Магнитооптика одиночной квантовой ямы CdMnSe/CdMgSe

© И.И. Решина[¶], С.В. Иванов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 1 апреля 2008 г. Принята к печати 9 апреля 2008 г.)

Исследованы спектры фотолюминесценции и отражения в магнитных полях до 7 Тл полумагнитной квантовой ямы CdMnSe шириной 3.8 нм, заключенной между барьерами CdMgSe. Отмечен сильный магнитный сдвиг линии излучения тяжелого экситона к низким энергиям в поляризации σ^+ и уменьшение полуширины линии более чем вдвое при увеличении магнитного поля. Установлено образование локализованного магнитного полярона с поляронной энергией 19.8 мэВ, измеренной по изменению циркулярной поляризации в магнитном поле. В σ^- -поляризации в интервале магнитных полей 0.4–2 Тл наблюдалась линия излучения, которую можно интерпретировать как обусловленную комплексом с энергией связи 10 мэВ из двух электронов с противоположно направленными спинами и тяжелой дырки, т.е. трионом X^- или экситоном, локализованным на доноре, D^0X .

PACS: 78.20.Ls, 78.67.Hc

1. Введение

Полумагнитные квантовые структуры широко исследуются, так как они представляют интерес как для фундаментальной физики, так и для практических применений в новой развивающейся отрасли — спинтронике. Первоначально исследовались структуры, в которых магнитные ионы (обычно Mn²⁺) находились в барьерах и волновая функция квантовой ямы проникала в них только своим хвостом. Позднее были выращены структуры, в которых Mn²⁺ находился в самой квантовой яме и обменное взаимодействие между свободными электронами и дырками и локализованными *d*-электронами Mn²⁺ (так называемое s, p-d взаимодействие) было более сильным. Исследования проводились на системах на основе CdTe и ZnSe (например, Cd(Mn)Te/CdMg(Mn)Te и ZnMnSe/ZnBeMgSe). В структурах CdTe/CdMnTe и ZnSe/ZnMnSe проводились исследования обусловленного магнитным полем перехода от типа I к типу II [1-3]. Исследовались вопросы образования двумерных магнитных поляронов в CdTe/CdMnTe [4,5]. Было показано, что магнитные поляроны эффективно формируются в квантовых ямах с толщиной меньше 3 нм. Динамика магнитных поляронов типа I и типа II изучалась также в структурах ZnSe/ZnMnSe, CdTe/CdMnTe и ZnTe/CdMnSe [5-8]. Наряду со свободными экситонами в определенном интервале магнитных полей при надбарьерном возбуждении наблюдались также трионы [9].

Настоящая работа посвящена исследованию экситонной фотолюминесценции, ее поляризации и образованию магнитных поляронов в полумагнитной квантовой яме новой материальной системы Cd(MnSe)/CdMgSe. Ранее квантовые структуры на основе этой системы исследовались нами при изучении вертикального транспорта носителей и экситонов в сверхрешетках CdSe/CdMgSe [10], а также при изучении двойных полумагнитных квантовых ям [11,12].

2. Изготовление структур и методика эксперимента

Структура из семи периодов невзаимодействующих квантовых ям Cd_{0.93}Mn_{0.07}Se шириной 3.8 нм, разделенных барьерами Cd_{0.8}Mg_{0.2}Se толщиной 10 нм, была выращена на подложке InAs с ориентацией (100) методом лучевой молекулярной эпитаксии. Параметры решеток InAs и CdMgSe очень близки, благодаря чему рост структуры происходит псевдоморфно, т.е. постоянные решеток в слоях ям и барьеров "подстраиваются" под постоянную решетки подложки. Относительная деформация решетки в квантовой яме составляет ≈ -0.003 . Параметры образца определялись по скоростям роста, рентгеновским спектрам, а также измерениям толщин слоев на просвечивающем электронном микроскопе. Структура с квантовыми ямами специально не легировалась, но обычно такие структуры имеют *n*-тип проводимости.

Во время измерений образец находился в парах жидкого откачиваемого гелия в криостате со сверхпроводящим соленоидом, обеспечивающим магнитные поля до 7 Гл в геометрии Фарадея или Фойгта. Спектры фотолюминесценции (ФЛ) и отражения измерялись на спектрометре ДФС-24 с двойным монохроматором и с компьютеризованной системой регистрации. Возбуждение ФЛ осуществлялось лазерами He–Ne (1.96 эB), Kr⁺ (1.916 эB) и Ar⁺ (2.41 эB). Спектры отражения измерялись с помощью галогеновой лампы. Спектры ФЛ и отражения измерялись при циркулярной поляризации для выделения различных спиновых переходов.

3. Результаты экспериментов и обсуждение

Спектры $\Phi \Pi$ полумагнитной квантовой ямы CdMnSe/CdMgSe шириной 3.8 нм при различных магнитных полях в геометрии Фарадея в поляризации σ^+

[¶] E-mail: reshina@dnm.ioffe.ru

Рис. 1. Спектры фотолюминесценции тяжелого экситона полумагнитной КЯ при нескольких значениях магнитного поля, указанного возле спектров (в Тл). $E_{\rm exc} = 1.916$ эВ. Поляризация σ^+ . При B = 2 Тл пунктирной кривой представлен спектр при σ^- -поляризации.

приведены на рис. 1. В нулевом магнитном поле линия ФЛ очень широкая (23 мэВ), но сужается до 9 мэВ при увеличении магнитного поля до 7 Тл. Причины этого будут обсуждаться далее. При B = 2 Тл приведен также спектр при поляризации σ^- . Видно, что уже при небольших магнитных полях линия ФЛ очень сильно поляризована как σ^+ , что связано с гигантским зеемановским расщеплением валентной зоны и зоны проводимости вследствие обменного sp-d взаимодействия. Рост степени циркулярной поляризации, $\rho_c = rac{I_{\sigma^+} - I_{\sigma^-}}{I_{\sigma^+} + I_{\sigma^-}},$ в зависимости от магнитного поля (B) приведен на рис. 2. ρ_c достигает значения 0.96 уже в поле 0.3 Тл. Вследствие зеемановского расщепления с возрастанием магнитного поля В происходит также сдвиг линии излучения в поляризации σ^+ к низким энергиям, так как эта линия соответствует тяжелому экситону $\left|-\frac{1}{2},\frac{3}{2}\right\rangle$, который является основным состоянием в полумагнитных структурах и активен в ФЛ в σ^+ -поляризации [13]. Этот сдвиг описывается известным выражением [14]

$$\Delta E = \Delta E_c + \Delta E_v = -\frac{1}{2} \left(x_{\text{eff}} N_0(\alpha + \beta) \left\langle S_z^{\text{Mn}} \right\rangle \right), \qquad (1)$$

где $x_{\rm eff}$ — эффективная концентрация ${\rm Mn}^{2+}$, $N_0(\alpha + \beta)$ — сумма интегралов обменного взаимодействия зоны проводимости и валентной зоны, $\langle S_z^{\rm Mn} \rangle$ — средняя проекция спинов ${\rm Mn}^{2+}$ на магнитное

Физика и техника полупроводников, 2008, том 42, вып. 11

поле, которая описывается функцией Бриллюэна B_s для S = 5/2 (суммарный спин пяти *d*-электронов Mn²⁺);

$$\langle S_z^{\rm Mn} \rangle = -(5/2)B_{5/2} \left[\frac{5\mu_{\rm B}B}{k_{\rm B}(T+T_{\rm AF})} \right],\tag{2}$$

где $\mu_{\rm B}$ — магнетон Бора, $k_{\rm B}$ — постоянная Больцмана, *T* — температура.

Параметры x_{eff} и T_{AF} учитывают тот факт, что марганец образует пары с антиферромагнитным взаимодействием, которые не принимают участия в магнетизации. Соотношения (1) и (2) имеют два подгоночных параметра x_{eff} и $T_0 = T + T_{\text{AF}}$.

Сдвиг линии в магнитном поле представлен на рис. 3 и аппроксимирован с помощью формул (1) и (2). Использованы значения интегралов обменного взаимодействия для объемных образцов $N_0\alpha = 258$ мэВ и $N_0\beta = -1110$ мэВ [15]. Отсюда мы нашли $x_{\rm eff} = 0.024$ и $T_0 = 5.6$ К.

На рис. 4 приведены сдвиги экситона в малых магнитных полях, найденные из спектров отражения для σ^+ - и σ^- -поляризации.

На рис. 5 приведены линии ФЛ в области малых магнитных полей для обеих поляризаций ФЛ. В спектрах с σ^- -поляризацией видно, что линия в интервале магнитных полей 0.4–2 Гл состоит из двух компонент. Спектр при 0.4 Гл разложен на две лоренцевых компоненты, расстояние между которыми составляет 10 мэВ. С ростом магнитного поля интенсивность низкоэнергетической компоненты уменьшается относительно вы-

Рис. 2. Изменение циркулярной поляризации излучения тяжелого экситона в магнитном поле.

Рис. 3. Изменение энергии тяжелого экситона в магнитном поле. Эффективная концентрация и температура определены путем аппроксимации экспериментальных данных с помощью выражений (1) и (2).

сокоэнергетической компоненты и при магнитных полях выше 2 Тл она исчезает. На рис. 6 сравниваются спектры при возбуждении 1.916 эВ и при надбарьерном возбуждении 2.41 эВ. В последнем случае интенсивность низкоэнергетической компоненты возрастает. Поведение низкоэнергетической компоненты позволяет интерпретирвать ее как комплекс, состоящий из двух электронов с противоположно направленными спинами и тяжелой дырки, т. е. или как трион (X^{-}) , или как экситон, локализованный на нейтральном доноре (D^0X) [16,17]. Усиление низкоэнергетической компоненты при надбарьерном возбуждении (рис. 6) связано, по-видимому, с увеличением концентрации электронов в квантовой яме. Известно, что, когда электронный газ полностью поляризован магнитным полем на нижнем спиновом подуровне зоны проводимости, линии излучения X^- и D^0X в структурах с положительным g-фактором полностью поляризованы как σ^- в отличие от экситона, который имеет преимущественную поляризацию σ^+ [18]. ФЛ триона (X^-) наблюдалась в одиночной квантовой яме ZnMnSe/ZnBeMgSe толщиной 5.2 нм при B = 0 и надбарьерном возбуждении [9]. С увеличением магнитного поля фотолюминесценция триона исчезала. Это объяснялось тем, что, когда зеемановское расщепление зоны проводимости превышает энергию связи триона, он становится нестабильным и нижним энергетическим состоянием становится

Рис. 4. Сдвиг энергии тяжелого экситона в магнитном поле, из измерений спектров отражения при σ^+ - и σ^- -поляризации. На вставке — спектры отражения в поляризации σ^+ при B = 0, 0.3 и 0.8 Тл.

Рис. 5. Спектры тяжелого экситона при B = 0.4, 0.9 и 3 Тл в поляризации σ^+ - и σ^- . $E_{\text{exc}} = 1.916$ эВ. При B = 0.4 Тл спектр разложен на две лоренцевых компоненты, расстояние между которыми составляет 10 мэВ.

Физика и техника полупроводников, 2008, том 42, вып. 11

Рис. 6. Спектр тяжелого экситона при B = 0.9 Тл в σ^- -поляризации. I — при $E_{\text{exc}} = 2.41$ эВ (надбарьерное возбуждение), $2 - E_{\text{exc}} = 1.916$ эВ. При надбарьерном возбуждении возрастает интенсивность низкоэнергетической компоненты в связи с увеличением концентрации электронов в квантовой яме.

состояние экситона [19]. Критическое поле B_c , когда это происходит, можно оценить по формуле [19]

$$B_c = \Delta E / \tilde{g}_e \mu_{\rm B}. \tag{3}$$

Здесь ΔE — энергия связи комплекса, $\tilde{g}_e = 35x_{\rm eff}(\alpha N_0)g_{\rm Mn}/12(T+T_{\rm AF})$ — эффективный *g*-фактор.

В нашем случае, как уже отмечалось, в нулевом магнитном поле линия очень широкая, и мы не видим двух компонент, что естественно, если к тому же интенсивность триона значительно меньше интенсивности экситона. Уже в слабом магнитном поле вследствие гигантского зеемановского расщепления экситон очень сильно поляризован. Его интенсивность в σ^- -поляризации сильно уменьшается и становится заметной низкоэнергетическая компонента. Энергию связи комплекса можно оценить как 10 мэВ, что существенно больше, чем, например, энергия связи триона 5 мэВ в квантовой яме ZnSe/ZnMgSSe шириной 8 нм [18]. В нашем случае оценка по формуле (3) дает $B_c = 2.2 \,\mathrm{Tr}$ и действительно низкоэнергетическая компонента исчезает в поле больше 2 Тл. Мы не можем со всей определенностью приписать низкоэнергетическую компоненту триону Хили экситону, локализованному на доноре, D^0X , но склоняемся к последней интерпретации вследствие большой энергии связи.

Обсудим теперь, с чем может быть связана большая ширина линии $\Phi \Pi$ при B = 0 и ее сильное сужение с ростом магнитного поля. Нам кажется, что эти эффекты могут быть связаны не только с перекрытием с низкоэнергетической компонентой, но и с образованием локализованного магнитного полярона (МП) [20]. Ранее подобное поведение наблюдалось для одиночной квантовой точки CdMnTe/CdMgTe и объяснялось кинетикой формирования МП, а именно сдвигом линии в течение времени формирования МП, что при измерениях с непрерывным возбуждением проявляется как уширение линии [21]. В области локализации магнитного полярона спины ионов Mn и фотовозбужденных дырок (именно они принимают основное участие в обменном взаимодействии) сильно скоррелированы [22]. Это приводит к обменному полю В_р и дополнительному понижению энергии экситона, так называемому поляронному сдвигу E_p. В случае образования магнитного полярона сдвиг экситонной линии происходит в суммарном поле $B_{\text{tot}} = B_{\text{ext}} + B_{\text{p}}$. Можно измерить E_{p} непосредственно с помощью измерений положения линии ФЛ при селективном фотовозбуждении области локализации экситонных состояний [20]. В нашем случае такие измерения были затруднены вследствие большой ширины линии при B = 0, а при увеличении магнитного поля E_{p} уменьшается [20]. Поэтому мы воспользовались косвенным методом определения Ер путем измерения производной циркулярной поляризации экситона по магнитному полю в области малых полей, $d\rho_c/dB|_{B=0}$, и зеемановского расщепления тяжелого экситона в малых полях в геометрии Фарадея. Согласно [23],

$$E_{\rm p} = \frac{1}{2\pi k_{\rm B}T} \left[\frac{dE_z/dB}{d\rho/dB} \right]^2 \Big|_{B=0}.$$
 (4)

Здесь E_z — магнитное расщепление тяжелого экситона. Из сдвига линии тяжелого экситона в магнитном поле в спектре отражения (рис. 4) $dE_z/dB = 46.3$ мэВ/Тл. Из изменения циркулярной поляризации в магнитном поле (рис. 2) $d\rho/dB \approx 10$ Тл⁻¹. Таким образом, мы находим $E_p \approx 19.8$ мэВ.

4. Заключение

Исследованы спектры фотолюминесценции и отражения полумагнитной квантовой ямы CdMnSe/CdMgSe шириной 3.8 нм в магнитных полях до 7 Тл в геометрии Фарадея. Наблюдался сильный сдвиг в магнитном поле линии, обусловленной тяжелым экситоном. Наблюдалось образование локализованного магнитного полярона и измерена его поляронная энергия, равная 19.8 мэВ. В магнитных полях до 2 Тл при σ^- -поляризации заметно появление низкоэнергетической компоненты линии экситона с энергией связи 10 мэВ. Эту компоненту можно интерпретировать как трион или экситон, локализованный на нейтральном доноре.

Работа выполнена при поддержке РФФИ (грант № 06-02-16245).

Авторы благодарны И.В. Седовой и С.В. Сорокину за выращивание структуры и А.А. Ситниковой за измерения на электронном микроскопе.

Список литературы

- E. Deleporte, J.M. Berroir, G. Bastard, C. Dalalande, J.M. Hong, L.L. Chang. Phys. Rev. B, 42, 5891 (1990).
- [2] В.П. Кочерешко, Е.Л. Ивченко, И.Н. Уральцев, Г.Р. Позин, А.В. Кавокин, Д.Р. Яковлев, Г. Ландвер, А. Вааг. Изв. АН СССР, 58, 9 (1994).
- [3] E. Deleporte, T. Lebihen, B. Ohnesorge, P.H. Roussignol, C. Delalande, S. Guha, H. Munekata. Phys. Rev. B, 50, 4514 (1994).
- [4] D.R. Yakovlev, W. Ossau, G. Landwehr, R.N. Bicknell-Tassius, A. Waag, S. Schmeusser, I.N. Uraltsev. Sol. St. Commun., 82, 29 (1992).
- [5] D.R. Yakovlev, W. Ossau, G. Landwehr, R.N. Bicknell-Tassius, A. Waag, S. Schmeusser, I.N. Uraltsev, A. Pohlman, E.O. Göbel. J. Cryst. Growth, **117**, 854 (1992).
- [6] C.D. Powelet, L.M. Smith, B.T. Jonker. Phys. Rev. B, 50, 18662 (1994).
- [7] V.V. Rossin, F. Henneberger, J. Puls. Phys. Rev. B, 53, 16444 (1996).
- [8] D.D. Awschalom, M.R. Freeman, N. Samarth, H. Luo, J.K. Furdyna. Phys. Rev. Lett., 66, 1212 (1991)
- [9] B. Konig, U. Zehnder, D.R. Yakovlev, W. Ossau, T. Gerhard, M. Keim, A. Waag, G. Landwehr. Phys. Rev. B, 60, 2653 (1999).
- [10] И.И. Решина, С.В. Иванов, Д.Н. Мирлин, И.В. Седова, С.В. Сорокин. ФТП, **39**, 456 (2005). [Semiconductors, **39**, 432 (2005)].
- [11] I.I. Reshina, S.V. Ivanov, D.N. Mirlin, I.V. Sedova, S.V. Sorokin. Phys. Rev. B, 74, 235 324 (2006).
- [12] I.I. Reshina, S.V. Ivanov, I.V. Sedova, S.V. Sorokin. Physica E, 40, 1197 (2008).
- [13] J.K. Furdyna. J. Appl. Phys., 64, R29 (1988).
- [14] J.A. Gaj, R. Planel, G. Fishman. Sol. St. Commun., 29, 435 (1979).
- [15] D. Heiman. In: 12th Int. Conf. on High Magnetic Fields in the Physics of Semiconductors, v. 2, p. 847 (Würzburg, Germany, 1996) eds G. Landwehr, W. Ossau (World Scientific, Singapore, 1997).
- [16] K. Kheng, R.T. Cox, Y. Merle d' Aubigné, Franck Bassani, K. Saminadayar, S. Tatarenko. Phys. Rev. Lett., 71, 1752 (1993).
- [17] N. Paganotto, J. Siviniant, D. Coquillat, D. Scalbert, J.-P. Lascaray, A.V. Kavokin. Phys. Rev. B, 58, 4082 (1998).
- [18] G.V. Astakhov, D.R. Yakovlev, V.P. Kochereshko. Phys. Rev. B, 60, R8485 (1999).
- [19] D. Heiman, P. Becla, R. Kershaw, K. Dwight, A. Wold, R.R. Galazka. Phys. Rev. B, 34, 3961 (1986).
- [20] G. Mackh, W. Ossau, D.R. Yakovlev, A. Waag, G. Landwehr, R. Hellmann, E.O. Göbel. Phys. Rev. B, 49, 10 248 (1994).
- [21] A.A. Maksimov, G. Bacher, A. McDonald, V.D.A. Forchel, C.R. Becker, G. Landwehr, L. Molenkamp. Phys. Rev. B, 62, R7767 (2000).

- [22] K.V. Kavokin, I.A. Merkulov, D.R. Yakovlev, W. Ossau, G. Landwehr. Phys. Rev. B, 60, 16 499 (1999).
- [23] I.A. Merkulov, G.R. Pozina, D. Coquillat, N. Paganoto, J. Siviniant, J.P. Lascaray, J. Cibert. Phys. Rev. B, 54, 5727 (1996).

Редактор Л.В. Беляков

Magnetooptic of a CdMnSe/CdMgSe single quantum well

I.I. Reshina, S.V. Ivanov

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract We have studied photoluminescence and reflection spectra in magnetic fields up to 7T of a semimagnetic CdMnSe quantum well with a width of 3.8 nm placed between CdMgSe barriers. A strong magnetic shift of the heavy-hole exciton emission line to low energies was observed under σ^+ -polarization accompanied by a decrease of the line half-width more then twofold as the magnetic field increased. A formation of the localized magnetic polaron was established with polaron energy of 19.8 meV. The latter was measured by the change of the circular polarization vs. magnetic field. In σ^- -polarization at magnetic fields in the range of 0.4–2T an emission line was observed that can be interpreted as due to a complex of two electrons with opposite spins and a heavy hole, i.e. trion, X^- , or an exciton localized on neutral donor, D^0X , with a binding energy of 10 meV.