О природе «тяжелых» электронов в бесщелевом полупроводнике HgTe *p*-типа

© М.И. Даунов[¶], И.К. Камилов, С.Ф. Габибов

Институт физики Дагестанского научного центра Российской академии наук, 367003 Махачкала, Россия

(Получена 18 июня 2007 г. Принята к печати 30 мая 2008 г.)

Для объяснения низкотемпературных особенностей электронного транспорта в бесщелевом полупроводнике *p*-HgTe предлагается модель, согласно которой "тяжелыми" электронами являются электроны зоны проводимости, локализованные в ямах флуктуационного потенциала. Проанализированы экспериментальные данные о температурах, магнитополевых и барических зависимостях коэффициента Холла R(T, H, P) и удельной электропроводности $\sigma_0(T, P)$ в слабо легированном умеренно компенсированном и в сильно легированном образцах *p*-HgTe.

PACS: 72.20.Fr, 72.20.My, 71.20.Nr, 71.55.Gs

1. Введение

Происхождение "тяжелых" электронов, участвующих в процессах переноса в бесщелевых и узкозонных полупроводниках CdHgTe p-типа, трактуется неоднозначно [1-3]. Предполагают, что они либо связаны с поверхностными состояниями, либо являются объемными. Эти тяжелые носители заряда, вероятно, принадлежат акцепторной зоне и либо обусловлены наличием макроскопических включений п- и р-типа проводимости, либо наличием глубокого акцепторного уровня. Наиболее распространенным объяснением генезиса "тяжелых" электронов является наличие поверхностного инверсионного слоя *n*-типа. Прорыв в изучении *p*-CdHgTe оказался возможным благодаря исследованиям электронного транспорта при всестороннем давлении в квазибесщелевых полупроводниках (КБП) [4-9]. КБП это полупроводники, в которых равная нулю энергетическая щель индуцирована глубокими примесными центрами, уровень энергии которых располагается на хвосте плотности состояний валентной зоны. Аномалии кинетических свойств КБП *р*-типа, аналогичные соответствующим особенностям в p-CdHgTe, в частности двукратная инверсия знака коэффициента Холла и его отрицательный знак при низких температурах, определялись флуктуациями концентрации заряженных центров, создающими потенциальный рельеф дна зоны проводимости, спецификой энергетического спектра и при определенном уровне легирования и компенсации — формированием состояния типа сильно легированного полностью компенсированного полупроводника [7]. Было отмечено, что в КБП и в бесщелевых полупроводниках в процессах переноса в переходной области, когда уровень Ферми и уровень протекания зоны проводимости почти совпадают ($\varepsilon_{\rm F} \approx \varepsilon_{\rm PC}$), одновременно принимают участие делокализованные "легкие" и расположенные в флуктуационных ямах потенциального рельефа "тяжелые" электроны зоны проводимости [8]. Было также выяснено, что парциальный по акцепторной зоне коэффициент Холла

 $R_{\rm A} > 0$ не зависит от степени заселенности акцепторной зоны $0 < N_{\rm A}^-/N_{\rm A} < 1$, т.е. происхождение "тяжелых" электронов не связано с акцепторной зоной [8]. Наконец, на характерном примере КБП *p*-InAs с концентрацией глубоких акцепторов $N_{\rm A} < 10^{17}$ см⁻³ в работе [9] по исследованиям при всестороннем давлении показана неправомерность объяснения особенностей электронного транспорта наличием инверсионного слоя *n*-типа (см., например, [10]).

В данной статье на примере *p*-HgTe предлагается модель для объяснения происхождения "тяжелых" электронов, участвующих в процессах переноса, а также низкотемпературных особенностей электронного транспорта в слабо легированных полупроводниках *p*-CdHgTe. Проанализированы экспериментальные данные о температурах, магнитополевых и барических зависимостях коэффициента Холла R(T, H, P) и удельной электропроводности $\sigma_0(T, P)$ в слабо легированном и в сильно легированном образцах *p*-HgTe.

2. Результаты исследований и их обсуждение

2.1. Известно [1-3], что в исследованных к настоящему времени кристаллах p-HgTe всегда имеются мелкие донорные центры с нулевой энергией активации, образующие с зоной проводимости единую зону делокализованных состояний. Формирование единой зоны делокализованных состояний обусловлено: квантовым уширением уровней мелких доноров, так как в наиболее совершенных кристаллах p-HgTe, исследованных к настоящему моменту, концентрация мелких доноров $N_{\rm D} > 10^{15} \,{\rm cm}^{-3}$ превышает критическую концентрацию $N_{\rm DM} = (0.25/a_{\rm B})^3 \approx 3 \cdot 10^{14} \, {\rm cm}^{-3}$ [1–3] $(a_{\rm B} = \chi \hbar^2 / m_c e^2$ — эффективный боровский радиус, χ статическая диэлектрическая постоянная, m_c — эффективная масса электронов на дне зоны проводимости), их классическим уширением из-за наличия флуктуирующего потенциала, наложением уровней на зонный континуум и гибридизацией состояний ("естественное"

[¶] E-mail: a.mollaev@mail.ru

Рис. 1. Плотность электронных состояний слабо легированного в *p*-HgTe со слабой степенью компенсации. Положение уровня Ферми $\varepsilon_{\rm F}$ определяется концентрацией доноров. $\varepsilon_{\rm pc}, \varepsilon_{\rm pv}$ — уровни протекания зоны проводимости и валентной зоны, $\varepsilon_{\rm A}$ — энергия ионизации акцепторного уровня. Пунктирная линия — ход плотности состояния в идеальном кристалле. Заполненные состояния заштрихованы.

уширение [1-4]). Край зоны проводимости — уровень протекания ε_{pc} — располагается ниже, а мелкий акцепторный уровень в слабо легированных кристаллах — выше (на расстоянии $\varepsilon_A = 2 \text{ мэВ} [1-3]$) от точки смыкания валентной зоны и зоны проводимости идеального HgTe (рис. 1). Здесь и далее энергия отсчитывается от точки вырождения термов Г₈ в глубь зоны проводимости. Положение уровня Ферми понижено в сравнении с обычным сильно легированным электронным полупроводником с равной концентрацией доноров, так как оно регламентируется положением уровня акцептора (при $N_{\rm D} < N_{\rm A}$ и $\varepsilon_{\rm F} \le \varepsilon_{\rm A}$) и его уширением [1–3]. Случайный потенциал, создающий потенциальный рельеф зоны, возникает вследствие флуктуации концентраций как электрически активных, так и электрически неактивных дефектов (флуктуационная модель [11]), и, как будет показано далее, $\gamma > \varepsilon_{\rm F}$. При внешнем воздействии, например высокого давления [4-9], типичные амплитуда у и масштаб случайного потенциала будут изменяться в зависимости от характера изменения концентраций заряженных центров и свободных носителей заряда. С ростом температуры влияние случайного потенциала ослабляется и при $k_{\rm B}T \gg \gamma$ становится пренебрежимо малым (*k*_B — константа Больцмана) [12].

Предлагаемая модель (рис. 1) следует, очевидно, из вышесказанного и так же, как и в КБП, естественно объясняет аномалии температурных, магнитополевых и барических зависимостей коэффициентов Холла R(T, H, P), а также генезис "тяжелых" электронов, проявляющихся в электронном транспорте в бесщелевом полупроводнике *p*-HgTe с концентрацией акцепторных центров меньше критической и концентрацией доноров больше критической. Проводимость при низких температурах, обусловленная "тяжелыми" электронами, является прыжковой и осуществляется путем подбарьерного туннелирования между металлическими каплями [12].

2.2. Далее приведены результаты количественного анализа температурных, магнитополевых и барических зависимостей коэффициента Холла R(T, H, P) и электропроводности $\sigma_0(T, P)$ в слабо легированном и в

Физика и техника полупроводников, 2009, том 43, вып. 2

сильно легированном кристаллах *p*-HgTe в рамках двухзонной модели универсального типа с использованием известных феноменологических соотношений. Модель предполагает аддитивность вклада парциальных проводимостей в общую проводимость, а также независимость времени релаксации от энергии:

$$R = R_0 \frac{1 + \alpha H^2}{1 + \beta H^2}, \quad \sigma_0 = \sigma_1 + \sigma_2,$$

$$R_0 = \frac{R_1 \sigma_1^2 + R_2 \sigma_2^2}{\sigma_0^2}; \quad \alpha = \frac{R_1 R_2 (R_1 + R_2) \sigma_1^2 \sigma_2^2}{R_1 \sigma_1^2 + R_2 \sigma_2^2};$$

$$\beta = \left[\frac{\sigma_1 \sigma_2 (R_1 + R_2)}{\sigma_1 + \sigma_2}\right]^2, \quad (1)$$

где $\sigma_k = n_k \mu_k e$, $R_k = (n_k e_k)^{-1}$ — проводимость и коэффициент Холла; e_k , n_k , μ_k — заряд, концентрация и подвижность носителей заряда k-типа. В соотношениях (1) принято: заряд e_k и подвижности μ_k отрицательны для электронов и положительны для дырок. Процедура вычислений и оценка погрешности определения характеристических параметров носителей заряда по соотношениям (1) подробно освещалась в работах [1,5–7,9,13].

Использованы экспериментальные данные R(T, H, P)и $\sigma_0(T, P)$ для образцов *p*-HgTe-1 [14] (табл. 1, рис. 2) и *p*-HgTe-2 [13] (табл. 2).

При расчетах использовано уравнение электронейтральности

$$n + N_{\rm A}^- = p + N_{\rm D}^+,$$
 (2)

где n, p — концентрации электронов и дырок, $N_{\rm D}^+$ и $N_{\rm A}^-$ — концентрации ионизованных мелких доноров и акцепторов. В бесщелевых полупроводниках всегда $N_{\rm D}^+ = N_{\rm D}$, в слабо легированном кристалле (образец *p*-HgTe-1) концентрация ионизованных акцепторов равна [1–3]

$$N_{\rm A}^{-} = N_{\rm A} \left(1 + 4 \exp \frac{\varepsilon_{\rm A} - \varepsilon_{\rm F}}{k_{\rm B}T} \right)^{-1}.$$
 (3)

В сильно легированном кристалле (образец *p*-HgTe-2) $\varepsilon_A = 0$ и $N_A^- = N_A$. Кроме того, твердо установлено [1], что в сильно легированных образцах *p*-HgTe "тяжелые" электроны отсутствуют. Наконец, в области низких температур ($k_BT \ll \varepsilon_A = 2 \text{ мэB}$) концентрацией дырок в уравнении (2) можно пренебречь.

Для зоны проводимости использовался закон дисперсии Кейна [15] в двухзонном приближении: $m_c \propto |\varepsilon_{\rm g}|$,

Таблица 1. Величины коэффициента Холла в предельно слабом магнитном поле R_0 и холловской подвижности $|R_0|\sigma_0$ в образце *p*-HgTe-1 при атмосферном давлении

Т, К	- <i>R</i> ₀ , см ³ /Кл	$ R_0 \sigma_0, \ \mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$
4.2	3640	$6.28\cdot 10^5$
77.4	102	$9.4 \cdot 10^4$
295	14.7	$3.1\cdot 10^4$

Т, К	Р, ГПа	$-R_0$, см ³ /Кл	σ_0 , $\mathrm{Om}^{-1}\mathrm{cm}^{-1}$	<i>n</i> , см ⁻³	$\mu_n,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$	c = p/n	$b=\mu_n/\mu_p$
82	10^{-4}	0.1	103.3	$4.15 \cdot 10^{15}$	$5.15 \cdot 10^{3}$	885	30.3
	0.46	-0.02	102.3	$9.22 \cdot 10^{15}$	$6.9 \cdot 10^{3}$	1650	40.5
297	10^{-4}	20	95	$7.35\cdot10^{16}$	$4.0 \cdot 10^{3}$	51	50
	1.06	43	94	$3.6\cdot10^{16}$	$8.2 \cdot 10^3$	103	104

Таблица 2. Величины коэффициента Холла в предельно слабом магнитном поле (R_0) , удельной электропроводности (σ_0) , концентраций (n, p) и подвижностей (μ_n, μ_p) электронов и дырок в образце *p*-HgTe-2 с $N_A - N_D = 3.7 \cdot 10^{18}$ см⁻³

 $\varepsilon_{\rm g} = [\varepsilon(\Gamma_6) - \varepsilon(\Gamma_8)] < 0$ — расстояние между термами Γ_6 и Γ_8 в инверсной зонной модели бесщелевых полупроводников [16], в дальнейшем — "зазор".

Концентрация электронов равна

$$n = \frac{(2m_c k_{\rm B}T)^{3/2}}{3\pi^2 \hbar^3} {}^0L_0^{3/2}(\eta,\beta).$$
(4)

Концентрация дырок в валентной зоне равна

$$p = 2\left(\frac{m_v k_{\rm B}T}{2\pi\hbar^2}\right)^{3/2} F_{1/2}(\eta).$$
 (5)

Интегралы ${}^{0}L_{0}^{3/2}(\eta,\beta)$ и $F_{1/2}(\eta)$ табулированы в работах [17,18], $\eta = \varepsilon_{\rm F}/k_{\rm B}T$ — приведенная энергия Ферми, $\beta = k_{\rm B}T/|\varepsilon_{\rm g}|$; m_c и m_v — эффективные массы плотности состояний электронов и дырок.

Рис. 2. Температурные в предельно слабом магнитном поле при различных давлениях (1-3) и барическая при H = 2 кЭ и T = 4.2 K (4) зависимости коэффициента Холла образца *p*-HgTe-1. *P*, ГПа: $I = 10^{-4}$, 2 = 0.52, 3 = 0.69.

Таблица 3. Собственные концентрация носителей заряда (n_i) , приведенная энергия Ферми (η_i) , эффективная масса электронов на дне зоны проводимости (m_c) и величина энергетического зазора между термами Γ_6 и $\Gamma_8(\varepsilon_g)$ HgTe при атмосферном давлении

<i>Т</i> , К	$n_i, \ {\rm cm}^{-3}$	m_c/m_0	$-\varepsilon_{\rm g}$, эВ	η_i
295	$\begin{array}{c} 4.3 \cdot 10^{17} \\ 6.2 \cdot 10^{16} \\ 8.5 \cdot 10^{14} \end{array}$	0.016	0.15	2.59
77.6		0.027	0.266	2.52
4.2		0.032	0.300	2.48

При расчетах барического коэффициента зазора $\varepsilon_{\rm g}$ использовано линейное приближение

$$\varepsilon_{\rm g} = \varepsilon_{\rm g}^0 + \alpha P,$$
 (6)

где $\varepsilon_{\rm g}^0$ — значение зазора $\varepsilon_{\rm g}$ при атмосферном давлении. Влиянием давления на другие параметры электронного спектра, помимо эффективной массы электронов на дне зоны проводимости, пренебрегалось [1-3]. Использованные при вычислениях величины зонных параметров при атмосферном давлении приведены в табл. 3. Значения m_c/m_0 при 295 и 77.6 К рассчитаны по собственной концентрации носителей заряда $n_i = (|R_i|e)^{-1}$ для наиболее достоверной и чаще всего принимаемой для количественных оценок величины эффективной массы плотности состояния дырок $m_v/m_0 = 0.4$ [1–3]. Определенные таким образом величины m_c согласуются с известными данными [1-3]. Для определения коэффициента Холла собственного HgTe при температурах 77.6 и 295 К использованы графический метод [19,20] и экспериментальные данные для наиболее чистых кристаллов *p*-HgTe [1–3,14].

2.3. Оценки барических зависимостей характеристических параметров носителей заряда — "легких" и "тяжелых" электронов — по формулам (1) сделаны для слабо легированного образца *p*-HgTe-1 (табл. 1, рис. 2) при T = 4.2 К и в магнитных полях до 2 кЭ, где влиянием квантовых эффектов можно пренебречь (табл. 4, рис. 3, 4). При атмосферном давлении параметр $c = n_h/n_l$ близок к единице и $c < b = \mu_l/\mu_h$, что согласуется с слабой зависимостью R(H) при $H \le 2$ кЭ (см. также [21], где исследованы зависимости магнитосопротивления и коэффициента Холла от напряженности магнитного поля при атмосферном давлении,

Таблица 4. Величины концентраций и подвижностей "легких" (*n_l*, *µ_l*) и "тяжелых" (*n_h*, *µ_h*) электронов при *T* = 4.2 K для образца *p*-HgTe-1

Р, ГПа	n_l , cm ⁻³	$n_h, {\rm cm}^{-3}$	$\mu_l, \mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$	$\mu_h,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$	$c = n_h/n_l$	$b=\mu_l/\mu_h$
0 6.95	$\begin{array}{c} 0.92 \cdot 10^{15} \\ 1.32 \cdot 10^{13} \end{array}$	$\begin{array}{c} 1.14 \cdot 10^{15} \\ 0.91 \cdot 10^{15} \end{array}$	$\begin{array}{c} 7.86 \cdot 10^{5} \\ 4.09 \cdot 10^{5} \end{array}$	$\begin{array}{c} 3.14 \cdot 10^{5} \\ 0.22 \cdot 10^{5} \end{array}$	1.25 69	2.5 19.0

при T = 4.2 и 1.7 K, в образце *p*-HgTe с близкими к образцу *p*-HgTe-1 значениями коэффициента Холла). Здесь n_l, μ_l и n_h, μ_h — концентрации и подвижности легких и тяжелых электронов соответственно.

С ростом давления параметр *с* увеличивается и при давлениях выше 0.4 ГПа имеет место соотношение c > b (рис. 4), а в зависимостях R(T, P) наблюдаются экстремумы (рис. 2). Характер барической зависимости подвижности делокализованных электронов $\mu_l(P)$ при T = 4.2 К (табл. 4, рис. 3) определяется

Рис. 3. Барические зависимости концентраций n_l (1), n_h (2) и подвижностей μ_l (3), μ_h (4) "легких" (l) и "тяжелых" (h) электронов при T = 4.2 К для образца *p*-HgTe-1.

Рис. 4. Барические зависимости отношений концентраций $c = n_l/n_h$ (1) и подвижностей $b = \mu_l/\mu_h$ (2) "легких" (l) и "тяжелых" (h) электронов при T = 4.2 К для образца *p*-HgTe-1.

Таблица 5. Концентрация электронов (n) и дырок (p), а также приведенная энергия Ферми (η) в образце *p*-HgTe-1 при атмосферном давлении

Т, К	$n, 10^{15} \mathrm{cm}^{-3}$	$p, \ 10^{15} \mathrm{cm}^{-3}$	η
4.2	2.06	0.06	5.2
295	61.3 425.2	67.3 432.2	2.49 2.64

двумя конкурирующими воздействиями. Подвижность μ_l до $P = 0.2 \Gamma \Pi a$ убывает из-за роста концентрации N_A^- , а при $P > 0.2 \Gamma \Pi a$ растет вследствие убывания m_c . Подвижность μ_h электронов, находящихся в ямах хаотического потенциала, монотонно убывает с ростом давления приблизительно в 15 раз в диапазоне давлений $10^{-4}-0.7 \Gamma \Pi a$ в связи с увеличением случайного потенциала из-за убывания концентрации экранирующих его делокализованных электронов и возрастания N_A^- (табл. 4, рис. 3).

Очевидно, $N_D > n = n_l + n_h = 2.06 \cdot 10^{15} \text{ см}^{-3}$, где *n* определена по зависимости R(H) при T = 4.2 K и атмосферном давлении (табл. 4). Концентрацию акцепторов и доноров можно оценить, приняв $\varepsilon_A = 2 \text{ муB}$ [1], воспользовавшись уравнениями (2)–(6), соотношением

$$N_{\rm A} =$$

=

$$=\frac{(n_1-p_1)+\frac{1}{2}\left[(p_2-n_2)+(p_3-n_3)\right]}{\frac{1}{2}\left[\frac{1}{1+4\exp(\varepsilon_{A2}^*-\eta_2)}+\frac{1}{1+4\exp(\varepsilon_{A3}^*-\eta_3)}\right]-\frac{1}{1+4\exp(\varepsilon_{A1}^*-\eta_1)},\tag{7}$$

а также рассчитаннными величинами концентраций электронов, дырок и энергии Ферми (табл. 5). Здесь индексы 1, 2 и 3 соответствуют температурам 4.2, 77.6 и 295 К, $\varepsilon_{\rm A}^* = \varepsilon_{\rm A}/k_{\rm B}T$. В результате получено $N_{\rm D} = 4.23 \cdot 10^{15} \,{\rm cm}^{-3}$, $N_{\rm A} = 1.48 \cdot 10^{16} \,{\rm cm}^{-3}$.

Изменение концентрации электронов с температурой и давлением происходит благодаря конкуренции трех процессов: захвата электронов на свободные акцепторные уровни, теплового возбуждения электронов из валентной зоны и, в рамках предлагаемой модели (рис. 1), из потенциальных ям. Так как $N_{\rm D}^+ = N_{\rm D} = {\rm const}$, из (2) следует

$$\frac{dn_l}{dT} + \frac{dn_h}{dT} = \frac{dp}{dT} - \frac{dN_A^-}{dT}.$$
(8)

При низких температурах $dp/dT \approx 0$. В слабо легированных кристаллах при высоких температурах и в сильно легированных кристаллах $n \approx n_l$.

Физика и техника полупроводников, 2009, том 43, вып. 2

Убывание n с ростом давления в слабо легированном образце p-HgTe-1 обусловлено главным образом убыванием n_l , но также и n_h . Характер температурных зависимостей $n_l(T)$ и $n_h(T)$ при T < 5 К виден из соотношения

$$R_0 = (n_l e)^{-1} \frac{b^2 + c}{(b+c)^2},$$
(9)

данных о завасимости $R_0(T)$ (рис. 2), величинах параметров b и c при 4.2 К (рис. 3, 4, табл. 3) и $b \to \infty$ $(\mu_h \rightarrow 0)$ при $T \rightarrow 0$. При атмосферном давлении и возрастании температуры от 0 до 4.2 К n_l возрастает от $\sim 6 \cdot 10^{14} \text{ см}^{-3}$ до $9.2 \cdot 10^{14} \text{ см}^{-3}$, n_h убывает от $n_h > 1.5 \cdot 10^{15} \text{ см}^{-3}$ до $1.14 \cdot 10^{15} \text{ см}^{-3}$. Таким образом, при увеличении температуры при атмосферном давлении доминирует процесс теплового возбуждения электронов из флуктуационных ям. Отметим, что экспериментально наблюдаемое изменение $|R_0|$ при $T > 5 \,\mathrm{K}$ и $T \rightarrow 0$ (рис. 2) не согласуется с вычислениями n(T), игнорирующими влияние случайного потенциала на энергетический спектр электронов: концентрация электронов $n = (|R_0|e)^{-1}$ при $T < 5 \,\mathrm{K}$ в этом приближении не должна убывать при $T \to 0$ [1]. С увеличением всестороннего давления и соответственно повышением уровня Ферми зависимость $n_l(T)$ все с большей степенью определяется зависимостью $N_{\rm A}^{-}(T)$. При $P \approx 0.7 \Gamma \Pi a$ и возрастании температуры от T = 0до 4.2 К концентрация n_l уменьшается от $\sim 4 \cdot 10^{14}$ до $1.3 \cdot 10^{13} \,\mathrm{cm^{-3}}^{-3}$ (в соотношении (8) $dN_{\rm A}^{-}/dT > 0$), т.е. наблюдается специфическая низкотемпературная особенность в бесщелевых полупроводниках: убывание концентрации электронов с увеличением температуры от T = 0 вследствие захвата электронов на свободные акцепторные уровни [1]. В квантующих магнитных полях с ростом напряженности магнитного поля при $T = 4.2 \, {
m K}$ величина |R| убывает [14,21], причем, если при $H \rightarrow 0$ и изменении давления от атмосферного до $P = 0.7 \, \Gamma \Pi a$ величина $|R_0|$ возрастает примерно в 10 раз, то при $H
ightarrow \infty$ независимо от величины всестороннего давления коэффициент Холла стремится к общему пределу: $\lim_{H \to \infty} (|R|e)^{-1} = (4-5) \cdot 10^{15} \,\mathrm{cm}^{-3}$, что согласуется с приведенной выше оценкой N_D. Таким образом, в квантующем магнитном поле наблюдается перетекание электронов с акцепторных центров в зону проводимости. Влияние магнитного поля в данном случае сводится в основном к понижению уровня Ферми, так как в ультраквантовом пределе увеличивается плотность состояний зоны проводимости. В этой связи уместо отметить, что в интервале магнитных полей 2-20 кЭ на образце *p*-HgTe [21] с близким по величине *R* к коэффициенту Холла в образце *p*-HgTe-1 при T = 4.2 К продольное магнитосопротивление убывает.

2.4. В полупроводниках, как правило, барические коэффициенты энергетических промежутков $\Delta \varepsilon$ не зависят (или слабо зависят) от давления [22]. В работе [7] на примере квазибесщелевых полупроводников был сделан вывод о том, что применение закона дисперсии для

Рис. 5. Зависимости нормализованных к атмосферному давлению концентраций электронов от всестороннего давления для образца *p*-HgTe-2 с $N_{\rm A}-N_{\rm D} = 3.7 \cdot 10^{18} \, {\rm cm^{-3}}$ при T = 82 (1) и 297 (2–4) К. Точки — расчет по зависимостям R(H, P). Сплошные линии — теория для величин барического коэффициента $d\varepsilon_{\rm g}/dP$, мэВ/ГПа: 1 - 220, 2 - 85, 3 - 110, 4 - 80.

идеального полупроводника в полупроводнике со случайным потенциалом корректно до тех пор, пока вычисленная по результатам эксперимента и с привлечением соотношений типа (2)-(6) зависимость $\Delta \varepsilon(P)$ близка к линейной. Возрастающее с понижением температуры и уменьшением концентрации свободных носителей заряда отклонение зависимости $\Delta \varepsilon(P)$ от линейности свидетельствует о существенном влиянии случайного потенциала на закон дисперсии.

По экспериментальным данным и уравнениям (2)–(6) был рассчитан коэффициент $\alpha = d\varepsilon_{\rm g}/dP$ для слабо легированного образца p-HgTe-1 и сильно легированного образца *p*-HgTe-2. В слабо легированном образце *p*-HgTe-1 при температурах 295, 77.6 К $\alpha = (121 \pm 2)$ мэВ/ГПа, при 4.2 К $\alpha = 220$ мэВ/ГПа; в сильно легированном образце *p*-HgTe-2 (табл. 2, рис. 5) при T = 295 K $\alpha = 85$ мэВ/ГПа и при T = 77.6 К $\alpha = 210$ мэВ/ГПа. Если для образца *p*-HgTe-1 предположить, что лишь легкие электроны являются электронами зоны проводимости, то коэффициент α составляет $\alpha = 420$ мэВ/ГПа при $T = 4.2 \, {\rm K}$. Этот факт может служить дополнительным аргументом, подтверждающим выдвинутое выше предположение о генезисе "тяжелых" электронов. В образце p-HgTe-2 с $N_{\rm A} - N_{\rm D} = 3.7 \cdot 10^{18}$ см⁻³ положение уровня Ферми задается статистикой дырок валентной зоны и практически не зависит от давления ($p \gg n$; табл. 2).

Полученные значения коэффициента α для образца *p*-HgTe-1 при 77.6 и 295 К и для образца *p*-HgTe-2 при 295 К согласуются с известными данными [1–3]. Следует обратить внимание, однако, на тот факт, что с понижением температуры рассчитанный коэффициент α возрастает. Причем эта тенденция не зависит от того, является ли образец сильно ($\varepsilon_A = 0$) или слабо ($\varepsilon_A > 0$) легированным, что свидетельствует о существенном влиянии случайного потенциала на электронный спектр при низких температурах. Очевидно, в этом случае применение закона дисперсии для идеального полупроводника в полупроводнике со случайным потенциалом, какими являются исследованные к настоящему времени кристаллы *p*-HgTe, не является корректным.

Ситуация в слабо легированных бесщелевых полупроводниках не тривиальная [1-3] и определяется спецификой зонного спектра. Так как уровень энергии мелкого акцептора лежит выше края зоны проводимости, то в отличие от обычного электронного кристалла при $N_{\rm D} < N_{\rm A}$ в слабо легированном *p*-HgTe уровень Ферми находится вблизи края зоны проводимости независимо от уровня компенсации. Ситуация осложняется также тем, что не выполняются условия

$$N_{\rm D}^{1/3}a_{\rm B} \gg 1$$
, $(1-k) \ll 1$, $\tilde{\gamma}/\varepsilon_{\rm F}^0 \gg 1$,

которые используются в теориях линейного экранирования и сильно легированных и компенсированных полупроводников [12]. Здесь $\tilde{\gamma}$ — среднеквадратичный потенциал, $\varepsilon_{\rm F}^0$ — энергия Ферми, рассчитанная согласно (4) по величине n при $T = 4.2 \,\mathrm{K}$ и атмосферном давлении, k — коэффициент компенсации. Для образца *p*-HgTe-1 $N_{\rm D}^{1/3}a_{\rm B} = 0.84, \ \tilde{\gamma}/\varepsilon_{\rm F}^0 = 1.3, \ N_{\rm A}^-/N_{\rm D} \approx 0.5 - 0.7.$ Поэтому не корректно применение уравнений, полученных в рамках этих теорий. Кроме того, в исследованных наиболее совершенных слабо легированных кристаллах *p*-HgTe проявляющиеся при низких температурах в явлениях переноса "тяжелые" электроны — это электроны зоны проводимости, находящиеся в ее хвосте плотности состояний, и их динамические свойства и плотность состояний не могут быть охарактеризованы зонной эффективной массой. Проводимость, как отмечалось выше, осуществляется путем подбарьерного туннелирования между ямами.

3. Заключение

Выяснено, что особенности низкотемпературных, магнетополевых и барических зависимостей кинетических коэффициентов в исследованных к настоящему времени слабо легированных кристаллах *p*-HgTe являются следствием флуктуаций потенциала заряженных центров и, возможно, электрически неактивных дефектов и специфики зонной структуры. "Тяжелыми" электронами являются электроны зоны проводимости, локализованные в ямах флуктуационного потенциала.

Прогресс в интерпретации экспериментальных данных бесщелевого слабо легированного полупроводника *p*-HgTe так же, как и в случае квазибесщелевых полупроводников *p*-типа CdSnAs₂, InAs и др., обусловлен применением эффективного внешнего воздействия всестороннего давления. Часть вышеизложенных результатов была представлена на VII Российской конференции по физике полупроводников "Полупроводники–2005" [23] и на 12 Международной конференции "Полупроводники при высоком давлении" [24].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 05-02-16608).

Список литературы

- I.M. Tsidilkovski, G.I. Harus, N.G. Shelushinina. Adv. Phys., 34 (1), 43 (1985).
- [2] И.М. Цидильковский. Бесщелевые полупроводники. Новый класс веществ (М., Наука, 1986).
- [3] И.М. Цидильковский. Электронный спектр бесщелевых полупроводников (Екатеринбург, 1991).
- [4] И.К. Камилов, М.И. Даунов, В.А. Елизаров, А.Б. Магомедов. Письма ЖЭТФ, 54, 589 (1991).
- [5] М.И. Даунов, А.Б. Магомедов, В.И. Данилов. ФТП, 25, 3, 467 (1991).
- [6] И.К. Камилов, И.М. Даунов, А.Б. Магомедов. ЖЭТФ, 104, 2436 (1993).
- [7] М.И. Даунов, И.К. Камилов, А.Б. Магомедов. ЖЭТФ, 84 (2), 309 (1997).
- [8] М.И. Даунов, И.К. Камилов, В.А. Елизаров, А.Б. Магомедов, В.И. Данилов. Докл. РАН, 42 (12), 657 (1997).
- [9] М.И. Даунов, И.К. Камилов, А.Б. Магомедов, А.Ш. Киракосян. ФТП, 33 (1), 36 (1999).
- [10] О. Моделунг. Физика полупроводниковых соединений элементов III и V групп (М., Мир, 1967).
- [11] Н.Н. Аблязов, М.Э. Райх, А.Л. Эфрос. Письма ЖЭТФ, 38 (3), 103 (1983).
- [12] Б.И. Шкловский, А.А. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [13] M.I. Daunov, E.L. Broyda. Phys. Status Solidi B, 55, K155 (1973).
- [14] J. Stankiewicz, W. Giriat. Phys. Rev. B, 13 (2), 665 (1976).
- [15] E.O. Kane. Phys. Chem. Sol. 1, 24g (1957).
- [16] S.H. Groves, W. Paul. Phys. Rev. Lett., 11, 194 (1963).
- [17] W. Zawadzki, R. Kowalczuk, J. Kolodziejczak. Phys. Status Solidi, 10, 513 (1965).
- [18] Дж. Блекмор. Статистика электронов в полупроводниках (М., Мир, 1964).
- [19] М.И. Даунов. УФЖ, **13** (10), 1633 (1968).
- [20] М.И. Даунов. Докл. АН АзССР, 23 (3), 10 (1967).
- [21] В.И. Иванов-Омский, Н.Н. Константинова, Р.В. Парфеньев и др. ФТП, 7 (4), 715 (1973).
- [22] А. Матуленис, Ю. Пожела, Е. Шимулите, В. Юцене. В сб.: Полупроводниковые преобразователи (Вильнюс, Мокслас, 1980) с. 141.
- [23] И.К. Камилов, М.И. Даунов, С.Ф. Габибов. Тез. докл. VII Росс. конф. по физике полупроводников "Полупроводники–2005" (М., 2005) с. 42.
- [24] M.I. Daunov, I.K. Kamilov, S.F. Gabibov. Abstracts 12th Int. Conf. HPSP (Barcelona, Spine, 2006) Mo-P1-38.

Редактор Т.А. Полянская

About a nature of "heavy" electrons in gapless and narrow-gap semiconductors *p*-HgTe

M.I. Daunov, I.K. Kamilov, S.F. Gabibov

Institute of Physics, Daghestan Scientific Center, Russian Academy of Sciences, 367003 Makhachkala, Russia

Abstract Model, according to which the "heavy" electrons are the electrons of conduction band, is proposed to explain low-temperature electron transport features in gapless *p*-HgTe semiconductor. There also have been analyzed experimental data on temperature, magnetic field and baric dependences of Hall coefficient R(T, H, P) and conductivity $\sigma(T, P)$ in weakly doped moderately compensated and heavly doped *p*-HgTe samples.