Влияние фазового перехода на энергетический спектр электронов в Ag₂S

© Ф.Ф. Алиев[¶], М.Б. Джафаров, Б.А. Таиров, Г.П. Пашаев, А.А. Саддинова, А.А. Кулиев

Институт физики Азербайджанской национальной академии наук, 370143 Баку, Азербайджан

(Получена 26 апреля 2007 г. Принята к печати 20 декабря 2007 г.)

Представлены температурные зависимости электропроводности σ , коэффициента Холла R и термоэдс α_0 в Ag₂S. Установлено, что при $T \approx 435 \pm 5$ K все кинетические параметры изменяются скачкообразно, что связано с изменением параметров зоны проводимости. Показано, что закон дисперсии энергии электронов в β -Ag₂S соответствует модели Кейна.

PACS: 71.20.Nr, 72.20.Fr, 73.50.Lw

Как известно, Ag₂S при температуре $T \approx 435 \pm 5$ К переходит из низкотемпературной α -фазы с моноклинной структурой в высокотемпературную β -фазу объемноцентрированной модификации (ОЦК) [1], при фазовом переходе происходят существенные изменения параметров зонной структуры, что приводит к качественным изменениям его электрических и термоэлектрических свойств. В отличие от других халькогенидов серебра (Ag₂Se и Ag₂Te [2–4]), Ag₂S обладает бо́льшим значением ширины запрещенной зоны и малой подвижностью носителей заряда в α -фазе [1]. Температурные зависимости зонных параметров в β -фазе слабо изучены, что делает привлекательным изучение поведения кинетических коэффициентов в β -Ag₂S.

В данной работе для получения некоторых сведений о зонных параметрах и о законе дисперсии энергии носителей заряда исследованы электрические и термоэлектрические свойства β -Ag₂S в широком концентрационном и температурном интервалах. Образцы получены по стандартной технологии [5].

Исследования показывают, что при фазовом переходе $(\Phi\Pi)$ проводимость σ увеличивается на несколько порядков, а коэфициент Холла R и термоэдс α_0 уменьшаются в $\sim 3-4$ раза (рис. 1-3). После $\Phi\Pi$ σ и R (за исключением величины R для образцов с концентрацией $n \approx 6.25 \cdot 10^{18} \, {\rm сm}^{-3})$ с ростом температуры уменьшаются, а α_0 не зависит от температуры. По зависимости R(T) для образцов с концентрацией $n < 6.25 \cdot 10^{18} \,\mathrm{cm}^{-3}$ (рис. 2) видно, что сразу после $\Phi\Pi$ наступает собственная проводимость. Тогда по наклону зависимости $lg(RT^{3/2}) = f(1000/T)$ можно определить ширину запрещенной зоны є_g; было найдено значение $\varepsilon_g \approx 0.44 \pm 0.04$ эВ. Уменьшение $\sigma(T)$ с ростом температуры связано с тем, что подвижности электронов и дырок сильно уменьшаются за счет их рассеяния на колебаниях решетки и на точечных дефектах, возникающих при ФП. Независимость R от T, начиная с концентрации $n \approx 2.1 \cdot 10^{19} \, \mathrm{cm}^{-3}$, указывает на то, что проводимость осуществляется одним типом носителей. Постоянство $\alpha_0(T)$ в β -Ag₂S не согласуется с данными по $\sigma(T)$ и R(T).

Известно, что если в проводимости участвует только один тип носителей заряда, тогда по данным α_{∞} и R_{∞} (α_{∞} и R_{∞} — значения термоэдс и коэффициента Холла в сильном магнитном поле) можно определить эффективную массу носителей заряда на дне зоны проводимости и на уровне Ферми. По величине α_{∞} мы определили значение приведенного химического потенциала η^* , затем, по данным коэффициента Холла была вычислена эффективная масса на дне зоны проводимости m_0^* и величина m^* на уровне Ферми. Рассчитанные нами значения m_0^* и m^* в интервале 100–400 К показывают, что они почти совпадают с данными из работ [1,6], т.е. концентрационная зависимость эффективной массы не обнаружена. Это свидетельствует о том, что закон дисперсии для электронов в α -Ag₂S является квадратичным.

Для изучения закона дисперсии в β -Ag₂S нами была построена концентрационная зависимость $m^*(n)$, представленная на рис. 4 в координатах

$$\left(\frac{m^*}{1-m^*}\right)^2 = f(n^{2/3}).$$

Получено, что такая зависимость $m^*(n)$ линейна, т.е. закон дисперсии подчиняется модели Кейна. В интервале $T \approx 480-600$ К с ростом температуры эффективная масса электронов на дне зоны проводимости и на уровне Ферми уменьшается слабо, а температурный коэффициент $m^*(\frac{\partial m^*}{\partial T} \approx -3.8 \cdot 10^{-5} \text{ K}^{-1})$ в указанном интервале T не превышает допустимой погрешности.

Эффективная масса на дне зоны проводимости m_0^* является одним из важных зонных параметров. В чистых образцах m_0^* экспериментально определяется методом циклотронного резонанса. Также имеется и ряд косвенных способов определения m_0^* . Полученные нами значения m_0^* для β -Ag₂S близки к величине ~ 0.21 m_0 , найденной в [6–8], т.е. m_0^* в β -Ag₂S в ~ 2.6 раз меньше, чем в α -Ag₂S.

[¶] E-mail: farzali@physics.ab.az

Рис. 1. Температурные зависимости электроводности в Ag_2S . Образцы: 1 — стехиометрического состава, 2 и 3 — с избытком Ag, 4 — с избытком S, 5 — данные из [6].

Рис. 2. Температурные зависимости коэфициента Холла в Ag₂S. Обозначения те же, что на рис. 1.

Рис. 3. Температурные зависимости термоэдс в Ag₂S. Обозначения те же, что на рис. 1.

Прямая экстраполяция линейной концентрационной зависимости *m*^{*} в координатах

$$\left(\frac{m^*}{1-m^*}\right)^2 = f(n^{2/3})$$

до пересечения с осью ординат $(n \rightarrow 0)$ дает возможность определить m_0^* , а наклон прямой — вычислить ширину запрещенной зоны. В кристаллах с высокой концентрацией носителей заряда такая экстраполяция может сопровождаться значительными погрешностями. На рис. 4 представлена такая прямая при T = 520 K. Установлено, что независимо от от способа определения m^* в интервале 450–600 K также уменьшается слабо.

Подобные температурные зависимости m^* наблюдались в таких узкозонных полупроводниках, как HgSe, InSb, HgTe, Ag₂Te и Ag₂Se [2]. В этих полупроводниках зависимость $m^*(T)$ обусловлена идентичной зависимостью ширины запрещенной зоны ε_g от T, вытекающей из модели Кейна и Эренрайха [9]. Автор [1] определил ширину запрещенной зоны $\varepsilon_g = 1.3$ эВ и ее температурный коэффициент $\frac{\partial \varepsilon_g}{\partial T} = 1.5 \cdot 10^{-3}$ эВ/К в α -Ag₂S. В отличие от α -Ag₂S, в высокотемпературной фазе β -Ag₂S величина ε_g с температурой уменьшается слабо, т.е. ее уменьшение с T соответствует температурной зависимости $m^*(T)$. Полученные нами данные по ε_g и ее температурной зависимости $\frac{\partial \varepsilon_g}{\partial T} \approx 4 \cdot 10^{-5}$ эВ/К не соответствуют результатам [6,10]. Полученные нами данные о $\varepsilon_g(T)$, $m^*(T)$ в β -Ag₂S в литературе не встречаются.

Как видно, значение m_0^* в β -Ag₂S относительно выше, чем в других соединениях семейства Ag₂B^{VI} (см. таблицу). Из таблицы также видно, что в них в основном существует корреляция между шириной запрещеной зоны ε_g , эффективной массой m_0^* и матричным элементом взаимодействия *P*. Из этого ряда выпадает лишь β -Ag₂S, что может быть связано либо с кристаллической

Рис. 4. Концентрационная зависимость эффективности массы в β -Ag₂S при 520 K.

Физика и техника полупроводников, 2008, том 42, вып. 10

Параметры	$T = 100 \mathrm{K}$			$T = 500 \mathrm{K}$		
	α-Ag ₂ Te	α-Ag ₂ Se	α -Ag ₂ S	β -Ag ₂ Te	β -Ag ₂ Se	β -Ag ₂ S
$arepsilon_g,$ ə B	0.024	0.17	1.30	0.12	0.08	0.44
m_0^*/m_0	0.020	0.080	0.450	0.030	0.008	0.21
<i>P</i> , 10 ⁸ эВ · см	0.50	1.74	12.0	5.04	5.90	6.30
$U, 10^3 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$	20	1.8	0.02	4.0	0.7	2

Зонные параметры в Аg₂B^{VI}

Примечание. U — подвижность электронов.

структурой β -Ag₂S, либо с матричным элементом взаимодействия. Поскольку кристаллические структуры высокотемпературных фаз β -Ag₂Te (ГЦК) и β -Ag₂Se (ОЦК) близки, а β -Ag₂S (ОЦК) [11] также хорошо вписывается в приведенный ряд, можно полагать, что в последнем большая эффективная масса на дне зоны проводимости и соответственно на уровне Ферми обусловлены высокими значениями матричного элемента взаимодействия:

$$P = \left[\frac{3h^2}{4m_0^*}\varepsilon_g(1-m_0^*)\right]^{1/2}$$

Как видно из таблицы, величина P в β -Ag₂S примерно в 2 раза меньше по сравнению с P в α -Ag₂S. Отсюда следует, что большое значение m_0 является причиной относительно малой подвижности электронов U.

Особый интерес представляют данные по изменению кинетических коэффициентов при ФП. Как видно, при ФП ε_g и m_0^* уменьшаются скачком. Безусловно, скачкообразное уменьшение зонных параметров обусловлено реконструкцией кристаллической структуры при ФП, сопровождающемся скачкообразным изменением постоянной решетки. Слабые температурные зависимости ширины запрещенной зоны обусловлены в основном тепловым расширением кристалла.

Таким образом, установлено, что в β -Ag₂S эффективная масса на дне зоны проводимости намного меньше эффективной массы на уровне Ферми, а величины m_0^* и ε_g при ФП корреляционно уменьшаются. Для зоны проводимости ФП в Ag₂S сопровождается переходом от параболичного закона дисперсии носителей к непараболичному.

Список литературы

- [1] P. Sunod. Helvetica Phys. Acta, **32** (6–7), 567 (1959).
- [2] С.А. Алиев, Ф.Ф. Алиев. Изв. АНСССР Неорг. матер., 21 (11), 1869 (1985).
- [3] Ф.Ф. Алиев, Э.М. Керимова, С.А. Алиев. ФТП, 36 (8), 932 (2002).
- [4] Ф.Ф. Алиев. ФТП, **37** (9), 1082 (2003).
- [5] В.М. Глазов, Н.М. Махмудова. Изв. АНСССР, VI (3), 1409 (1979).
- [6] А.В. Дитман, И.Н. Куликова. ФТТ, 19 (8), 1397 (1977).
- [7] C. Wagner. J. Chem. Phys., **21**, 1819 (1955).
- [8] S. Miyatani. J. Phys. Soc. Japan, 15, 1586 (1960).

- [9] О. Маделунг. Физика полупроводниковых соединений элементов III и V групп (М., Мир, 1967).
- [10] P. Brusch, Wullschleger. J. Sol. St. Commun., 13 (1), 9 (1973).
- [11] В.В. Горбачев. Полупроводниковые соединения (М., Металлургия, 1980).

Редактор Т.А. Полянская

Influence of the phase transition on electron energy spectrun in Ag₂S

F.F. Aliev, M.B. Jafarov, B.A. Tairov, G.P. Pashayev, A.A. Saddinova, A.A. Quliyev

Institute of Physics of the Azerbaijan National Academy of Sciences, 370143 Baku, Azerbaijan

Abstract The temperature dependences of electrical conductivity σ , Hall coefficient *R* and thermal power α_0 were investigated in the present work. It was established that, at $T \approx 435 \pm 5$ K all kinetic parameters wich are related by zone parameters, are sharply increased. It was shown, that the dispersion law of electron energy in β -Ag₂S is correspond to the Kane model.