Диффузия имплантированного натрия в кислородном кремнии

© В.М. Король[¶], С.А. Веденяпин, А.В. Заставной, V. Ovchinnikov*

НИИ физики Южного федерального университета,

344090 Ростов-на-Дону, Россия

* Micro and Nanofabrication Centre, Helsinki University of Technology, 02015 Helsinki, Finland

(Получена 12 ноября 2007 г. Принята к печати 26 ноября 2007 г.)

Впервые изучено влияние кислорода на диффузию имплантированного в кремний натрия в интервале температур 500–850°С. Применялся высокоомный *p*-Si ($\rho > 1$ кОм · см), выращенный методом Чохральского в магнитном поле (mCz) с концентрацией кислорода ~ $3 \cdot 10^{17}$ см⁻³. Для сравнения использовался кремний, полученный бестигельной зонной плавкой (fz). Найденные в них температурные зависимости эффективного коэффициента диффузии натрия имеют вид: $D_{mCz}[cm^2/c] = 1.12 \exp(-1.64 \Im B/kT)$ и $D_{fz}[cM^2/c] = 0.024 \exp(-1.29 \Im B/kT)$ соответственно. Предполагается, что более высокие значения диффузионных параметров в кислородном кремнии обусловлены образованием сложных комплексов, содержащих в своем составе атомы натрия и кислорода.

PACS: 61.72.Tt; 66.30.Jt; 85.40.Ry

1. Введение

Поведение натрия в кремнии необычно: при легировании методом диффузии его электрические свойства не проявляются, однако при имплантации $\sim 1{-}5\%$ внедренных атомов оказываются в позициях, в которых они являются мелкими донорами [1]. Температурная зависимость коэффициента диффузии внедренных атомов Na в кремний (изготовленный зонной плавкой (fz-Si)), измеренная методом *n*-*p*перехода в интервале температур 650-850°C, имеет вид $D_{\text{fz}} = 1.45 \cdot 10^{-2} [\text{см}^2/\text{c}] \exp(-1.27 \text{ эB}/kT)$ [2]. Энергия ионизации донорного уровня натрия, по данным холловских измерений, в интервале температур 20-77°C равна $E_d = 0.035 - 0.037$ эВ [3], что очень близко к значению Ed для лития [4], у которого в противоположность натрию электрические и диффузионные характеристики не зависят от способа введения в кремний [5,6]. Таким образом, благодаря методу ионной имплантации имеется 2 быстро диффундирующих мелких донора в кремнии литий и натрий.

Как известно, литий активно взаимодействует с примесями (бор, кислород) и радиационными дефектами. Изучение этих процессов для легких примесей водорода и лития сыграло важную роль в становлении направления дефектно-примесной инженерии полупроводников. Поэтому несомненный интерес представляет исследование подобных вопросов для натрия, имеющего близкие свойства с литием. Об активной роли примеси натрия в процессах образования и отжига радиационных дефектов в кремнии сообщалось в работах [7–9]. Так, в легированном натрием fz-Si после облучения быстрыми электронами и α -частицами обнаружен глубокий центр. Соответствующий ему уровень, по данным измерений методами Холла [7] и DLTS [8,9], имеет энергию ионизации $E_c - 0.36$ в и $E_c - 0.39$ в соответственно. Предполагается, что данный центр является комплексом Na-V (V — вакансия).

Натрий, как и литий, является межузельной примесью в кремнии, о чем говорит его высокая диффузионная подвижность. Благодаря большему, чем у лития, ионному радиусу (0.95 и 0.68 Å соответственно) он обладает большей термостабильностью. Так, согласно данным [2], коэффициент диффузии натрия в fz-Si при температуре 40°С на 9 порядков меньше, чем у лития. Это может быть важным для практических приложений, например получения при низких температурах (600–700°С) глубоких n-p-переходов в высоковольтных структурах или создания тянущего поля в базе фотоэлектрических преобразователей.

К настоящему времени отсутствуют сведения о диффузии имплантированного натрия в кислородном кремнии, поэтому цель данной работы — восполнить этот пробел. Проведение подобного исследования ранее на выращенном методом Чохральского кремнии затруднялось тем, что концентрация активного натрия после диффузионной разгонки незначительно превышает концентрацию акцепторов в промышленном кремнии, которая довольно высока. Недавно освоено производство тигельного кремния (cr-Si) с высоким удельным сопротивлением ($\rho > 1 \, \text{кOm} \cdot \text{сm}$), который наилучшим образом подходит для достижения поставленной цели. Одним из перспективных применений такого кремния в настоящее время является разработка стойких к радиации детекторов для долгосрочных экспериментов на большом коллайдере по программам ЦЕРН [10].

2. Методика эксперимента

Использовался кремний *p*-типа, выращенный методом Чохральского в магнитном поле (mCz-*p*-Si). Промышленная пластина такого кремния с ориентацией (100) (толщина 525 мкм, $\rho > 1$ кОм · см, концентрация кислорода, по паспортным данным, $N_{\rm O} < 6 \cdot 10^{17}$ см⁻³, изго-

[¶] E-mail: vkorol@ctsnet.ru

товитель — Октеtic Оуі, Финляндия) разделялась на образцы размером 7.5 × 7.5 мм, которые использовались для легирования натрием. Концентрация кислорода в них, по нашим оценкам, основанным на результатах измерения скорости введения в них термодоноров при температуре 450°C с использованием экстраполированных данных [11], составила $N_{\rm O} = 2.7 \cdot 10^{17}$ см⁻³. В отдельных экспериментах применялся аналогичный кремний *n*-типа (mCz-*n*-Si) ($\rho = 1.8$ кОм · см, концентрация кислорода $N_{\rm O} = 4.6 \cdot 10^{17}$ см⁻³), а также обычный тигельный кремний (cr-*p*-Si) ($\rho = 27$ Ом · см, концентрация кислорода, по оценкам, $N_{\rm O} \approx 10^{18}$ см⁻³). Для сравнения использовался "чистый" fz-*p*-Si с $\rho = 2-3$ кОм · см.

Энергия ионов Na⁺ и дозы внедрения составляли 50 кэВ и 100–250 мкКл/см² соответственно. При этом никаких мер по ориентации кристаллографической оси относительно направления движения имплантируемых ионов не проводилось. Как показали исследования, доза в указанном интервале практически не влияет на величину коэффициента диффузии $D_{\rm Na}$ при температурах отжига $T_{\rm ann} \gtrsim 600^{\circ}$ С. Разгонка натрия проводилась в кварцевой печи в воздухе ($T_{\rm ann} \le 700^{\circ}$ С) и в потоке аргона при более высоких температурах.

Диффузия примеси изучалась по измеренным 4-зондовым методом профилям свободных носителей заряда n(x) при последовательном удалении слоев кремния шлифовкой, а также по глубине залегания n-p-переходов X_j , декорированных химическим осаждением меди. Перед измерением профилей поверхностной проводимости $\sigma_s(x)$ удалялся слой толщиной 1-2 мкм, содержащий остаточные радиационные дефекты и небольшую долю свободных носителей малоподвижных электрически активных атомов натрия. Полученные аппроксимацией экспериментальных данных профили $\sigma_s(x)$ использовались для расчета профилей n(x). При этом подвижность носителей принималась постоянной $\mu = 1250 \text{ см}^2/(\text{B}\cdot\text{c})$, поскольку концентрация примеси в диффузионной области не превышает 10^{16} см^{-3} .

Ширина созданного имплантацией источника примеси в десятки и сотни раз меньше глубины диффузионного проникновения ее в образец. Поэтому для распределения натрия по глубине использовалось решение уравнения диффузии для тонкого ограниченного источника в полуограниченное тело, которое имеет вид функции Гаусса [4]:

$$N(x) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right),\tag{1}$$

где N(x) — распределение по глубине концентрации диффундирующих атомов натрия, Q — поверхностная плотность атомов натрия в источнике диффузии, D и t — коэффициент диффузии и время разгонки примеси соответственно. Согласно (1), глубина залегания n-p-перехода X_j в кремнии с концентрацией акцепторов N_a определяется выражением

$$X_j = 2\sqrt{Dt} \sqrt{\ln\left(\frac{Q}{N_a\sqrt{\pi Dt}}\right)}.$$
 (2)

Физика и техника полупроводников, 2008, том 42, вып. 9

Коэффициент диффузии находился по профилям электрически активных атомов натрия $N_{\text{Na}}(x) = n(x) + N_{\text{a}}$, построенных в координатах $\lg N_{\text{Na}}(x) = f(x^2)$, а также из равенства (2) при заданной величине Q.

Ранее [2] для *Q* использовалась измеренная методом Ван-дер-Пау поверхностная концентрация свободных электронов n_s. При этом величина Q несколько завышается. Это связано со сложной формой профиля n(x), который при температурах отжига $T_{\rm ann} \gtrsim 600^{\circ} {\rm C}$ характеризуется наличием двух участков [12]. Первый (приповерхностный) участок профиля общей протяженностью менее 1 мкм имеет максимум на глубине $\sim 2R_{\rm p}$, где *R*_р — длина пробега ионов Na, который соответствует малоподвижной компоненте активного натрия. Второй (очень протяженный) участок соответствует быстрой его компоненте. При расчетах D для Q использовалась измеренная для каждой температуры отжига концентрация электронов n_s, характеризующая диффузионную часть профиля. Поскольку Q в соотношении (2) стоит под знаком логарифма, ее уменьшение с отжигом за счет экзодиффузии небольшой части атомов будет слабо влиять на величину D в случае быстро диффундирующей примеси, какой является натрий. Уменьшение n_s начинает сказываться на расчете D при высоких температурах отжига ($T_{ann} \gtrsim 800^{\circ}$ С), когда иссякает источник примеси. Очевидно, что для обоих методов измерения коэффициента диффузии речь идет об эффективных значениях D и параметров диффузии соответственно.

3. Результаты и их обсуждение

На рис. 1 даны зависимости $X_j(T_{ann})$, измеренные в mCz-*p*-Si (кривая *I*) и fz-*p*-Si (кривая *2*). Видно, что при температурах отжига $T_{ann} = 575 - 700^{\circ}$ C глубина переходов в mCz-*p*-Si несколько меньше, чем в fz-Si. При более высоких T_{ann} это различие исчезает. Замет-

Рис. 1. Зависимость глубины залегания n-p-переходов X_j от температуры отжига в mCz-Si (1) и fz-Si (2). Время отжига $t_{ann} = 30$ мин.

ная диффузия натрия $(X_j > 1-2 \text{ мкм})$ наблюдается при $T_{\text{ann}} = 575^{\circ}\text{C}$ ($t_{\text{ann}} = 30 \text{ мин}$). При меньших температурах отжига диффузия затруднена присутствием радиационных комплексов, в состав которых, кроме атомов натрия, могут входить фоновые примеси — кислород и углерод. По этой причине для "удобного" измерения диффузионного распределения натрия при температурах $T_{\text{ann}} < 575^{\circ}\text{C}$ требуется более продолжительный отжиг. Замедляющее действие радиационных дефектов при низких температурах отжига можно устранить предварительной кратковременной разгонкой натрия при температурах $T_{\text{ann}} \gtrsim 600^{\circ}\text{C}$. Аналогичный эффект достигается "горячей" имплантацией ионов натрия при температуре образца $T_{\text{t}} = 400-500^{\circ}\text{C}$ [13].

Найденные зависимости глубины залегания *n*-*p*-переходов X_i от длительности отжига t_{ann} , построенные в координатах $X_j = f(t_{ann}^{0.5})$ для $T_{ann} = 550-600^{\circ}$ С, имеют вид прямых линий (рис. 2). Их пересечение с осью абсцисс дает время задержки диффузии (t_d) , которое с ростом температуры отжига уменьшается. Так, для Cz-p-Si время задержки при $T_{\rm ann} = 550$ и $575^{\circ}{\rm C}$ составляет $t_{\rm d} = 3175$ и 330 с соответственно. Пересечение прямой с осью времени в начале координат для $T_{\rm ann} = 600^{\circ}{\rm C}$ указывает на то, что диффузия вглубь при данной температуре идет без задержки. Для fz-Si, имеющего пониженную концентрацию кислорода, также имеет место задержка диффузии. Так, при $T_{\rm ann} = 500^{\circ}{\rm C}$ задержка составляет $t_{\rm d} \approx 5600 \, {\rm c}$, но уже при $T_{\rm ann} = 550^{\circ} {\rm C}$ она отсутствует. В mCz-p-Si это наблюдается при более высокой температуре отжига $T_{\rm ann} = 600^{\circ}$ C.

Таким образом, полученные результаты говорят о влиянии примеси кислорода на процесс отжига радиационных дефектов, которые удерживают атомы натрия в связанном состоянии. Оценки величины Q при низких температурах отжига (< 575°C) показывают, что диффузия идет с нарастанием во времени поверхностной концентрации донорных атомов натрия в источнике в результате распада радиационных комплексов до достижения некоторого стационарного значения.

Рис. 2. Зависимости глубины залегания n-p-переходов X_j от времени отжига t_{ann} для Cz-Si (1-3) и fz-Si (4). Температура отжига T_{ann} , °C: 1 - 550, 2 - 575, 3 - 600, 4 - 550.

Рис. 3. Диффузионные профили распределения имплантированного натрия в Cz-Si. *T*_{ann}, °C: *1* — 600, *2* — 650, *3* — 700, *4* — 750, *5* — 800, *6* — 850. Время отжига *t*_{ann} = 30 мин.

На рис. З представлены профили распределения концентарции электрически активных атомов натрия $N_{\rm Na}(x) = n(x) + N_{\rm a}$, измеренные в интервале температур $T_{\rm ann} = 600-850\,^{\circ}{\rm C}$ ($t_{\rm ann} = 30$ мин). При $T_{\rm ann} \gtrsim 700\,^{\circ}{\rm C}$ форма кривых $N_{\rm Na}(x)$ отличается от гауссовой, что связано с процессом экзодиффузии примеси. В таких случаях при расчетах D использовалась спадающая вглубь ветвь распределения, которая сохраняет форму кривой Гаусса. В mCz-p-Si при температурах отжига $T_{\rm ann} = 600$ и 650°C наблюдается более высокая концентрация активного натрия в приповерхностной области, чем в fz-Si, что можно объяснить меньшей его диффузионной подвижностью в кислородном кремнии.

Результаты расчетов коэффициента диффузии D показаны на рис. 4. Значения D, найденные для mCz-p-Si по профилям $N_{\text{Na}}(x)$ в интервале $T_{\text{ann}} = 600 - 850^{\circ}\text{C}$, отмечены символами 1. Для изучения диффузии натрия при меньших температурах отжига необходимо заметно увеличить длительность разгонки. Так, при температуре $T_{\rm ann} = 550^{\circ} {\rm C}$ (символы 2) отжиг проводился в течение 24 ч. При этом наблюдается рост удельного сопротивления образца, связанный с образованием термодоноров, что учитывалось при расчете D. При меньшей температуре отжига $T_{ann} = 500^{\circ}C$ (символы 3) для сокращения времени разгонки проводился предварительный кратковременный отжиг (600°C, 5 мин), при котором натрий проникал на глубину ~ 2 мкм. Время основного отжига составило 72ч, протяженность профиля $N_{\rm Na}(x)$ в этом случае ~ 60 мкм. Полученные для температур $T_{ann} = 500$ и 550°C значения D отмечены на рис. 4 символами 3 и 4 соответственно. Сплошная линия, проведенная методом наименьших квадратов по найденным для mCz-p-Si значениям D в интервале $T = 500 - 850^{\circ}$ С, следует соотношению

$$D = D_0 \exp(-E_{\rm dif}/kT) \tag{3}$$

и имеет параметры $E_{\text{dif}} = 1.64 \text{ эВ}$ и $D_0 = 1.12 \text{ см}^2/\text{c}$.

Рис. 4. Температурные зависимости эффективного коэффициента диффузии натрия в кислородном (1-5) и зонно-плавленном кремнии (6), найденные методом измерения профилей n(x). Исходный кремний и режимы отжига после имплантации ионов натрия: 1 - mCz-p-Si, 30 мин; 2 - mCz-p-Si, 550°C, 24 ч; 3 - mCz-p-Si (600°C, 5 мин) + (500°C, 72 ч); 4 - mCz-n-Si, 675°C, 30 мин, 5 - сr-p-Si (675°C, 30 мин) + (450°C, 3 ч); 6 - fz-Si, 30 мин. Штрихпунктирная линия имеет параметры $E_{\text{dif}} = 1.29$ эВ и $D_0 = 2.4 \cdot 10^{-2} \text{ см}^2/\text{с}$; сплошная линия — $E_{\text{dif}} = 1.64$ эВ, $D_0 = 1.12 \text{ см}^2/\text{с}$. Штриховой линией показаны теоретические расчеты [16] с параметрами $E_{\text{dif}} = 0.95$ зВ и $D_0 = 1.92 \cdot 10^{-3} \text{ см}^2/\text{с}$.

Коэффициент диффузии натрия измерялся и для электронного кремния mCz-*n*-Si ($T_{ann} = 675^{\circ}$ C, $t_{ann} = 30$ мин). При расчете D в этом случае использовался профиль $N_{\text{Na}}(x) = n(x) - N_{\text{d}}$, где N_{d} — концентрация фосфора в базовом материале. Найденные значения D для двух образцов показаны на рис. 4 символами 4.

Наконец, рассмотрим возможность измерения D в cr-p-Si. Поскольку концентрация активного натрия в данном материале незначительно превышает концентрацию акцепторов $(N_a = 5 \cdot 10^{14} \, \text{см}^{-3})$, определить *D* по профилю $N_{Na}(x)$ затруднительно из-за утечек тока через *n*-*p*-переход при послойных измерениях 4-зондовым методом. Для преодоления этого обстоятельства был применен известный метод примесной инженерии. Он заключается в том, что после создания диффузионного профиля натрия (675°С, 30 мин) образец прогревается при температуре 450°C в течение 3 ч, в результате чего за счет образования термодоноров происходит инверсия проводимости исходного кремния. Удельное сопротивление базовой области, измеренное в двух образцах после инверсии, составило 38 и 1400 Ом · см (значительное различие ρ , по-видимому, связано с разной концентрацией кислорода в образцах). В полученной n^+ – *n*-структуре измерялся профиль электронов, поставляемых атомами натрия и термодонорами. Вклад последних при расчетах D (символ 5 на рис. 4) вычитался с учетом величины ρ базы. Видно, что найденные значения D для $T_{\rm ann} = 675^{\circ}$ С в образцах mCz-*n*-Si и сг-*p*-Si довольно хорошо согласуются с измеренной зависимостью D(1/T) в mCz-*p*-Si в интервале температур $T_{\rm ann} = 500-850^{\circ}$ C.

Параметры диффузии натрия, полученные методом *n*-*p*-перехода с учетом температурной зависимости Q, равны $E_{\text{dif}} = 1.7$ эВ и $D_0 = 1.33 \text{ см}^2/\text{с}$. (Экспериментальные данные не включены в рис. 4, чтобы не загромождать его). Их значения несколько выше, чем найденные по профилям $N_{\text{Na}}(x)$. Если для всех температур отжига считать неизменной величину $Q = 3 \cdot 10^{12} \,\mathrm{cm}^{-2}$, что соответствует концентрации электронов $n_{\rm s}$ в диффузионном слое после отжига при 600°С, 30 мин, то получаются несколько меньшие значения: $E_{\rm dif} = 1.58$ эВ и $D_0 = 0.29$ см²/с. Наилучшее согласие параметров, найденных данным методом ($E_{\rm dif} = 1.63$ эВ и $D_0 = 0.60 \text{ см}^2/\text{c})$, с полученными по профилям n(x)имеет место при $Q = 2 \cdot 10^{12} \,\mathrm{cm}^{-2}$. Однако при всех моделях расчетов энергия активации диффузии натрия в кислородном кремнии оказывается большей, чем в fz-Si. С учетом того, что нахождение D по профилям n(x) является более точным методом, считаем, что температурная зависимость эффективного коэффициента диффузии натрия в кислородном кремнии в интервале температур 500-850°С описывается равенством

$$D[cM^2/c] = 1.12 \exp(-1.64 \Im B/kT).$$

Для сравнения измерялась также зависимость D(1/T) в fz-Si методом измерения профилей n(x) (символы 6 на рис. 4). Соответствующая штрихпунктирная линия имеет параметры $E_{dif} = 1.29$ эВ и $D_0 = 0.024$ см²/с, которые очень близки к найденным методом n-p-перехода в работе [2].

По аналогии с литием можно предположить, что уменьшение диффузионной подвижности натрия в тигельном Si обусловлено взаимодействием его с кислородом с образованием комплекса Na–O. Однако энергия диссоциации комплексов Li–O составляет ~ 0.42 эB, поэтому они распадаются практически полностью при температурах существенно ниже 200°C [14,15]. Трудно предположить, что комплекс Na–O может быть существенно более стабильным, чем комплекс Li–O. Поскольку влияние кислорода на диффузию натрия прослеживается до более высоких температур отжига, чем в случае лития, следует предположить образование более сложных комплексов (например, Na₂O или Na₄O), которые будут иметь более высокую термостабильность в кремнии по сравнению с комплексом Na–O.

Сравним полученные результаты с теоретическими расчетами параметров диффузии, выполненными из первых принципов молекулярной динамики для щелочных примесей Li, Na и K в работе [16]. При этих расчетах считалось, что примеси диффундируют по междоузлиям в виде положительных ионов. Полученные результаты для натрия показаны на рис. 4 штриховой линией. Рассчитанные в [16] диффузионные параметры $(E_{\text{dif}} = 0.95 \, \text{эB}$ и $D_0 = 1.92 \cdot 10^{-3} \, \text{см}^2/\text{с})$ заметно ниже,

чем найденные в данной работе. При этом результаты расчета диффузионных параметров лития [16] хорошо согласуются как с известными экспериментальными данными при диффузионном введении его в кремний, так и с нашими результатами, полученными при имплантации лития в fz-Si [6].

Завышенные значения диффузионных параметров [2] авторы [16] объясняют влиянием созданных при имплантации радиационных дефектов, а также взаимодействием натрия с кислородом и вакансиями. Что касается последнего, то комплекс Na–V действительно обнаружен, о чем говорилось во Введении. Однако данный комплекс отжигается при низкой температуре $\sim 300^{\circ}$ C [9]. Что касается возможного влияния кислорода на диффузию натрия в fz-Si, в котором концентрация кислорода на несколько порядков ниже, чем в тигельном кремнии, то, по-видимому, нельзя полностью исключить возможности такого влияния, поскольку в данном материале она на 1-2 порядка выше концентрации электрически активного натрия в диффузионной области.

4. Заключение

В работе впервые измерена температурная зависимость эффективного коэффициента диффузии натрия в кислородном кремнии, которая в интервале температур 500–850°С имеет вид $D[cm^2/c] =$ = 1.12 exp(-1.64 эB/kT). Предполагается, что более высокие значения найденных параметров диффузии натрия в кислородном кремнии по сравнению с аналогичными в зонно-плавленном кремнии ($E_{dif} = 1.29$ эВ и $D_0 = 0.024 \text{ см}^2/c$) обусловлены образованием сложных комплексов, которые содержат в своем составе атомы натрия и кислорода. Для установления точного механизма этого влияния необходимы дальнейшие исследования.

Список литературы

- [1] V.M. Korol'. Phys. Status Solidi A, 110, 9 (1988).
- В.М. Король, А.В. Заставной, М.Н. Беликова. ФТП, 9, 1222 (1975) (депонир. в ЦНИИ "Электроника", ДЭ-1244/74).
- [3] А.В. Заставной, В.М. Король, А.Н. Михалёва, В.Д. Прозоровский. ФТП, 13, 995 (1979).
- [4] Б.И. Болтакс. Диффузия в полупроводниках (М., Физматгиз, 1961) гл. 4, § 4, с. 133.
- [5] W.M. Gibson et al. Can. J. Phys. 46, 765 (1968).
- [6] А.В. Заставной, В.М. Король, П.Б. Орлов. Поверхность. Рентген., синхротр. и нейтрон. исследования, 8, 70 (1999).
- [7] А.В. Заставной, В.М. Король, Е.И. Устинова. ФТП, 17, 1696 (1983).
- [8] А.В. Заставной, В.М. Король. ФТП, 19, 1284 (1985).
- [9] A.V. Zastavnoy, V.M. Korol'. Phys. Status Solidi A, 113, 227 (1989).
- [10] E. Frertwurst, J. Adey, A. Al-Ajili et al. Nucl. Instrum Meth. A, 552, 7 (2005).
- [11] C.A. Londos, M.R. Binns, A.R. Brown et al. Appl. Phys. Lett., 62, 1525 (1993).

- [12] В.М. Король, А.В. Заставной. Поверхность. Рентген., синхротр. и нейтрон. исследования, 5, 74 (2001).
- [13] М.Н. Беликова, А.В. Заставной, В.М. Король. ФТП, 10, 535 (1976).
- [14] E.M. Pell. Phys. Rev., 119, 1222 (1960).
- [15] E.M. Pell. J. Appl. Phys., 32, 1048 (1961).
- [16] V. Milman, M.C. Payne, V. Heine et al. Phys. Rev. Lett., 70, 2928 (1993).

Редактор Т.А. Полянская

Diffusion of implanted sodium in oxygen silicon

V.M. Korol', S.A. Vedenyapin, A.V. Zastavnoy, V. Ovchinnikov*

Institute of Physics, Southern Federal Universitiy, 344090 Rostov-on-Don, Russia * Micro and Nanofabrication Centre, Helsinki University of Technology, 02015 Helsinki, Finland

Abstract For the first time influence of oxygen on diffusion of sodium implanted into silicon in the range of temperatures $500-850^{\circ}$ C has been investigated. It was applied high-resistance p-Si ($\rho > 1 \text{ k}\Omega \cdot \text{cm}$), grown by Czochralski method in a magnetic field (mCz) with concentration of oxygen $\sim 3 \cdot 10^{17} \text{ cm}^{-3}$. For comparison the silicon obtained by floating-zone (fz) was used. The obtained temperature dependences of effective coefficient of diffusion of sodium look like: $D_{\text{mCz}}[\text{cm}^2/\text{s}] = 1.12 \exp(-1.64/kT)$ and $D_{\text{fz}}[\text{cm}^2/\text{s}] = 0.024 \exp(-1.29/kT)$ respectively. It is supposed, that the higher values of the diffusion parameters in oxygen silicon are caused by formation of the elaborate complexes containing in the structure atoms of sodium and oxygen.