Энергетическое распределение неравновесных электронов и оптических фононов в GaAs при межзонном поглощении мощных коротких импульсов света

© Г.С. Алтыбаев, С.Е. Кумеков[¶], А.А. Махмудов

Казахский национальный технический университет им. К.И. Сатпаева, 050013 Алматы, Казахстан

(Получена 23 апреля 2008 г. Принята к печати 9 июня 2008 г.)

Рассчитаны возмущение фермиевского распределения неравновесных электронов и распределение "горячих" оптических фононов при межзонном поглощении пикосекундных импульсов света в GaAs.

В серии работ [1–13] экспериментально обнаружен ряд нелинейных оптических эффектов, обусловленных взаимодействием сильного электромагнитного поля, неравновесной электронно-дырочной плазмы и оптических фононов при межзонном поглощении мощных пикосекундных импульсов света. В частности, в работе [14] было показано, что нелинейные спектры поглощения, усиления и суперлюминесценции, исследованные в работе [11], связаны с отклонением энергетического распределения неравновесных электронов от фермиевского распределения и разогревом оптических фононов.

В работе [11] плотная электронно-дырочная плазма генерировалась при комнатной температуре в GaAs пикосекундным импульсом света. В течение импульса возникала пикосекундная суперлюминесценция. Одновременно измеренные спектры поглощения обнаружили область усиления света в интервале энергий фотонов, соответствующих области суперлюминесценции, и характерную резко выраженную немонотонность в поглощении, максимум которой отстоит по энергии выше пика суперлюминесценции на величину 0.04 эВ, равную в точности $\Delta = \hbar \omega_0 (1 + \frac{m_c}{m_v})$, где $\hbar \omega_0$ — энергия продольного оптического фонона, m_c и m_v — эффективные массы электрона и тяжелой дырки соответственно. Сравнение измеренных спектров с рассчитанным в предположении о фермиевском распределении фотовозбужденных носителей [14] выявило сильное расхождение как в области усиления, так и в области обнаруженной немонотонности в поглощении. Эти отклонения экспериментальных и расчетных спектров в области усиления и поглощения были названы "дырой" и "выступом" соответственно.

В работе [14] в простой модели на основании кинетического уравнения была рассчитана связь между спектром поглощения в области выступа и спектром усиления в области дыры. Предполагалось, что возмущение фермиевского распределения электронов происходит за счет взаимодействия их с оптическими фононами, а залечивание этого возмущения осуществляется межэлектронными столкновениями [15]. Сравнение рассчитанных в этом предположении спектров дыры и выступа с экспериментом позволило оценить время залечивания фермиевского распределения, а также сделать вывод о разогреве оптических фононов, участвующих в возмущении распределения электронов.

В настоящей работе на основании модели [14] рассчитаны функция распределения неравновесных электронов и неравновесное распределение оптических фононов в пространстве волновых векторов ("фононное узкое горло") для условий эксперимента [11]. Полученные результаты справедливы для случая, когда длительность возбуждающего импульса au_{ex} больше характерных времен испускания оптического фонона τ_0 и залечивания фермиевской функции для электронов $\tau_{\rm F}$ ($\tau_{\rm ex} > \tau_0, \tau_{\rm F}$). Наглядное представление об этих распределениях является актуальным в связи с интерпретацией обнаруженных в работах [6-13] эффектах временной, спектральной и пространственной модуляции спектров излучения и нелинейного поглощения фотовозбужденного GaAs. Обнаруженные эффекты автомодуляции обусловлены, повидимому, динамическими явлениями в электрон-фононфотонной системе материала при генерации электроннодырочной плазмы пикосекундными импульсами света.

Рассмотрим состояния электронов с энергией є и $\varepsilon - \hbar \omega_0$ над дном зоны проводимости. Эти состояния соответствуют резонансным оптическим межзонным переходам электронов в области выступа в спектре поглощения и дыры в спектре усиления работы [11]. В отсутствие суперлюминесценции заполнение этих состояний должно было бы быть квазиравновесным и описывалось бы фермиевской функцией распределения с соответствующими определенной концентрации плазмы квазиуровнями Ферми электронов и дырок F_e и F_h . Возмущение функции распределения неравновесных электронов при энергии є вызывается обеднением заселенности состояний с энергией $\varepsilon - \hbar \omega_0$ благодаря прямым излучательным переходам электронов из состояния $\varepsilon - \hbar \omega_0$ дна зоны проводимости в валентную зону и происходит за счет испускания фонона электроном с энергией є и поглощения фонона электроном с энергией $\varepsilon - \hbar \omega_0$. Испускание оптических фононов дырками, участвующими в формировании спектров выступа и дыры [11], запрещено законом сохранения энергии, поэтому их распределение остается приблизительно фермиевским.

[¶] E-mail: skumekov@mail.ru

Рис. 1. Энергетическое распределение электронов в зоне проводимости. *I* — фермиевская функция распределения, *2*, *3* — отклонения функции распределения электронов от фермиевской, определяющие области "дыры" и "выступа" в спектрах нелинейного поглощения [6] соответственно.

Представим функцию распределения электронов как сумму фермиевской функции $f_0(\varepsilon)$ и некоторой величины $(f_+$ или $f_-)$, характеризующей отклонение от фермиевской функции распределения в области выступа и дыры соответственно:

$$f(\varepsilon) = f_0(\varepsilon) + f_+, \quad f(\varepsilon - \hbar\omega_0) = f_0(\varepsilon - \hbar\omega_0) + f_-,$$
(1)

где $f_0(\varepsilon) = \{\exp[(\varepsilon - F)/T_c] + 1\}^{-1}, T_c$ — температура электронов. Из кинетического уравнения, рассматриваемого в [14], следует связь между отклонениями функций распределения в области выступа f_+ и дыры f_- :

$$f_{+} = \frac{\delta N[f_{0}(\varepsilon - \hbar\omega_{0}) - f_{0}(\varepsilon)] + f_{-}[f_{0}(\varepsilon) + N_{q}]}{[\tau_{F}(\varepsilon)/\tau_{0}]^{-1} + N_{q} + 1 - f_{0}(\varepsilon - \hbar\omega_{0}) - f_{-}}.$$
 (2)

Здесь $\delta N = N_q - N_{qa}$ — величина, характеризующая отклонение неравновесного распределения фононов $N_q = [\exp(\hbar\omega_0/T_q) - 1]^{-1}$ от значения при комнатной температуре T_a ; $N_q = N_{qa}$ и $N_q = N_{qc}$ при $T_q = T_a$ и $T_q = T_c$.

Для вычисления f_{-} используем связь этой величины с отклонением экспериментального коэффициента усиления света α_{exp} от ожидаемого при фермиевском распределении электронов α_{FD} в области дыры [14]:

$$\alpha_{\exp} - \alpha_{FD} = -A_1 \frac{\sqrt{\hbar\omega - E_g - \Delta}}{\hbar\omega - \Delta} f_{-}.$$
 (3)

Здесь $A_1 = 3.77 \cdot 10^4 \, \text{эB}^{1/2}$ /см в GaAs [16]; $E_g = 1.37$ — запрещенная зона возбужденного образца. На рис. 1 представлены расчеты энергетического распределения электронов, полученные из (2), (3). Возмущение фермиевского распределения благодаря суперлюминесценции в условиях эксперимента [11] составляет около 10%.

Возмущение фермиевского распределения электронов благодаря электрон-фононному взаимодействию в ограниченном интервале волновых векторов приводит к разогреву оптических фононов и в некотором интервале волновых векторов температура оптических фононов становится сравнимой с электронной. В [14] показано, что экспериментальный спектр поглощения выступа согласуется с расчетным, если принять температуру оптических фононов $T_q = 0.04$ эВ. Представляется интересным распределение разогретых фононов в пространстве волновых векторов. В [17] на основании принципа детального равновесия показано, что неравновесное распределение фононов $N_q^{(0)}$ выражается через равновесные числа заполнения фононов N_{qc} и N_{qa} при температуре электронов T_c и решетки T_a соответственно:

$$N_q^{(0)} = \frac{\tau_{qc} N_{qa} + \tau_{qa} N_{qc}}{\tau_{qc} + \tau_{qa}},$$
(4)

где τ_{qc} и τ_{qa} — времена затухания оптических фононов с волновым вектором q за счет взаимодействия с носителями и акустическими фононами. Время τ_{qc} обусловлено электронами и дырками:

$$\tau_{qc}^{-1} = \tau_{qe}^{-1} + \tau_{qh}^{-1}, \tag{5}$$

где

$$n^{*} = rac{2e^{2}m_{e,h}^{2}kT_{c}\eta}{arepsilon_{\infty}\hbar^{4}}\lnrac{1+\exp\left(-rac{E_{me,h}}{kT_{c}}+rac{F_{e,h}}{kT_{c}}+rac{\hbar\omega_{L}}{kT_{c}}
ight)}{1+\exp\left(-rac{E_{me,h}}{kT_{c}}+rac{F_{e,h}}{kT_{c}}
ight)}$$

 q^3

(см., например, [18]). Здесь индексы е, h относятся к электронам и дыркам соответственно, ε_{∞} высокочастотная диэлектрическая проницаемость, $\eta = 1 - \omega_t^2 / \omega_0^2$, ω_t — частота поперечного оптического фонона, $E_{me,h} = rac{\hbar\omega_0}{2} + rac{\omega_L^2 m_{e,h}}{2q^2} + rac{\hbar\omega_0}{2q^2}$ Ha рис. 2 представлено распределение фононов, рассчитанное по формулам (4), (5). Для расчета использованы экспериментальные данные [11]: $F_e = 0.145 \, \text{B},$

Рис. 2. Распределение "горячих" оптических фононов в GaAs.

 $F_h = -0.083$ эВ, $T_c = 0.052$ эВ. Максимальное значение $N_q^{(0)} \approx 0.91$ соответствует максимальной температуре фононов, равной ~ 0.049 эВ. Как было отмечено выше, в [14] получено согласие расчетного спектра выступа и данных эксперимента [11] при $T_q = 0.04$ эВ, что неплохо соответствует результатам рис. 1.

Список литературы

- И.Л. Броневой, С.Е. Кумеков, В.И. Перель. Письма ЖЭТФ, 43, 368 (1986).
- [2] Н.Н. Агеева, И.Л. Броневой, Е.Г. Дядюшкин, Б.С. Явич. ЖЭТФ, 48, 252 (1988).
- [3] N.N. Ageeva, I.L. Bronevoi, E.G. Dyadyushkin, V.A. Mironov, S.E. Kumekov, V.I. Perel'. Sol. St. Commun., 72, 625 (1989).
- [4] N.N. Ageeva, V.B. Borisov, I.L. Bronevoi, V.A. Mironov, S.E. Kumekov, V.I. Perel', B.S. Yavich. Sol. St. Commun., 75, 167 (1990).
- [5] N.N. Ageeva, I.L. Bronevoi, V.A. Mironov, S.E. Kumekov, V.I. Perel'. Sol. St. Commun., 81, 969 (1992).
- [6] I.L. Bronevoi, A.N. Krivonosov, V.I. Perel'. Sol. St. Commun., 94, 805 (1995).
- [7] I.L. Bronevoi, A.N. Krivonosov, T.A. Nalet. Sol. St. Commun., 98, 903 (1996).
- [8] И.Л. Броневой, А.Н. Кривоносов. ФТП, 32, 537 (1998).
- [9] И.Л. Броневой, А.Н. Кривоносов. ФТП, 32, 542 (1998).
- [10] И.Л. Броневой, А.Н. Кривоносов. ФТП, 33, 13 (1999).
- [11] Н.Н. Агеева, И.Л. Броневой, А.Н. Кривоносов, С.Е. Кумеков, С.В. Стеганцов. ФТП, 36, 144 (2002).
- [12] Н.Н. Агеева, И.Л. Броневой, А.Н. Кривоносов, С.Е. Кумеков, Т.А. Налет, С.В. Стеганцов. ФТП, **39**, 681 (2005).
- [13] Н.Н. Агеева, И.Л. Броневой, А.Н. Кривоносов, С.Е. Кумеков, Т.А. Налет, С.В. Стеганцов. ФТП, 40, 806 (2006).
- [14] Г.С. Алтыбаев, И.Л. Броневой, С.Е. Кумеков. ФТП, **38**, 674 (2004).
- [15] В.Ф. Гантмахер, И.Б. Левинсон. Рассеяние носителей тока в металлах и полупроводниках (М., Наука, 1984) с. 120.
- [16] Е. Джонсон. В сб.: Оптические свойства полупроводников (М., Мир, 1970) с. 166.
- [17] С.Е. Кумеков, В.И. Перель. ЖЭТФ, 94, 346 (1988).
- [18] J. Collet, A. Cornet, M. Pugnet, T. Amand. Sol. St. Commun., 42, 883 (1982).

Редактор Л.В. Беляков

Energy distribution of non-equilibrium electrons and optical phonons in GaAs during band-to-band absorption of powerful short light pulses

G.S. Altybaev, S.E. Kumekov, A.A. Mahmudov

Satpaev Kazakh National Technical University, 050013 Almaty, Kazakhstan

Abstract It were calculated the perturbation of Fermi distribution of the nonequilibrium electrons and the distribution of "hot" optical phonons at the interband absorption of picosecond light pulses in GaAs.