Особенности инфракрасных спектров отражения полупроводникового SmS в области гомогенности

© Ю.В. Улашкевич[¶], В.В. Каминский, А.В. Голубков

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 3 июня 2008 г. Принята к печати 16 июня 2008 г.)

На поликристаллических образцах моносульфида самария в полупроводниковой фазе с составами Sm_{1+x}S, лежащими внутри области гомогенности ($0 \le x \le 0.17$), измерены инфракрасные спектры отражения в диапазоне 5200–380 см⁻¹ в интервале температур 300–600 К. Обнаружены 5 пиков с энергиями, лежащими в интервале 1150–880 см⁻¹, положение которых слабо зависит от состава и температуры. Показано, что пики отражения связаны с переходами ${}^7F_0 - {}^7F_2$ 4*f*-электронов ионов Sm²⁺.

PACS: 71.20.Eh, 71.20.Nr, 78.30.Hv

Наиболее интересными свойствами полупроводникового сульфида самария являются наличие рекордно большого по величине тензорезистивного эффекта (коэффициент тензочувствительности K = 850 при температуре $T = 77 \,\mathrm{K}$) [1], наличие изоморфного фазового перехода I рода полупроводник-металл при рекордно низком для полупроводников давлении 650 МПа [2], а также возникновение электрического напряжения при равномерном нагреве образца в условиях отсутствия внешних градиентов температуры ($T \approx 400-500 \, \text{K}$), названное термовольтаическим эффектом [3]. В основе всех этих свойств лежит поведение 4f-уровней ионов Sm²⁺ при различных физических воздействиях на образец SmS. В связи с этим представляет интерес исследование как самих 4f-уровней, так и их возбужденных состояний. Знание положения возбужденных состояний 4f-уровней важно по той причине, что концентрация электронов на них $\sim 10^{21}\,{
m cm^{-3}}$, и поэтому правильный учет их вклада в концентрацию электронов проводимости очень важен при расчетах тензорезистивного и термовольтаического эффектов, а также давления фазового перехода [4]. Информацию об энергии этих состояний могут дать оптические исследования электронных переходов между основным состоянием иона Sm^{2+} , которое соответствует конфигурации $4f^6$ (терм 7F_0), и возбужденными состояниями (термы ${}^{7}F_{I}$). Такие переходы, запрещенные по правилу четности внутри одной электронной конфигурации в свободном ионе, под влиянием кристаллического поля становятся слабо разрешенными.

Переход ${}^{7}F_{0}-{}^{7}F_{1}$ иона Sm²⁺ был исследован в [5] для SmS, SmSe и SmTe по рамановским спектрам и инфракрасным (ИК) спектрам поглощения. Во всех трех соединениях переход имел место при энергиях несколько ниже 300 см⁻¹, однако для SmS ИК спектры снять не удалось из-за сильного поглощения образца. В работе [6] были измерены спектры отражения SmS в интервале от 30 до 700 см⁻¹. В спектрах были обнаружены пики в области волновых чисел около 280 см⁻¹, соответствующие переходу ${}^{7}F_{0}-{}^{7}F_{1}$. Таким образом, в обоих случаях были получены энергии перехода ${}^{7}F_{0}-{}^{7}F_{1}$, близкие к таковой для свободного иона Sm²⁺ (~ 290 см⁻¹).

В данной работе нас интересовала энергия перехода ${}^{7}F_{0}-{}^{7}F_{2}$. Дело в том, что полученые в [5] ИК спектры поглощения SmSe указывают на существенное отличие энергий этого перехода в ионе Sm²⁺ халькогенида и в свободном состоянии: пять пиков, соответствующих переходу ${}^{7}F_{0}-{}^{7}F_{2}$, находятся в интервале 1000-800 см⁻¹, в то время как этот переход в свободном ионе наблюдается около 800 см⁻¹. Судя по результатам [5], можно ожидать, что в SmS это различие будет еще больше. Поскольку температура возникновения электрического напряжения при термовольтаическом эффекте в SmS и его величина зависят от концентрации избыточных ионов самария и величины градиента распределения этих ионов по объему образца [7], особый интерес представляет определение энергии возбужденных состояний 4f-уровней в образцах с избытком самария в области гомогенности. С этой целью были исследованы спектры отражения образцов Sm_{1+x}S в температурном интервале 300-600 К, выбранном таким образом, чтобы охватить температурную область возникновения термовольтаического эффекта.

Моносульфид самария образует твердый раствор с металлическим самарием, область гомогенной фазы соответствует содержанию самария 50-54 ат%. Механизм образования этой фазы и ее структурная формула приведены в работе [7]. Этот механизм предполагает антиструктурное разупорядочение, которое связано с заменой части ионов S²⁻ на Sm²⁺. Наряду с ним происходит образование вакансий. Таким образом, это разупорядочение является комбинацией двух видов разупорядочения: по Шоттки и антиструктурного. При изучении протяженности области гомогенности было установлено, что она является односторонней, поскольку образцы, содержащие менее 50 ат% самария, всегда были двухфазными [8]. При избытке самария, по данным химического анализа, образцы остаются однофазными вплоть до состава 53.5 ат%. Однако это граничное значение можно получить исходя и из простых структурных соображений. Как известно, моносульфид самария кристаллизуется в структуру NaCl. В этой структуре каждый ион серы S²⁻ окружен шестью ионами Sm²⁺. При внедрении иона Sm^{2+} на место S^{2-} в решетке

[¶] E-mail: ulashkev@mail.ru

Рис. 1. ИК спектры отражения образцов $Sm_{1+x}S$ при T = 300 К. *х*: I = 0, 2 = 0.02, 3 = 0.04, 4 = 0.06, 5 = 0.08, 6 = 0.17.

образуется комплекс, состоящий из 7 ионов Sm^{2+} , и формула фазы будет соответственно Sm_7S_6 , что соответствует составу 53.85 ат% Sm, или $Sm_{1.17}S$. Этот состав фазы и является граничным значением, исследованным в настоящей работе.

Для проведения спектральных измерений были использованы поликристаллические образцы моносульфида самария с составами, находящимися в области его гомогенности: Sm_{1+x}S (x = 0-0.17). Синтез образцов описан в работе [9]. Образцы имели размеры $3 \times 5 \times 20$ мм, спектры отражения были измерены от грани с наибольшей площадью. Регистрация спектров в диапазоне волновых чисел 5200-380 см⁻¹ производилась на инфракрасном фурье-спектрометре 1720Х фирмы Perkin Elmer с помощью приставки зеркального отражения этой же фирмы; спектральное разрешение составляло 4 см⁻¹. Поскольку в большинстве исследованных образцов величина среднего коэффициента отражения не превышала нескольких процентов, для получения удовлетворительного соотношения сигнал/шум накопление сигнала составляло не менее 100 сканов. Для проведения температурных измерений образцы размещались на обогреваемой площадке, температура которой поддерживалась постоянной с точностью ±5 К.

Инфракрасные спектры отражения образцов $Sm_{1+x}S$, измеренные при температуре T = 300 K в широком диапазоне волновых чисел ν , приведены на рис. 1. Для всех образцов зависимость коэффициента отражения от

Физика и техника полупроводников, 2009, том 43, вып. 3

волнового числа имеет схожий характер: его величина на высокочастотном крае спектра не превышает 2%, незначительно и монотонно увеличивается при уменьшении волнового числа в высокочастотной и средней областях и существенно возрастает на низкочастотном крае спектра. Из рис. 1 видно, что степень этого возрастания изменяется в общем симбатно со стехиометрическим коэффициентом x, что связано с увеличением концентрации электронов проводимости при увеличении избыточного самария. Количественно наблюдаемую тенденцию можно охарактеризовать коэффициентом отражения R_{av} , средним для всей исследованной области; рассчитаные значения этого коэффициента приведены в таблице.

Обращает на себя внимание выпадение образца с x = 0.06 (кривая 4) из общей тенденции, что следует считать неслучайным. В [9] было установлено, что при этом значении x образцы Sm_{1+x}S имеют максимальную постоянную кристаллической решетки в области гомогенности (5.973 Å) и наиболее трудно переводятся полировкой в металлическую фазу. Оба этих факта, с учетом концентрационного механизма фазового перехода полупроводник-металл в SmS, свидетельствуют о минимальной концентрации электронов проводимости при x = 0.06. Механизм возникновения такого эффекта может быть следующим. Анализ данных по зависимости плотности образцов Sm_{1+x}S от состава [7] позволяет сделать вывод, что при $x \le 0.06$ твердый раствор может образовываться по двум моделям: 1) в решетке SmS с избытком Sm образуется соответствующее количе-

Рис. 2. ИК спектры отражения образцов Sm_{1+x}S в области 1150-880 см⁻¹. T = 300 К. x: I = 0, 2 = 0.02, 3 = 0.04, 4 = 0.06, 5 = 0.08, 6 = 0.17.

Состав, х	Температура <i>T</i> , К	Средний коэффициент отражения <i>R</i> _{av} , %	Энергии пиков отражения				
			$v_1, { m cm}^{-1}$	v_2, cm^{-1}	$\nu_3, {\rm cm}^{-1}$	$v_4, { m cm}^{-1}$	$\nu_5, { m cm}^{-1}$
0.00	300 450 600	1.16 1.18 1.23	1119 1113 1114	1034 1031 1031	1011 1007 1005	940 939 931 *	915 913 915
0.02	300 450 600	1.51 1.51 1.52	1118 1114 1113	1036 1033 1032	1009 1006 1004	937 * 934 * 934 *	913 909 905
0.04	300	2.36	1120	1036	1011	940 *	915
0.06	300 450 600	1.06 1.12 1.21	1119 1124 1122	1035 1043 1046	1010 1012 1008	940 * 937 934	914 919 915
0.08	300	7.85	1126	1056	1018	946	925
0.17	300	11.6	1120	1043	1016	943	923

Средний коэффициент отражения R_{av} в области 5200–380 см⁻¹ и положения пиков отражения, связанных с переходами ${}^{7}F_{0}-{}^{7}F_{2}$ 4*f*-электронов, для различных составов Sm_{1+x}S в области гомогенности

Примечание. * — проявляется в виде плеча.

ство вакансий в подрешетке серы; 2) избыточные ионы самария располагаются в вакансиях подрешетки серы. Реализация той или иной модели зависит от особенностей процесса отжига образцов, в частности от скорости повышения температуры до температуры отжига, самой температуры отжига и времени отжига. При реализации первой модели вакансии подрешетки серы являются ловушками для электронов, что понижает концентрацию электронов проводимости. Из этих соображений следует, что образец с x = 0.06 сформировался по первой модели.

Из рис. 1 можно видеть, что в спектре отражения наблюдаются две группы особенностей. Первая из них связана с пиками коэффициента отражения, расположен-

Рис. 3. ИК спектры отражения образцов Sm_{1-x}S при различных температурах. *a*: образцы SmS (1-3) и Sm_{1.02}S (4-6); T = 300(1, 4), 450(2, 5), 600 K (3, 6). *b*: образцы Sm_{1.06}S; T = 300(1), 450(2), 600 K (3).

Рис. 4. Инфракрасные спектры отражения образцов Sm_{1.04}S: *I* — исходный, *2* — после механической полировки поверхности.

ными в диапазоне $1150-880 \text{ см}^{-1}$, вторая — с периодическими (осцилляционными) изменениями коэффициента отражения в области ниже 600 см^{-1} . Низкочастотная область спектра будет рассмотрена позже, в этой же работе более подробно рассматривается первая из указанных областей.

Спектры отражения исследованных образцов в области 1150-880 см⁻¹ представлены на рис. 2. Для всех образцов можно отметить наличие пяти характерных максимумов коэффициента отражения, некоторые из них в отдельных образцах проявляются лишь в виде плеча. В таблице представлены волновые числа этих максимумов ($v_1 - v_5$), определенные непосредственно из измеренных спектров с точностью ±1 см⁻¹; для максимумов, проявляющихся в виде плеча, погрешность может доходить до $\pm 3 \, \mathrm{cm}^{-1}$. Как видно из таблицы, положения максимумов для образцов с *x* ≤ 0.06 в пределах точности их определения можно считать постоянными. Для образцов с x > 0.06 это не так. Однако, как видно из рис. 2, для них характер отражения значительно изменяется и поэтому наблюдаемые смещения максимумов могут быть связаны с чисто спектроскопическим эффектом. Как следует из температурных измерений, положение этих максимумов практически не зависит от температуры: увеличение последней не приводит к закономерным смещениям пиков и вызывает лишь слабое их уширение, связанное с тепловыми эффектами (таблица, рис. 3, а и b). Незначительно увеличивается также средний коэффициент отражения для всей исследованной спектральной области.

Наблюдаемые 5 пиков отражения могут быть отнесены к переходам ${}^{7}F_{0}-{}^{7}F_{2}$ 4*f*-электронов ионов Sm²⁺ в SmS. Такой вывод может быть сделан на основании следующих соображений: 1) количество пиков соответствует мультиплетному расщеплению 2J + 1 при J = 2;2) спектральный интервал, в котором расположены наблюдаемые пики, а также ширина этого интервала примерно такие же, как для переходов ${}^{7}F_{0} - {}^{7}F_{2} 4f$ -электронов ионов Sm²⁺ в SmSe [5]; 3) при механической полировке поверхности образцов и переводе ее в металлическое состояние пики отражения полностью исчезают (рис. 4), что связано с исчезновением ионов Sm^{2+} в приповерхностном слое, так как они переходят в трехвалентное состояние [9]. На фундаментальный характер данных пиков указывает также слабая зависимость их положения от состава образца.

Таким образом, исходя из ИК спектров отражения SmS, измеренных в настоящей работе, а также в [6], зонную структуру SmS вблизи дна зоны проводимости можно представить в виде, приведенном на рис. 5, *b*. Такая схема энергетических уровней, учитывающая смещение и мультиплетное расщепление уровня 7F_2 , может быть использована для уточнения расчетных параметров фазового перехода полупроводник–металл в SmS под давлением, полученным в [4] на основании схемы уров-

Рис. 5. Зонная структура полупроводникового SmS вблизи дна зоны проводимости: a — энергетические уровни 4fэлектронов представлены аналогично уровням свободного иона Sm²⁺; b — энергетические уровни и электрические дипольные переходы представлены согласно полученным экспериментальным данным и данным [6].

ней, соответствующих свободному иону Sm²⁺ (рис. 5, *a*). Поскольку полученные результаты не выявили отклонений от этой схемы при варьировании состава в области гомогенности SmS, а также при повышении температуры, данная схема может быть использована также при расчетах, связанных с термовольтаическим эффектом в Sm_{1+x}S.

Авторы благодарны Н.П. Степанову и В.И. Харченко за анализ предварительных результатов работы.

Работа выполнена при поддержке РФФИ (грант № 07-08-00289) и ООО "Эс эм Эс-тензо" (Санкт-Петербург).

Список литературы

- [1] В.В. Каминский, А.В. Голубков. ФТТ, 21, 2805 (1979).
- [2] A. Jayaraman, V. Narayanamurti, E. Bucher, R.G. Maines. Phys. Rev. Lett., 25, 368 (1970).
- [3] В.В. Каминский, С.М. Соловьев. ФТТ, 43, 423 (2001).
- [4] В.В. Каминский, Л.Н. Васильев. ФТТ, 50, 685 (2008).
- [5] M.I. Nathan, F. Holtzberg, J.E. Smith, Jr., J.B. Torrance, J.C. Tsang. Phys. Rev. Lett., 34, 467 (1975).
- [6] V. Zelezny, J. Petzelt, V.V. Kaminski, M.V. Romanova, A.V. Golubkov. Sol. St. Commun., 72 (1), 43 (1989).
- [7] В.В. Каминский, А.В. Голубков, Л.Н. Васильев. ФТТ, 44, 1501 (2002).
- [8] А.В. Голубков, Е.В. Гончарова, В.П. Жузе, Г.М. Логинов, В.М. Сергеева, И.А. Смирнов. Физические свойства халькогенидов РЗЭ (Л., Наука, 1973).
- [9] Н.В. Шаренкова, В.В. Каминский, А.В. Голубков, Л.Н. Васильев, Г.А. Каменская. ФТТ, 47, 598 (2005).

Редактор Л.В. Шаронова

Peculiarities of infrared reflectance spectra of semiconductor SmS within the homogeneous area

Yu.V. Ulashkevich, V.V. Kaminski, A.V. Golubkov

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Infrared reflectance spectra in the range from 5200 to 380 cm^{-1} were measured on polycrystalline samples of monosulphide samarium in a semiconductor phase with structures Sm_{1+x} S within area of homogeneity ($0 \le x \le 0.17$) in the temperature range 300-600 K. In the interval $1150-880 \text{ cm}^{-1}$ there were found out five peaks of reflectance whose energies practically does not depend on structure and temperature. It has been shown, that these reflectance peaks were connected with ${}^7F_0 - {}^7F_2$ transitions of 4f-electrons in Sm²⁺ ions.