Моделирование деградации рельефа нанопористого кремния в процессе отжига в неоднородном температурном поле

© Б.М. Костишко[¶], А.В. Золотов, Ю.С. Нагорнов

Ульяновский государственный университет, 432970 Ульяновск, Россия

(Получена 22 января 2007 г. Принята к печати 9 июня 2008 г.)

Представлены результаты моделирования процессов термического отжига пористого кремния под действием высокотемпературного нагрева как в однородном температуром поле, так и в условиях наличия в системе линейного градиента температур.

PACS: 61.43.Gt, 82.20.Wt, 81.05.Rm, 81.40.Ef, 05.10.Ln, 07.05.Tp

Актуальность задачи моделирования процессов отжига пористого кремния заключается в том, что изза люминесцентных свойств этого материала, простоты производства, а также из-за возможности использования в качестве подложки для выращивания бездефектных гетероэпитаксиальных слоев кремния и карбида кремния пористый кремний является перспективным материалом микро- и оптоэлектроники. Определяющим фактором роста эпитаксиальных пленок на пористых слоях кремния является его термический отжиг, а поэтому исследование данного процесса оказывается весьма перспективным направлением. Ранее в литературе уже публиковались работы, посвященные моделированию отжига и росту эпитаксиальных пленок на пористом кремнии [1-4], но в них не рассматривалось влияние градиента температур на эти процессы. В то же время в реальных экспериментальных установках отжиг зачастую происходит именно в неоднородных температурных полях; так, например, реакторы с высокочастотным нагревом пьедестала характеризуются наличием температурного градиента в подложке, направленного по нормали к поверхности [5].

Для моделирования процесса отжига пористого кремния (por-Si) в работе был использован метод Монте-Карло, реализованный с помощью алгоритма, основанного на быстрой схеме Максима [6]. Основные характеристики метода следующие. Модель por-Si представляет собой участок кристаллической решетки в форме параллелепипеда заданного размера, с алмазоподобной конфигурацией атомов. Нижняя часть массива атомов состоит из сплошных слоев кремния и соответствует монокристаллической подложке, а верхняя пронизана порами с варьируемой глубиной и величиной поперечного размера. Ориентация образца выбиралась так, чтобы его верхняя грань составляла плоскость (111). Модельные размеры кристалла в работе могли доходить до 2.5 · 10⁶ атомных мест, что при размере подложки 50×50 ячеек соответствовало толщине до 1000 монослоев. Диаметр формируемых прямоугольных пор и расстояния между ними могли варьироваться от 4 до 20 монослоев, что обеспечивало изменение пористости от 5

до 60%. Температура в объеме пористого кремния могла задаваться произвольным образом, но практически исследовалось только линейное распределение температуры в направлении, перпендикулярном поверхности. Максимальное количество рассматриваемых событий в работе достигало $2 \cdot 10^9$. Диффузионный скачок атома моделировался как переход частицы из своей позиции в одно из свободных мест в первой или второй координационной сфере. Вероятность такого перехода определялась полной энергией взаимодействия атомов $E = n_1 E_1 + n_2 E_2$, где n_1 , n_2 — количество соседних атомов в 1-й и 2-й сферах, а $E_1 = 1.24$ эВ, $E_2 = 0.1$ эВ [7] — соответствующие энергии взаимодействия.

Результаты моделирования отжига рог-Si в неоднородном температурном поле представлены на рис. 1. Температура рог-Si составляла 1373 К у вершины пор (C2), в то время как у дна пор (C1) она менялась от 1073 до 1373 К. Глубина пористого слоя составляла 45 нм, т. е. 300 моноатомных слоев, а поперечный размер — 3 нм, что соответствовало пористости подложки 25%. На рис. 1 изображена послойная плотность атомов кремния внутри подложки в относительных единицах. Сплошному слою атомов (подложка или перемычка внутри поры) соответствует плотность, равная 1, а пустому — 0. Время отжига достигало 10ч, а поры перекрывались за времена порядка 0.5-1 ч в зависимости от градиента температур.

Результаты моделирования показывают, что во всех случаях пора оказывалась полностью перекрытой сверху, а в отдельных случаях наблюдалось образование дополнительной перемычки — перегородки из атомов, перекрывающей пору и разделяющей ее на независимые полости. Видно, что процесс формирования перемычек существенно зависит от градиента температур в пористом слое. При большом перепаде температуры (рис. 1, a, 300 K) перемычка не образуется, а вместо нее на графике наблюдается только незначительный выступ (особенность A 1), который представляет собой нарастание на боковой поверхности пор энергетически выгодных плоскостей (111). Эти плоскости характеризуются максимальной средней энергией связи атомов в приповерхностном слое, что существенно снижает

[¶] E-mail: kost@sv.uven.ru

Рис. 1. Зависимости плотности атомов кремния (*n*) внутри пористого слоя от глубины поры *h* в результате трехчасового отжига. Температура поверхности пористого слоя (C2) 1373 К. Температура дна пор (C1) *T*, K: a - 1073, b - 1123, c - 1173, d - 1223, e - 1273, f - 1373. Обозначения A1, A2, A3 соответствуют появлению выступа, перемычки и последующему ее сдвигу, B1 — расширению поры.

вероятность выхода из них атома. В данном случае распределение температурного поля такое, что в глубине поры вероятность диффузии атомов значительно меньше, чем у ее вершины, и соответственно диффузионный процесс наблюдается в основном возле верхнего края поры. Результатом этого эффекта является деградация вершины поры, вследствие чего образуется перемычка сверху, а также диффузия атомов с приповерхностных областей поры вниз на формирующийся выступ, что и обусловливает его увеличение. Постепенное уменьшение градиента температур приводит к тому, что выступ увеличивается в размерах и сдвигается в глубь поры, а затем в определенный момент полностью ее перекрывает, формируя таким образом перемычку (рис. 1, *d*, особенность A2). В двух образовавшихся полостях также наблюдается процесс образования выступов (рис. 1, *e*, *f*), которые в данном случае не могут перерасти в перемычку в силу относительно малой глубины поры.

Из рис. 1 видно, что наряду с образованием выступа и сужением поры (особенность A1) наблюдается незначительный обратный процесс ее расширения в смежных областях (рис. 1, a-f, особенность B1). Данный эффект наблюдается на глубине 35 нм и обусловлен двумя причинами. Во-первых, под влиянием градиента температур атомы диффундируют вниз по стенкам пор, что проявляется в образовании на глубине 25–30 нм еще одного выступа. Во-вторых, потолок поры, образованный перемычкой, является энергетически выгодной плоскостью, а поэтому экстрагируют атомы со стенок пор. В частности, вследствие этого эффекта наблюдается аналогичное, но меньшее по величине, расширение поры у дна при малых градиентах температуры (рис. 1, *e*, *f*).

Удобным способом наблюдения процесса деформации поры является рассмотрение зависимостей положений некоторых характерных точек от времени отжига. В данном случае в качестве таких точек могут выступать уровни дна и потолка поры, а также границы образованных перемычек.

На рис. 2 представлены графики зависимостей указанного типа, полученные при моделировании процесса длительного отжига поры в течение 4–16 ч при раз-

Рис. 2. Положения уровней дна поры (1), потолка (3) и перемычки (2) в монослоях в зависимости от времени отжига. Температура потолка поры 1373 К. Температура дна T, К: a = 1073, b = 1273, c = 1323, d = 1373.

Видно, что на графике 2, а положения дна и потолка поры (кривые 1, 3) не изменяются в течение 15 ч отжига, что позволяет сделать вывод о том, что при оплывании поры атомы практически не диффундируют с потолка на ее стенки, а упомянутое ранее расширение поры сверху происходит за счет диффузии атомов в направлении образующегося выступа. Устойчивость верхней границы поры объясняется тем, что она в отличие от боковых поверхностей является энергетически выгодной плоскостью, и поэтому оказывается значительно легче трансформировать стенки пор, чем оторвать атом от ее вершины. Также графики указывают на то, что выступ в верхней части поры после 3.5 ч отжига еще не находится в стабильном состоянии и постепенно увеличивается в размерах. Впоследствии это приводит к формированию перемычки, о чем и свидетельствует появление двух кривых в области центра поры через 4.5 ч отжига. Видно, что нижнее основание перемычки (кривая 2) мало изменяется во времени в пределах 2-3 монослоев (ML), в то время как верхнее меняется значительно больше — 7-8 ML, причем это изменение происходит в течение 0.5 ч, после чего перемычка становится стабильной, а ее толщина в дальнейшем не превышает 30 ML. Устойчивость нижней границы обусловлена теми же причинами, которые приводились для потолка пор, в то время как нарастание атомных слоев на верхнюю границу является следствием оплывания стенок полости, расположенной сверху. В этом случае атомы, диффундирующие с энергетически невыгодной боковой поверхности поры, под действием градиента температур перемещаются вниз, в более выгодные позиции на перемычке, что и приводит к повышению ее уровня.

Повышение нижней границы температуры до 1223 К практически не меняет качественный характер образования перемычки в поре (рис. 2, *b*). В данном случае она формируется уже через 2.8 ч отжига и полностью становится стабильной через 3.4 ч. Толщина оказывается несколько увеличенной по сравнению с описанными выше результатами и достигает 34 ML.

В то же время наблюдается значительное изменение в процессе деформации дна поры. Видно, что этот уровень возрастает практически линейно со временем отжига со скоростью порядка 2.5 ML в час и за время моделирования увеличивается на 25 ML. Данному эффекту соответствует постоянная скорость диффузии атомов со стенок на дно поры, это свидетельствует о том, что нижняя полость еще не приобрела равновесную форму.

В последних двух случаях, представленных на рис. 2, *c*, *d*, наблюдается существенная модификация формы перемычки, потолка и дна поры в процессе отжига. Видно, что перемычка смещается вниз, а ее профиль формируется дольше. Так, для температуры дна 1323 К

Рис. 3. Структура поры, отожженной при температуре 1343 К: *а* — фотография, взятая из работы [9], *b* — результаты моделирования эволюции поры диаметром 3 нм (время термического отжига указано на рисунке).

времена образования перемычки и стабилизации ее формы равны соответственно 2.5 и 5–6 ч, а при 1373 К — 1.2 и 2.3 ч. Толщина перемычки составляет 50 и 60 нм соответственно. Уровень дна также возрастает, но если на рис. 2, *с* линейная зависимость сохраняется до конца отжига (6 ч), то на рис. 2, *d* видно, что через 2–3 ч уровень дна зоны становится практически неизменным.

Положение потолка поры тоже не остается постоянным. На графиках 2, *c* и *d* видно, что он смещается вниз на 18 и 25 ML соответственно. Причиной является то, что в данном случае наличие градиента температур не оказывает значительного влияния на диффузию атомов кремния в глубь поры и поэтому они достаточно легко переходят со стенок поры, стремящихся принять энергетически выгодную форму, на ее потолок.

Кроме того, исследовалось влияние градиента температуры в пористом слое на время образования перемычки сверху поры. Было обнаружено, что время перекрывания уменьшается при увеличении температуры нижней границы пористого слоя, причем изменение ее значения от 1073 до 1373 К приводит к уменьшению времени перекрывания почти в 1.5 раза, с 30 до 20 мин (температура поверхности 1373 К).

На данный момент в литературе имеется всего лишь несколько работ, посвященных исследованию детального изменения морфологии пористого слоя кремния в процессе высокотемпературного отжига [1,8,9]. К сожалению, ни в одной из этих работ не представлены данные о распределении температур в por-Si. В то же время низкое значение теплопроводности пористого кремния, лежащее в диапазоне 10^{-4} - 10^{-3} Вт/(м · K) [10], свидетельствует о существовании градиента температур в квантовых нитях кремния, что может оказать влияние на процесс изменения морфологии пор в por-Si. Так, в работах [8,9] показано, что в процессе отжига por-Si при температуре 1343 К поры, изначально имеющие форму колонн, постепенно трансформируются в изолированные удлиненные полости, затем принимают форму, близкую к сферической, и в конечном итоге представляют собой объемы, ограненные плоскостями (111) и (113). Характерные времена изменения формы пор при этой температуре составляют 30–120 мин. На рис. 3, а представлено сечение поры, взятое из работы [9], а на рис. 3, *b* результаты моделирования отжига поры диаметром 3 нм при той же температуре. Видно, что характер изменения профиля поры и ее конечная форма соответствуют экспериментальным данным, а время трансформации поры совпадает с характерными временами отжига.

Таким образом, в работе было проведено моделирование длительного отжига пористого кремния методом Монте-Карло и установлено, что происходят перекрытие пор сверху и образование дополнительных перемычек в центре пор. Оказалось, что в зависимости от распределения температур в пористом слое среднее время перекрывания поры варьируется от 20 до 30 мин при температуре отжига 1373 К, а время формирования перемычки от 1.5 до 4.5 ч. При перепаде температур до 300 К перемычка формируется сравнительно медленно (4.5 ч), но достаточно быстро стабилизируется (0.5 ч) и принимает окончательный вид. В случае отсутствия градиента температуры время образования перемычки оказывается значительно меньше и составляет всего 1.2 ч отжига. При этом на перемычку продолжают нарастать атомы кремния, так что ее форма стабилизируется после 5 ч отжига. Также моделирование показало, что сечение поры, в соответствии с экспериментальными данными [9], принимает форму, ограненную плоскостями (111) и (113).

Работа выполнена при поддержке РФФИ, грант № 08-08-99068 р_офи.

Список литературы

- [1] А.В. Зверев, И.Г. Неизвестный, Н.Л. Шварц, З.Ш. Яновицкая. ФТП, **35**, 1067 (2001).
- [2] B.M. Kostishko, A.V. Zolotov, Sh.R. Atazhanov. Phys. Low-Dim. Structur. 3/4, 1 (2004).
- [3] J.M. McCoy, P.A. Maksym. Semicond. Sci. Technol., 6, 141 (1991).
- [4] S. Kersulis, V. Mitin. Semicond. Sci. Technol., 10, 653 (1995).
- [5] А.М. Орлов, Б.М. Костишко, А.А. Скворцов. Физические основы технологии полупроводниковых приборов и интегральных микросхем (Ульяновск, Изд-во УлГУ, 2001).
- [6] A.C. Levi, M. Kotra. J. Phys.: Condens. Matter, 9, 299 (1997).
- [7] W. Jian, Z. Kaiming, X. Xide. J. Phys.: Condens. Matter, 6, 989 (1994).
- [8] N. Ott, M. Nerdng, G. Muller, R. Brendel, H.P. Strunk. Phys. Status Solidi A, 197 (1), 93 (2003).
- [9] N. Ott, M. Nerding. J. Appl. Phys., 95 (2), 497 (2004).
- [10] V.Yu. Timoshenko, Th. Dittrich, I. Sieber. Phys. Status Solidi A, 182, 325 (2000).

Редактор Т.А. Полянская

Simulation of relief degradation of nanoporous silicon under annealing in nonhomogeneous temperature field

B.M. Kostishko, A.V. Zolotov, Yu.S. Nagornov

Ulyanovsk State University, 432970 Ulyanovsk, Russia

Abstract The result of simulation of porous silicon annealing at high temperature in both homogeneous temperature field and field containing linear temperature gradient are presented in this work.