где q — суммарный инжектированный заряд, V — приложенное электрическое напряжение, C_s — емкость образца, С — емкость измерительной цепи. По характерному излому в кинетике тока определяли время пролета t_T носителей заряда. Дрейфовую подвижность рассчитывали по формуле $\mu = d/E t_T$, где *Е* — напряженность поля в образце.

2. Результаты и обсуждение

Результаты исследования фото- и электрофизических свойств синтезированных ПФХ, такие как УФ поглощение, светочувствительность, фотолюминесценция и подвижность носителей заряда, представлены на рис. 1–3 и в таблице.

На рис. 1 приведены УФ спектры поглощения полимеров ПФХ-1 (кривые 1, 1', 1", 1") и ПФХ-2 (кривые 2, 2'), при этом спектры (1, 1", 2) получены в МП, а (1', 1''', 2') в хлороформе. Спектры (1, 1'') и (1', 1''') измерены с интервалом в 10 мин. Из сравнения кривых 1, 2 и 1', 2' видно, что вид спектра зависит от растворителя, меняется во времени, изменяется интенсивность и положение максимумов в области спектра 340-370 нм. Сопоставление спектров полимеров ПФХ-1 и ПФХ-2 показывает, что край собственного поглощения для ПФХ-2 в хлороформе и МП (рис. 1, кривые 2, 2') сдвинут по сравнению со спектром ПФХ-1 (рис. 1, кривые 1, 1') на $\sim 0.4\, {
m sB}$ в длинноволновую часть спектра. В спектре ПФХ-1 имеются две полосы поглощения в интервале $\lambda = 350 - 370$ нм, в спектре ПФХ-2 длинноволновый максимум при $\lambda = 420$ нм и полоса при $\lambda = 350$ нм. Сравнение энергий полос поглощения ПФХ-2 и ПФХ-1 (см. таблицу) свидетельствует о том, что полоса ~ 350 нм относится к дифенилоксидной группировке, а полоса 420 нм — к трифениламинной группе с более низким значением I_D. Наличие двух полос в

Рис. 1. УФ спектры поглощения полимеров ПФХ-1 (1, 1', 1'', 1''') и ПФХ-2 (2, 2') в МП (1, 1'', 2) и хлороформе (1', 1''', 2'). Спектры (1, 1'') и (1', 1''') измерены с интервалом 10 мин.

Физика и техника полупроводников, 2009, том 43, вып. 3

Рис. 2. Спектры светочувствительности полифенилхинолинов: *I* — ПФХ-1, *2* — ПФХ-2.

Рис. 3. Спектры фотолюминесценции растворов полифенилхинолинов в хлороформе (концентрация полимера 0.025 мг/мл): *1* — ПФХ-1, *2* — ПФХ-2, *3* — смесь (ПФХ-1): (ПФХ-2) в соотношении 1:1.

спектре ПФХ-1, имеющем дифенилоксидные группы в бихинолиновом и ариленовом фрагментах мономерного звена, свидетельствует, по-видимому, о поглощении дифенилоксидной группой, входящей как в бихинолиновый, так и в ариленовый фрагмент элементарного звена полимера. Изменение энергии и интенсивности полос поглощения в области 340–370 нм, соответствующее поглощению дифенилоксидной группой, очевидно, свидетельствует о формировании комплексов с переносом заряда между атомом N⁺ хинолинового звена и атомами кислорода O⁻ дифенилоксидных групп, входящих в бихинолиновый и ариленовый фрагменты.

Измерение спектров светочувствительности (рис. 2) показало, что величина $S_{0.1}$ для ПФХ-2 (кривая 2) в 5 раз выше, чем для ПФХ-1 (кривая 1). При этом квантовые выходы η и η_0 увеличиваются в 3.5 раза, при незначительном увеличении (~15%) радиуса термализации $r_{\rm T}$ (см. таблицу). Интегральная светочувствительность $S_{0.1}^{\rm int}$

для ПФХ-2 также в 5 раз выше, чем для ПФХ-1 (см. таблицу). Приведенные данные наряду с увеличением длины волны, соответствующей длинноволновому краю спектральной светочувствительности $S_{0.1}(\lambda)$, свидетельствуют о лучших фотогенерационных свойствах ПФХ-2, что и следовало ожидать с учетом величин потенциалов ионизации $I_{\rm D}$ трифениламина и дифенилоксида.

Полученные результаты могут быть объяснены в рамках традиционного для органических материалов механизма фотогенерации носителей заряда. В изученных полимерных системах, содержащих хинолиновые группы, как для органических материалов с низкой подвижностью носителей заряда, процесс фотогенерации носителей заряда является двустадийным [13,17] и сводится к следующему. Поглощение фотона происходит в пределах мономерного звена и сопровождается переносом заряда с донорного фрагмента, содержащего фениламинную или кислородную мостиковую группу между хинолиновыми циклами, на акцепторую дифенилоксидную группировку в ариленовом фрагменте на расстояние r₀, с локализацией положительного заряда на атоме азота донорного фрагмента и отрицательного на атоме кислорода акцепторной дифенилоксидной группировки в ариленовом фрагменте. На начальной сатдии фотогенерации — стадии термализации — носители заряда, находящиеся на расстоянии r_0 , разделяются до расстояния $r_{\rm T}$, при котором теряют избыток полученной от фотона энергии. Дальнейшее разделение зарядов происходит в результате термополевой диссоциации во внешнем электрическом поле, с вероятностью $f_d(T, E, r_T)$, описываемой моделью Онзагера [11]. На расстоянии кулоновского радиуса $r_{\rm C}$, равного $\sim 20\,{\rm нm}$ (для сред с диэлектрической проницаемостью $\varepsilon = 3$), носители с вероятностью $\eta = \eta_0 f_d$ становятся свободными. Вероятности начального переноса на расстояние r₀ и переноса на $r_{\rm T}$, а также квантовый выход η_0 зависят от потенциала ионизации I_D донорного фрагмента и сродства к электрону АА акцепторного фрагмента [10,18], в частности

$$\eta_0(I_{\mathrm{D}}, A_{\mathrm{A}}) \propto \exp\left(\frac{A_{\mathrm{A}} - I_{\mathrm{D}} + c}{kT}\right)$$

где *с* — постоянная, *k* — константа Больцмана, *T* — температура.

Сравнение спектров фотолюминесценции растворов ПФХ-1 и ПФХ-2 (рис. 3, кривые 1 и 2) в хлороформе показало, что полоса люминесценции ПФХ-2 (кривая 2) имеет более высокую интенсивность и ее максимум смещен в длинноволновую область. Для смеси ПФХ-1 и ПФХ-2, взятых в соотношении 1:1 и в тех же концентрациях (рис. 3, кривая 3), при которых были изучены спектры индивидуальных соединений, и той же длине волны возбуждающего света, обнаружен общий спад интенсивности люминесценции, причем интенсивность люминесценции ПФХ-1 уменьшалась примерно в 15 раз, а ПФХ-2 — в 3 раза. Наблюдаемый эффект, во-первых, по-видимому, связан с концентрационным тушением люминесценции полимеров, а во-вторых, свидетельствует о

Рис. 4. Дрейфовая подвижность электронов (1) и дырок (2) для ПФХ-2 в зависимости от приложенного электрического поля *E*.

передаче части световой энергии, поглощенной ПФХ-1, к ПФХ-2, что подтверждает донорно-акцепторные свойства бихинолинового и ариленового фрагментов и возможность компексообразования. Таким образом, предполагается, что при приготовлении смесей данных полимеров в различных соотношениях и концентрациях растворов можно добиться увеличения интенсивности люминесценции ПФХ-2 при более низкой плотности возбуждающей энергии. Установленная закономерность позволяет надеяться на возможность управления фотофизическими свойствами композиций полимеров.

Разное строение изученных полимеров ПФХ-1 и ПФХ-2 отражается и на транспортных свойствах. В образцах ПФХ-1 ток дырочных носителей заряда, в отличие от тока электронов, было трудно выделить на фоне теплового шума. Отсутствие транспорта дырок связано с большим значением потенциала ионизации бихинолиновой группы, включающей кислородный мостик ($I_{\rm D} \approx 8.0\,\mathrm{sB}$). В свою очередь акцепторные свойства хинолиновых и дифенилоксидных групп благоприятствуют транспорту электронов. В ПФХ-1 дрейфовая подвижность электронов равна $4.5 \cdot 10^{-7} \, \text{см}^2 / (\text{B} \cdot \text{c})$ при $E = 2.5 \cdot 10^5$ В/см. При этой же напряженности электрического поля в слоях ПФХ-2 дрейфовая подвижность электронов и дырок равна 9.4 · 10⁻⁷ и $4.8 \cdot 10^{-7} \, \text{см}^2 / (\text{B} \cdot \text{c})$ соответственно (рис. 4). Как видим, подвижность электронов в ПФХ-2 в 2 раза выше, чем в ПФХ-1. Это связано с тем, что концентрация электронно-транспортных центров в ПФХ-1 понижена из-за того, что доля дифенилоксидных групп, которые в обоих полимерах служат такими центрами, участвует в формировании комплексов с внутримолекулярным переносом заряда. В ПФХ-2 трифениламинные фрагменты, которые известны как эффективные транспортные центры для дырок [19], обеспечивают дырочную проводимость полимера. Заметим, что в ПФХ-2 подвижность дырок зависит от электрического поля сильнее, чем подвижность электронов (рис. 4). При высокой напряженности поля $E > 5 \cdot 10^5$ В/см значения электронной и дырочной подвижности становятся близкими. Сбалансированность транспорта электронов и дырок в диапазоне поля, типичном для работы светодиодов, характеризует ПФХ-2 как материал, перспективный в разработке однослойного электролюминесцентного устройства.

3. Заключение

Для синтезированных полифенилхинолинов, различающихся строением мостиковых групп между хинолиновыми циклами: кислородной и фениламинной, исследованы фото- и электрофизические свойства. Показано, что синтезированные полимеры обладают светочувствительностью на уровне 10⁵ см²/Дж (интегральная чуствительность составляет $5 \cdot 10^{-4} (лк \cdot c)^{-1}$, а квантовый выход фотогенерации носителей заряда равен 0.07). Благодаря наличию дифенилоксидной группы оба полимера способны обеспечивать электронный транспорт. Для полифенилхинолина с фениламинной мостиковой группой обнаружены биполярная проводимость и сбалансированность значений дырочной и электронной подвижности, что делает полимер перспективным при разработке пленочных устройств, основанных на биполярной проводимости материала (например, однослойного светодиода).

Авторы выражают благодарность А.В. Якиманскому за помощь в работе.

Рабора выполнена при поддержке Российского фонда фундаментальных исследований (проекты № 07-03-00215, 05-03-90579 и 07-03-92112).

Список литературы

- [1] J.L. Kim, J.K. Kim, H.N. Cho, D.Y. Kim et al. Macromolecules, **33**, 5880 (2000).
- [2] J.L. Kim, J.K. Kim, H.N. Cho, D.Y. Kim et al. Synthetic Metals, **114**, 97 (2000).
- [3] C.J. Tonzola, M.M. Alam, S.A. Jenekhe. Macromolecules, 38, 9539 (2005).
- [4] H. Tong, H.H. Sun, Z.Y. Xie, L.X. Wang, X.B. Jing, F.S. Wang. Synthetic Metals, 137, 1115 (2003).
- [5] Л.В. Гуревич, Г.В. Карачевцев, В.Н. Кондратьев. Энергии разрыва химических связей. Потенциалы ионизации и сродства к электрону (М., Наука, 1974).
- [6] S.O. Norris, J.K. Stille. Macromolecules, 9 (3), 496 (1976).
- [7] А.В. Сидорович, В.М. Светличный, И.В. Калинина, Т.И. Жукова, Л.Ф. Сергеева, В.В. Кудрявцев, И.В. Гофман. Высокомолекуляр. соединения, Б35 (9), 1538 (1993).
- [8] И.А. Акимов, Ю.А. Черкасов, М.И. Черкашин. Сенсибилизированный фотоэффект (М., Наука, 1980).
- [9] Е.Л. Александрова, Ю.А. Черкасов. Опт и спектр., 64, 1047 (1998).
- [10] Е.Л. Александрова, Ю.А. Черкасов. Опт и спектр., 84 (5), 455 (1998).
- [11] L. Onsager. Phys. Rev. Lett., 19, 554 (1934).
- [12] Э.А. Силиныш, М.В. Курик, В. Чапек. Электронные процессы в органических кристаллах (Рига, Зинатне, 1988).
- [13] А.В. Ванников, А.Д. Гришина. Фотохимия полимерных донорно-акцепторных комплексов (М., Наука, 1984).

- [14] А.В. Ванников, В.К. Матвеев, В.П. Сичкарь, А.П. Тютнев. Радиационные эффекты в полимерах. Электрические свойства (М., Наука, 1982) гл. 1.
- [15] А.Р. Тамеев, А.Н. Лачинов, Р.Б. Салихов, А.А. Бунаков, А.В. Ванников. Журн. физ. химии, 79 (12), 2266 (2005).
- [16] А.Р. Тамеев, Л.Я. Перешивко, А.В. Ванников. Высокомолекуляр. соединения, **А48**, № 8 (2008).
- [17] Е.Л. Александрова. ФТП, 38 (10), 1153 (2004).
- [18] Е.Л. Александрова. ФТП, **40** (11), 1466 (2006).
- [19] G. Pfister. Phys. Rev. B, 16 (8), 3676 (1977).

Редактор Т.А. Полянская

Photophysical and electrophysical properties of soluble polyphenylquinolines containing oxygen or phenylamine bridge group between quinoline moieties

E.L. Alexandrova^{*}, V.M. Svetlychnyi, L.A. Miagkova, T.N. Nekrasova, A.R. Tameev⁺, A.V. Vannikov⁺, V.V. Kudryavtsev

Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia * Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia + A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119991 Moscow, Russia

Abstract Two polyphenylquinoline derivatives which include either oxygen or phenylamine bridge group between quinoline moieties have been synthesized and photo- and electro-physical properties of their thin films have been investigated. The polymer films are shown to possess photosensitivity of the order of 10^5 cm^2 /J (integrated photosensitivity — $5 \cdot 10^{-4} (\text{lx} \cdot \text{s})^{-1}$) and quantum yield of photogeneration of 0.07, charge carrier drift mobility of the order of $10^{-6} \text{ cm}^2/(\text{V} \cdot \text{s})$. For the polyphenylquinoline derivative with phenylamine bridge group, electron and hole mobilities were found to be balanced. The polymer can be considered as a promising material for the development of thin film devices based on ambipolar conductivity (e.g. single layer light emitting diode).