Переход металл-изолятор в эпитаксиальных пленках *n*-3*C*-SiC

© А.А. Лебедев[¶], П.Л. Абрамов, Н.В. Агринская, В.И. Козуб, А.Н. Кузнецов, С.П. Лебедев, Г.А. Оганесян, А.С. Трегубова, А.В. Черняев, Д.В. Шамшур, М.О. Скворцова^{*}

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Институт физики твердого тела Российской академии наук, 142432 Черноголовка, Россия

(Получена 10 апреля 2008 г. Принята к печати 24 апреля 2008 г.)

На подложках гексагонального карбида кремния методом сублимационной эпитаксии выращены пленки *n*-3*C*-SiC. Проведено исследование низкотемпературной проводимости и магнетосопротивления полученных пленок в зависимости от уровня легирования и структурного качества. Обнаружено, что при концентрациях нескомпенсированных доноров $N_d - N_a \leq 3 \cdot 10^{17}$ см⁻³ в слое *n*-3*C*-SiC происходит переход металл-диэлектрик.

PACS: 71.30.+h, 72.15.Gd, 72.20.Fr

1. Введение

В предыдущих работах [1,2] нами были проведены гальваномагнитные исследования гетероструктур 3C-SiC/6H-SiC при гелиевых температурах. Были обнаружены низкое сопротивление образцов и появление отрицательного магнетосопротивления (ОМС) в слабых полях (~1Тл) при направлении магнитного поля перпендикулярно плоскости слоя. С увеличением напряженности магнитного поля магнетосопротивление становилось положительным независимо от ориентации поля относительно плоскости эпитаксиального слоя.

Цель настоящей работы — продолжение данных исследований для образцов *n*-3*C*-SiC с разным уровнем легирования и различного структурного качества.

2. Образцы

Эпитаксиальные слои 3*C*-SiC были выращены методом сублимационной эпитаксии в вакууме (СЭВ) на грани (0001)С или (0001)Si подложек 6*H*-SiC, полученных методом Лэли, и подложек 6*H*-SiC и 4*H*-SiC производства компании CREE (США). Проведенные исследования показали высокое структурное качество эпитаксиальных пленок, а также отсутствие каких-либо переходных слоев других политипов между эпитаксиальным слоем 3*C*-SiC и подложкой 6*H*-SiC [3,4]. Подложки имели *n*-тип проводимости (концентрация нескомпенсированных доноров $N_d - N_a \approx (3-5) \cdot 10^{18} \text{ см}^{-3}$), эпитаксиальные слои также были *n*-типа проводимости с концентрацией $N_d - N_a \approx (0.3-2.5) \cdot 10^{18} \text{ см}^{-3}$. Выращенные эпитаксиальные слои имели толщины в диапазоне 5–190 мкм.

Для проведения измерений из эпитаксиальных структур были вырезаны прямоугольники размером $\sim 3 \times 6$ мм. К ним были изготовлены омические контакты вжиганием Ni с подслоем Ti при температуре $\sim 900^{\circ}$ C. Измерения проводились по четырехзондовой

схеме с использованием постоянного тока. Холловская составляющая напряжения на потенциальных контактах образца и магнетосопротивление выделялись усреднением сигнала при изменении направления магнитного поля (+H, -H) и направления протекания тока (+I, -I).

3. Кристаллическое качество эпитаксиальных пленок

Эпитаксиальные структуры исследованы рентгеновской топографией с использованием метода обратного отражения. Известно, что при зарождении кубического эпитаксиального слоя одновременно в разных точках (местах) гексагональной подложки ориентация зародышей 3C-SiC вдоль поверхности роста бывает двух типов с разворотом зародышей друг относительно друга на 60° (двойниковая структура) [5]. На рентгеновских топограммах, полученных в брэгговских рефлексах (311), двойниковая структура проявляется в виде областей черного или белого контраста (рис. 1, 2),

Рис. 1. Образец с низкой плотностью структурных дефектов (AZ-31): слева — рентгеновская топограмма (отражение 311, CuK $_{\alpha}$ -излучение); справа — схематичное изображение границ двойников.

[¶] E-mail: Shura.Lebe@mail.ioffe.ru

Образец	$N_d - N_a, 10^{18} { m cm}^{-3}$	$L_{\rm TW}, {\rm cm}^{-1}$	<i>R</i> , Ом (1.4 K)	μ , см ² /В · с (77 K)	$ \Delta R /R(H=0) (1.4 \mathrm{K})$	Примечания
AZ-15	0.7	189	8.1	90	$1.83 \cdot 10^{-2}$	
AZ-8	2	173	2.3	70	$\sim 3\cdot 10^{-3}$	
AL-27	0.3	101	1385	50	$5.5 \cdot 10^{-3}$	
AZ-54	1.7	146	0.23	30	$3 \cdot 10^{-3}$	подложка 4H-SiC
HO-27	0.7	70	9 500		$1.0 \cdot 10^{-3}$	Si-грань подложки
AZ-19	2.5	40	2.6	20	$8.5 \cdot 10^{-4}$	
AZ-31	0.9	34	6.1	6	~ 0	

Параметры образцов

Рис. 2. Образец с высокой плотностью двойников (AZ-8): слева — рентгеновская топограмма (отражение 311, CuK_{α} -излучение); справа — схематичное изображение границ двойников.

который меняется на противоположный при повороте кристалла на 60° вокруг оси (111). На границах двойников 3*C*-SiC образуются дефектные области (double position boundaries, DPB), которые хорошо выявляются методами рентгеновской топографии. Образование дефектов на границах двойников в настоящее время является одной из основных проблем в гетероэпитаксии 3*C*-SiC.

Обычно структурное качество эпитаксиальных пленок 3C-SiC характеризуют плотностью двойников. Однако это удобно, когда плотность двойников большая и отдельные двойники имеют схожие геометрические размеры. В полученных нами лучших образцах количество двойников достигало всего нескольких единиц, и при одинаковом количестве они значительно различаются по своим форме и размеру. Так как основные структурные дефекты сосредоточены на границах двойников, образцы с одинаковым (и малым) количеством двойников различной формы могут иметь сильно разное количество дефектов. Поэтому нам показалось более удобным в дальнейшем для численной оценки кристаллического качества пленок использовать параметр $L_{\text{TW}} = \Sigma l_{\text{TW}}/S$, где Σl_{TW} — сумма длин всех двойниковых границ в данном образце, а S — площадь образца.

Исследование электрических параметров полученных структур

На полученных структурах были проведены исследования электропроводности и эффекта Холла в диапазоне температур T = 300 - 1.5 К. Для нескольких образцов были проведены дополнительные измерения при пониженных температурах (до 0.5 К). Полученные экспериментальные значения представлены в таблице. Для всех образцов в магнитном поле, параллельном плоскости слоя 3C-SiC, величина сопротивления R не зависела от магнитного поля вплоть до H = 1 Тл. При направлении поля, перпендикулярном плоскости слоя, наблюдается уменьшение сопротивления R с увеличением напряженности магнитного поля. Величина R(H)/R(H=0)составляла $\sim (2 \cdot 10^{-2} - 1 \cdot 10^{-4})$. При дальнейшем увеличении напряженности магнитного поля, независимо от его ориентации, магнетосопротивление образцов становилось положительным. Зависимость вида $R \propto H^2$ сохранялась до максимальных магнитных полей, использовавшихся в эксперименте, ~ 15 Тл. Типичная зависимость магнетосопротивления $\Delta R/R$ от магнитного

Рис. 3. Зависимость магнетосопротивления образца AZ-8 от величины магнитного поля для магнитного поля в плоскости (1) и перпендикулярно плоскости (2) эпитаксиального слоя. Ток через образец 1 мA, T = 1.4 K.

Физика и техника полупроводников, 2009, том 43, вып. 3

Рис. 4. Температурные зависимости сопротивления образцов *n*-3*C*-SiC с разным уровнем легирования $N_d - N_a$: AZ-19 — $2.5 \cdot 10^{18}$ см⁻³; AZ-31 — $9 \cdot 10^{17}$ см⁻³; AL-27 — $3 \cdot 10^{17}$ см⁻³.

Рис. 5. Температурная зависимость сопротивления образца AL-27 ($N_d - N_a = 3 \cdot 10^{17} \text{ см}^{-3}$) в области низких температур.

поля в области малых H представлена на рис. 3. С уменьшением температуры величина $\Delta R/R$ оставалась практически неизменной или уменьшалась, а минимум зависимости R(H) смещался в область малых полей.

Как видно из таблицы, не наблюдалось заметной корреляции между уровнем легирования пленок *n*-3*C*-SiC и величиной ОМС ($\Delta R/R$). Общее сопротивление эпитаксиальных структур росло с уменьшением величины N_d-N_a в *n*-3*C*-SiC, однако оставалось малым по абсолютной величине. Как видно из таблицы, резкий рост сопротивления наблюдался только при $N_d-N_a \leq 7 \cdot 10^{17}$ см⁻³ (рис. 4).

При сравнении образцов *n*-3*C*-SiC с разным кристаллическим качеством было обнаружено, что наличие ОМС, его величина, а также величина подвижности электронов зависят от параметра L_{TW} (рис. 4 и таблица). Уменьшение L_{TW} приводило к уменьшению подвижности и уменьшению ОМС (вплоть до исчезновения в образце с минимальной плотностью двойников AZ-31).

5. Обсуждение результатов

Как можно видеть из рис. 4, низкотемпературное сопротивление возрастает почти на 3 порядка при изменении концентрации нескомпенсированных доноров от $2.5 \cdot 10^{18}$ до $3 \cdot 10^{17}$ см⁻³. Это, на наш взгляд, свидетельствует о переходе металл-изолятор, происходящем в 3C-SiC при критической концентрации N_c , соответствующей $N_c^{1/3}a = 0.25$; если $a \approx 3$ нм [6], то $N_c \approx 10^{18}$ см⁻³. При этом для слоя 3C-SiC на диэлектрической стороне характерна низкотемпературная прыжковая проводимость с переменной длиной прыжка в трехмерном материале: $R(T) \propto \exp(T_0/T)^{1/4}$ (см. рис. 5); параметр $T_0 = 21/(N_f a^3)$, где $N_f = N/W$ плотность состояний на уровне Ферми. Зная из наклона температурной зависимости T₀ = 1300 K, можно оценить: $N_f \approx 5 \cdot 10^{21} \,\mathrm{cm}^{-3} \cdot \mathrm{3B}^{-1}$. Предполагая ширину примесной зоны $W \approx 1-2$ мэВ, оцениваем концентрацию примесей: $N \approx (5-10) \cdot 10^{17} \,\mathrm{cm}^{-3}$, что соответствует степени легирования данных образцов.

Поведение низкотемпературного магнетосопротивления данного образца описывается интерференционным механизмом для прыжковой проводимости с переменной длиной прыжка, который предсказывает линейную зависимость ОМС от магнитного поля (рис. 6), при этом наклон зависимости растет с уменьшением температуры [7]. При дальнейшем росте магнитного поля с интерференционным ОМС конкурирует квадратичное положительное магнетосопротивление (ПМС), связанное с деформацией волновых функций примеси в магнитном поле.

Совершенно другое поведение характерно для образцов со слоями 3C-SiC, находящимися на металлической стороне перехода. Низкотемпературная проводимость описывается степенной зависимостью от температуры с насыщением при низких температурах (рис. 4), что характерно для грязных металлов и объясняется слаболокализационными поправками [8].

Температурная зависимость сопротивления определяется в этом случае поправкой к проводимости

$$\delta\sigma = \frac{e^2}{h} \frac{1}{L_{\varphi}},\tag{1}$$

где

$$L_{\varphi} = \upsilon_{\rm F} (\tau \tau_{\varphi})^{1/2}, \qquad (2)$$

au — время релаксации импульса, au_{φ} — время фазовой релаксации, $v_{\rm F}$ — фермиевская скорость. Предполагается, что фазовая релаксация определяется электрон-

Рис. 6. Зависимость магнетосопротивления образца (AL-27) от магнитного поля для двух температур. Поле перпендикулярно плоскости гетероперехода.

электронным рассеянием с характерным временем τ_e ,

$$\frac{\hbar}{\tau_e} = \frac{T^{3/2}}{\varepsilon_{\rm F}^{3/2}} \frac{\hbar^{3/2}}{\tau^{3/2}}.$$
(3)

Скорость Ферми для концентраций $\sim 10^{18}\,{
m cm^{-3}}$ составляет $v_{\rm F} \sim 10^7 \, {\rm cm/c}$, энергия Ферми $\varepsilon_{\rm F} \approx 2 \cdot 10^{-14} \, {\rm эрг}$, импульс Ферми $p_{\rm F} \sim (10^{-20}/3)\,{\rm r}\cdot{\rm cm/c}$ (для массы $m = (1/3)m_0$). Мы предполагаем, что материал находится на границе перехода металл-диэлектрик, поскольку сопротивление на квадрат для пленки толщиной 3 · 10⁻³ см составляет единицы Ом, а толщина "элементарного квантового слоя", равная длине волны электрона для указанных параметров, составляет 10^{-7} см. Соответственно сопротивление на квадрат для такого двумерного слоя составляет величину $\sim 10^4 \, {\rm Om},$ т.е. порядка квантового предела 25 · 10³ Ом. Отсюда мы заключаем, что длина свободного пробега $l = \upsilon \tau$ порядка длины волны электрона $\hbar p_{\rm F}$, и оцениваем $\tau \approx 3 \cdot 10^{-14}$ с. В свою очередь, для T = 4 К оцениваем $\hbar/ au_e pprox (1/2) \cdot 10^{-15}$ эрг, что дает $au_e pprox (1/2) \cdot 10^{-12}$ с и соответственно $L_{\omega} \sim 10^{-6}$ см. Таким образом, поправка к проводимости составляет $\sim 100 \,\mathrm{Om^{-1} \cdot cm^{-1}}$, тогда как проводимость образца $\sim 300 \, \mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$. Соответственно зависящая от температуры поправка при 4К достаточно велика и насыщается при стремлении Т к нулю.

В свою очередь, для магнетосопротивления имеем

$$\delta\sigma \sim \frac{e^2}{h} (l_H^{-1}),$$
 (4)

где

$$l_H = \left(\frac{\hbar c}{eH}\right) \tag{5}$$

— магнитная длина. Заметим, что в указанной оценке предполагается случай сильных полей, $l_H \ll L_{\varphi}$. В действительности это не вполне так. Как легко оценить,

при H = 1 Тл $l_H \approx 2 \cdot 10^{-6}$ см и соответственно обе длины — величины одного порядка. В противоположном предельном случае

$$\frac{\delta\sigma}{\sigma} \sim \frac{\lambda_{\rm F}^2 L_{\varphi}^3}{ll_H^4} \propto H^2.$$
 (6)

Как видно, в этом случае в полях ~ 1 Тл $\delta\sigma/\sigma \approx 10^{-2}$, т.е. эффект действительно мал.

Конечно, данная оценка является достаточно приближенной и очень чувствительна к реальному значению τ . Как видно, $L_{\varphi}^3/l \propto \tau^{11/4}$. Влияние концентрации двойников можно в принципе объяснить тем, что двойниковые границы служат областью стока дефектов, повышая значение τ в объеме (см., например, [9]). В работе [10] отмечалось, что у границ двойников в эпитаксиальных пленках 3*C*-SiC, выращенных на подложках 4*H*-SiC, наблюдается сильное увеличение концентрации различных структурных дефектов.

Возможная роль двойников может быть связана с пространственным расслоением примесей и формированием неоднородного рельефа. При этом проводимость в высокопроводящих областях может быть выше, чем следует из приведенных выше оценок, предполагавших однородность образца. Как видно из наших оценок, эффект магнетосопротивления в области "слабых" полей крайне чувствителен к значениям как τ , так и υ_F . Поэтому в образцах, в которых присутствует фаза с несколько бо́льшими значениями указанных параметров, эффект магнетосопротивления может быть существенно более выраженным по сравнению с однородными образцами, имеющими примерно такое сопротивление. В частности, увеличение τ в 2 раза приводит к увеличению роли магнетосопротивления почти в 8 раз.

При этом характер ОМС совершенно отличается от ОМС для прыжковой проводимости: как видно из рис. 3, зависимость сопротивления от *H* имеет корневой вид.

6. Заключение

Проведенные исследования эпитаксиальных пленок n-3C-SiC показали наличие перехода металл-изолятор при уровне легирования $N_d - N_a \le 3 \cdot 10^{17} \, \mathrm{сm}^{-3}$. При $N_d - N_a > 3 \cdot 10^{17} \, \mathrm{cm}^{-3}$ в образцах наблюдается температурная зависимость проводимости, характерная для грязных металлов. Наличие ОМС в этом случае связано с наличием слаболокализационных поправок к проводимости. Уменьшение подвижности носителей и величины ОМС с уменьшением плотности двойников, вероятно, связано с тем, что границы двойников являются геттерами дефектов, определяющих рассеяние носителей в пленках n-3C-SiC. В образце на диэлектрической стороне перехода $(N_d - N_a = 3 \cdot 10^{17} \, {\rm см}^{-3})$ существенно возрастает сопротивление, а проводимость в области низких температур носит прыжковый характер. ОМС в данном случае объясняется интерференционным механизмом [7].

Работа выполнена при частичной поддержке грантами РФФИ № 07-02-00919а и 07-02-01024.

Список литературы

- А.А. Лебедев, Н.В. Агринская, П.Л. Абрамов, В.И. Козуб, Г.А. Оганесян, Л.М. Сорокин, А.В. Черняев, Д.В. Шамшур. Письма ЖТФ, 33, 24 (2007).
- [2] A.A. Lebedev, P.L. Abramov, N.V. Agrinskaya, V.I. Kozub, A.N. Kuznetsov, S.P. Lebedev, G.A. Oganesyan, L.M. Sorokin, A.V. Chernyaev, D.V. Shamshur. J. Mater. Sci.: Mater. Electron., 19 (2008).
- [3] А.А. Лебедев, В.В. Зеленин, П.Л. Абрамов, Е.В. Богданова, С.П. Лебедев, Д.К. Нельсон, Б.С. Разбирин, М.П. Щеглов, А.С. Трегубова, М. Suvajarvi, R. Yakimova. ФТП, 41, 273 (2007).
- [4] А.А. Лебедев, В.В. Зеленин, П.Л. Абрамов, С.П. Лебедев, А.Н. Смирнов, Л.М. Сорокин, М.П. Щеглов, R. Yakimova. Письма ЖТФ. 33 (12), 61 (2007).
- [5] A.A. Lebedev. Semicond. Sci. Technol., 21, R17 (2006).
- [6] А. Розенгрин. В кн.: Карбид кремния, под ред. Г. Хэниша, Р. Роя (М., Мир, 1972) с. 193.
- [7] B.I. Shklovskii, B.Z. Spivak. In: *Hopping Transport in Solids*, ed. by M. Pollak, B. Shklovskii (Elsevier, 1991) p. 271.
- [8] В.Ф. Гантмахер. Электроны в неупорядоченных средах (М., Физматлит, 2003).
- [9] N.M. Shmidt. In: Semiconductor Technology (Processing and Novel Fabrication Techiques), ed. by M.E. Levinshtein, M.S. Shur (John Wiley, N.Y., 1997) p. 1.
- [10] L. Latu-Romain, D. Chaussende, C. Balloud, S. Juillaquet, L. Rapenne, E. Pernot, J. Camassel, M. Pons, R. Madar. Mater. Sci. Forum, 527–529, 99 (2006).

Редактор Л.В. Шаронова

Metal—insulator transition in *n*-3*C*-SiC epitaxial films

A.A. Lebedev, P.L. Abramov, N.V. Agrinskaya, V.I. Kozub, A.N. Kuznetsov, S.P. Lebedev, G.A. Oganesyan, A.S. Tregubova, A.V. Chernyaev, D.V. Shamshur, M.O. Skvortsova*

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia * Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moskow region, Russia

Abstract Epitaxial layers *n*-3*C*-SiC were grown by sublimation epitaxy in vacuum on hexagonal SiC substrates. Low-temperature conductivity and magnetoresistance in dependence on it's structural quality and doping level were investigated. It was founded that at doping level in *n*-3*C*-SiC layer $N_d - N_a \le 3 \cdot 10^{17} \text{ cm}^{-3}$ the metal—insulator transition occured.