Инфракрасные спектры отражения многослойных эпитаксиальных гетероструктур с погруженными слоями InAs и GaAs

© П.В. Середин[¶], Э.П. Домашевская, А.Н. Лукин, И.Н. Арсентьев*^{,¶¶}, Д.А. Винокуров*, И.С. Тарасов*

Воронежский государственный университет, 394006 Воронеж, Россия * Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 29 ноября 2007 г. Принята к печати 14 декабря 2007 г.)

Исследовано влияние толщины погруженных InAs- и GaAs-слоев на инфракрасные спектры отражения колебаний решетки в многослойных эпитаксиальных гетероструктурах AlInAs/InAs/AlInAs, InGaAs/GaAs/InGaAs, AlInAs/InGaAs/GaAs/InGaAs/AlInAs, выращенных методом MOC-гидридной эпитаксии на подложках InP(100). Оценены относительные напряжения, возникающие в слоях, окружающах погруженные, при изменении числа монослоев, из которых формируются квантовые точки, а также при изменении толщины самих слоев, окружающих погруженные.

PACS: 78.30.Fs, 78.67.Pt, 63.22.+m

1. Введение

Развитие современной опто- и наноэлектроники связано с уменьшением функциональных размеров отдельных компонентов приборов и устройств, обусловленным технологическими возможностями выращивания тонких пленок твердых растворов различных соединений. Особый интерес представляют многослойные многокомпонентные системы с погруженными в них слоями соединений $A^{III}B^{V}$ и $A^{II}B^{VI}$ и квантовыми точками в связи с конструированием на их основе полупроводниковых лазеров, обладающих широким спектром применения. Основные успехи в разработке мощных полупроводниковых излучателей достигнуты для лазерных диодов на основе системы твердых растворов GaAs/AlGaAs/InGaAs [1–3].

Очевидно, что оптические свойства таких систем в первую очередь будут определяться качеством выращенных структур.

При эпитаксиальном наращивании чрезвычайно важно, чтобы периоды кристаллических решеток тонкой пленки и подложки, имеющих различный химический состав, были согласованными. Тогда кристаллическая решетка выращенной структуры будет содержать минимальное количество дефектов. Тем не менее в многослойных эпитаксиальных гетероструктурах с различным составом и толщинами слоев возникают внутренние механические напряжения.

Исследования таких систем методами рентгеновской дифрактометрии являются эффективными, пока толщины эпитаксиальных слоев в многослойных гетероструктурах являются субмикронными. С уменьшением толщины погруженных слоев до наноразмерных дифрактометрические методы становятся слабоэффективными. В таких случаях приходится привлекать другие физические методы анализа гетероструктур [4]. Одним из наиболее удобных методов изучения тонких решеточных свойств и оценки структурного качества эпитаксиальных пленок является инфракрасная оптическия колебательная спектроскопия, позволяющая судить не только о молекулярном составе вещества, но и о внутренних напряжениях в его решетке, к которым данный метод является очень чувствительным [4]. Благодаря глубокой проникающей способности инфракрасного (ИК) излучения спектры отражения колебаний решетки позволяют получать сведения о реальном состоянии сложных гетероструктур на значительной толщине.

Цель работы заключается в определении взаимного влияния толщины погруженных и окружающих слоев на оптические свойства многослойных эпитаксиальных гетероструктур с погруженными слоями GaAs и InAs методом ИК решеточной спектроскопии.

2. Объекты и методы исследования

В работе исследовались гетероструктуры, выращенные в ФТИ им. А.Ф. Иоффе РАН. Эпитаксиальные гетероструктуры типа AlInAs/InAs/AlInAs (гетеропереходы I рода) и InGaAs/GaAs/InGaAs (гетеропереходы II рода) с погруженными слоями InAs и GaAs, а также AlInAs/InGaAs/GaAs/InGaAs/AlInAs и InGaAs/GaAs/InGaAs (гетеропереходы II рода со структурой зон типа W-канавки) были получены методом МОС-гидридной эпитаксии на подложках InP(100), легированных серой с концентрациями 2 · 10¹⁸ см⁻³. Скорость роста пленок составляла 2.5 мкм/ч при соотношении компонентов $A^{V}/B^{III} \approx 50$. Погруженные слои выращивались со скоростью 2.5 Å/с в соотношении $A^V/B^{III} \approx 200$. Температура роста 725°С. Атомный состав эпитаксиальных пленок определяли методом рентгеновского микроанализа. Данные относительно состава гетероструктур и толщины пленок приведены в табл. 1.

Дифрактометрические исследования линии (600) на дифрактометре ДРОН 4-07 показали хорошее согласова-

[¶] E-mail: paul@phys.vsu.ru

^{¶¶} E-mail: arsentyev@mail.ioffe.ru

Таблица 1. Состав и толщины гетероструктур

Образец	Состав гетероструктур	Толщина слоев гетероструктуры и InP(100)
EM825	AlInAs/InAs/AlInAs/InP(100)	0.2 мкм/6 МС/0.4 мкм
EM830	_''_	0.2 мкм/8 МС/0.4 мкм
EM863	InGaAs/GaAs/InGaAs/InP(100)	0.2 мкм/8 МС/0.6 мкм
EM864	_''_	0.2 мкм/12 МС/0.6 мкм
EM884	AlInAs/InGaAs/GaAs/InGaAs/AlInAs/InP(100)	0.2 мкм/300 Å/8 MC/300 Å/0.4 мкм
EM959	_''_	0.2 мкм/100 Å/8 MC/100 Å/0.4 мкм

Примечание. МС — монослой.

ние параметров решетки слоев гетероструктур. ИК решеточные спектры отражения от исследуемых эпитаксиальных гетероструктур получали при комнатной температуре в интервале от 200 до 600 см^{-1} на ИК фурьеспектрометре Vertex 70 (Bruker).

Результаты исследования инфракрасных спектров отражения колебаний решетки. Их анализ и обсуждение

3.1. Дисперсионный анализ одномодового спектра бинарного кристалла InP

Известно, что для элементарных полупроводников и бинарных монокристаллов $A^{III}B^{V}$, $A^{II}B^{VI}$ и $A^{IV}B^{VI}$ достаточно хорошим приближением при расчете ИК спектров отражения является одноосцилляторная модель [5]. На рис. 1, *а* сплошной линией представлен экспериментальный ИК спектр решеточного отражения от монокристаллической пластины InP(100), в котором присутствует одна колебательная мода. Поэтому дисперсионный анализ этого спектра проводился в одноосцилляторном приближении по методу Спитцера, Клеймана, Фроша [6]. Коэффициент отражения *R* в данном случае

Рис. 1. Инфракрасный спектр отражения от монокристаллической пластины InP(100). *1* — эксперимент, *2* — расчет.

представляется в следующем виде:

$$R(\omega) = \frac{[n(\omega) - 1]^2 + k^2(\omega)}{[n(\omega) + 1]^2 + k^2(\omega)}.$$
 (1)

С учетом соотношений

$$\varepsilon_1(\omega) = n^2(\omega) - k^2(\omega), \quad \varepsilon_2(\omega) = 2n(\omega)k(\omega)$$
 (2)

можно рассчитать действительные и мнимые части величины диэлектрической проницаемости $\varepsilon_1(\omega)$ и $\varepsilon_2(\omega)$:

$$\varepsilon_{1}(\omega) = \varepsilon_{\infty} \left[1 + \frac{(\omega_{\text{LO}}^{2} - \omega_{\text{TO}}^{2})(\omega_{\text{TO}}^{2} - \omega^{2})}{(\omega_{\text{TO}}^{2} - \omega^{2}) + \omega^{2}\gamma^{2}} \right],$$

$$\varepsilon_{2}(\omega) = \varepsilon_{\infty} \left[\omega \gamma \frac{(\omega_{\text{LO}}^{2} - \omega_{\text{TO}}^{2})}{(\omega_{\text{TO}}^{2} - \omega^{2}) + \omega^{2}\gamma^{2}} \right],$$
(3)

где ω_{LO} , ω_{TO} , γ , ε_{∞} — частоты продольных и поперечных оптических колебаний решетки, а также коэффициент затухания и высокочастотная диэлектрическая проницаемость соответственно.

Как видно из рис. 1, *a*, теоретический расчет $R(\omega)$ в рамках одноосцилляторного приближения по формулам (1)-(3) дает хорошее совпадение с экспериментальными спектрами для фосфида индия. Данные о частотах продольных (ω_{LO}) и поперечных (ω_{TO}) мод колебаний в спектре образца InP, определенные в результате дисперсионного анализа (табл. 2), хорошо согласуются с результатом работы [7].

3.2. Дисперсионный анализ многокомпонентных гетероструктур

При моделировании ИК спектров решеточного отражения многокомпонентных материалов и гетероструктур расчетные спектры вычисляются с учетом модели: полубесконечная подложка с диэлектрической функцией $\varepsilon_{\rm s}$ и поверхностная тонкая пленка толщиной *d* с диэлектрической функцией $\varepsilon_{\rm f}$. В данной модели коэффициент отражения для нормального падения излучения имеет вид [7]

$$R = \left| \frac{r_{\rm f}(\omega) + r_{\rm fs}(\omega) \exp(i2\beta)}{1 + r_{\rm f}(\omega) r_{\rm fs}(\omega) \exp(i2\beta)} \right|^2, \tag{4}$$

Таблица 2. Значения мод поперечных (TO) и продольных (LO) оптических колебаний решетки в спектрах многослойных эпитаксиальных гетероструктур, а также частоты плазменных колебаний ω_p и характерные времена жизни плазмонов подложки τ по результатам дисперсионного анализа

Образец	Состав гетероструктуры	Плазмоны		ТО/LО-частоты основных мод, см ⁻¹			
		$\omega_{ m p}$	$ au$, 10^{-14} c	In-As	Ga-As	In-P	Al-As
InP	_	_	_	-	-	300/369	-
EM825	AlInAs/InAs/AlInAs/InP(100)	305	8	227/233	_	_	351/386
EM830	_''_	310	8.3	228/246	_	_	353/399
EM863	InGaAs/GaAs/InGaAs/InP(100)	320	1.84	227/238	252/260	—	—
EM864	_''_	320	1.51	225/231	255/266	—	—
EM884	AlInAs/InGaAs/GaAs/InGaAs/AlInAs/InP(100)	300	2	220/249	257/-	—	347/386
EM959	_''_	300	2	225/245	257/-	—	350/370

где

$$r_{\rm f}(\omega) = \frac{1 - \sqrt{\varepsilon_{\rm f}(\omega)}}{1 + \sqrt{\varepsilon_{\rm f}(\omega)}}, \quad r_{\rm fs} = \frac{\sqrt{\varepsilon_{\rm f}(\omega)} - \sqrt{\varepsilon_{\rm s}(\omega)}}{\sqrt{\varepsilon_{\rm f}(\omega)} + \sqrt{\varepsilon_{\rm s}(\omega)}}, \quad (5)$$
$$\beta = \frac{2\pi d\sqrt{\varepsilon_{\rm f}(\omega)}}{\lambda},$$

 $\lambda = 10\,000/\omega$ — длина полны.

Диэлектрическая функция пленки в этой модели задается соотношением

$$r_{\rm f}(\omega) = \varepsilon_{\infty} + \sum_{i} \frac{4\pi f_{i} \omega_{\rm TOi}^{2}}{\omega_{\rm TOi}^{2} - \omega^{2} + i\omega\gamma_{i}},\tag{6}$$

где f_i , ω_i , γ_i — сила, резонансная частота и затухание *i*-го осциллятора. Моделирование спектра многослойных гетероструктур проводилось с учетом того, что длинноволновая диэлектрическая функция пленки такой многослойной структуры ε_f использовалась в виде, предложенном в [7], для случая нормального падения:

$$\varepsilon_{\rm f}(\omega) = \frac{\sum\limits_{i} d_i \varepsilon_i(\omega)}{\sum\limits_{i} d_i},\tag{7}$$

где ε_i и d_i — диэлектрическая функция и толщина *i*-го слоя. Выражение (7) справедливо, если выполняются требования пространственной однородности в каждом слое [8].

Ввиду того что монокристаллическая подложка InP(100) была легирована серой, при расчете спектров отражения от гетероструктур необходимо учитывать возникновение плазмон-фононного резонанса. Для этого в функции диэлектрической проницаемости подложки ε_s , рассчитанной по формулам (3), вводятся добавочные слагаемые для реальной и мнимой частей диэлектрической проницаемости, т. е.

$$\varepsilon_{1s}(\omega) = \varepsilon_1^{\text{InP}}(\omega) - \sum_j \frac{\omega_{\text{p}j}^2 \varepsilon_\infty \tau_j^2}{1 + \omega^2 \tau_j^2},$$

$$\varepsilon_{2s}(\omega) = \varepsilon_2^{\text{InP}}(\omega) + \sum_j \frac{\omega_{\text{p}j}^2 \varepsilon_\infty \tau_j}{\omega(1 + \omega^2 \tau_j^2)},$$
(8)

где $\omega_{\mathrm{p}j}, \tau_j$ — плазменная частота и время жизни *j*-го плазмона. При расчете коэффициента отражения гетероструктуры в формуле для величины диэлектрической проницаемости пленки (6) мы в основном варьировали следующие величины: резонансную частоту ТО *i*-й моды $\omega_{\text{TO}i}$, силу осциллятора f_i и коэффициент затухания γ_i , а также плазменную частоту $\omega_{\text{p}i}$ и время жизни τ_j плазмона. Моделирование спектров от многослойных гетероструктур проводили по формулам (5)–(8).

На рис. 2 представлены ИК решеточные спектры отражения от многослойных эпитаксиальных струк-

Рис. 2. Инфракрасные решеточные спектры отражения от многослойных эпитаксиальных структур AlInAs/InAs/AlInAs/ InP(100) с погруженными слоями InAs. Образцы: *a* — EM825, *b* — EM830. *I* — эксперимент, *2* — расчет.

Физика и техника полупроводников, 2008, том 42, вып. 9

Рис. 3. Инфракрасные спектры отражения гетероструктур InGaAs/GaAs/InGaAs/InP(100) с погруженными слоями GaAs. Образцы: *a* — EM863, *b* — EM864. *l* — эксперимент, *2* — расчет.

тур AlInAs/InAs/AlInAs/InP(100) с квантовыми точками InAs. Как видно из рисунка, в спектре отражения присутствуют следующие основные моды колебаний. Наиболее интенсивная мода — это колебания атомов подложки In-P. Также присутствуют две фононные моды колебаний от многослойной эпитаксиальной пленки AlInAs: Al-As и In-As, возникающие в обоих слоях, окружающих погруженные слои InAs. Дисперсионный анализ показал, что с ростом количества монослоев InAs (от 6 до 8 МС, см. табл. 1) сильно изменяют свое положение LO-моды колебаний Al-As (от 386 до 399 см⁻¹) и In-As (от 33 до 246 см⁻¹) (см. табл. 2). Остальные LO- и ТО-моды основных колебаний изменяются незначительно. Кроме того, следует отметить, что мода колебаний InAs расщепляется и у нее появляется тонкая структура. Оптические фононы колебаний In-As от погруженных слоев InAs при анализе не учитывались ввиду малой толщины погруженных слоев.

На рис. З приведены ИК спектры отражения гетерострутур InGaAs/GaAs/InGaAs/InP(100) с квантовыми точками GaAs. Эти спектры также содержат моду колебаний In-Р от монокристаллической подложки InP(100). В спектре присутствуют основные фононные моды от многослойной пленки InGaAs/GaAs/InGaAs: In–As и Ga–As, возникающие в эпитаксиальных слоях InGaAs, окружающих погруженные слои GaAs. Анализ спектров показал небольшие изменения частот TO- и LO-мод колебаний в спектрах отражения с увеличением количества погруженных слоев GaAs. Мода колебаний In–As расщепляется с появлением тонкой структуры. Так же, как и в предыдущем случае, влияние фононных мод колебаний Ga–As от погруженных слоев GaAs на общий вид спектра оказалось незначительным ввиду малой толщины погруженных слоев.

ИК спектры отражения многослойных гетерострутур AlInAs/InGaAs/GaAs/InGaAs/AlInAs/InP(100) с w-канавками приведены на рис. 4. Анализ показывает, что спектры содержат следующие фононные моды колебаний: моду In—P от подложки InP(100) максимальной интенсивности; фононные колебания In—As, возникающие в двух слоях w-канавок AlInAs и двух слоях InGaAs; и колебания Al—As от двух слоев AlInAs. При этом мода колебаний Ga—As практически себя не проявляет и активна лишь в спектре с меньшей толщиной стенок в w-канавке (100 Å) слоя InGaAs. Что касается частот основных мод от многослойной пленки, то частоты TO и LO практически всех колебаний почти не изменяются с изменением толщины стенок w-канавки InGaAs, за исключением частоты LO-моды Al—As, которая суще-

Рис. 4. Инфракрасные спектры отражения многослойных гетероструктур AlInAs/InGaAs/GaAs/InGaAs/AlInAs/InP(100) с w-канавками. Образцы: *а* — EM884, *b* — EM959. *1* — эксперимент, *2* — расчет.

ственно изменяет положение (от 386 до 370 см^{-1}) с уменьшением толщины слоя InGaAs (от 300 до 100 Å) (табл. 1). Кроме того, как и в спектрах гетероструктур с квантовыми точками GaAs, так и в спектрах структур с w-канавками происходит расщепление моды In-As.

Кроме того, в результате дисперсионного анализа для всех образцов многослойных гетероструктур были определены частоты плазменных колебаний и характерные времена жизни плазмонов, возникающих в монокристаллических подложках InP(100). Полученные результаты приведены в табл. 2.

Расчет относительных напряжений решетки в слоях многослойных гетероструктур

Исходя из теории упругости [9], а также результатов дисперсионного анализа ИК решеточных спектров отражения от многослойных гетероструктур мы можем оценить относительные напряжения, возникающие в слоях, окружающих погруженные, при изменении числа монослоев, из которых формируются квантовые точки, а также при изменении толщины самих слоев окружающих погруженные.

Частота ω_{LO} продольных оптических фононов, возникающих в решетке со структурой сфалерита, может быть определена следующим соотношением:

$$\omega_{\rm LO}^2 = \frac{8}{3\mu d^2} \left(C_0 + 8C_1 \right),\tag{9}$$

где μ — приведенная масса колеблющихся атомов, d — межатомное расстояние между ближайшими соседями. Известно, что силовые константы C_1 и C_0 связаны с компонентами тензора напряжений c_{11} и c_{12} и параметром кристаллической решетки a следующими соотношениями:

$$C_0 = \frac{3a^3}{16} (c_{11} + 2c_{12}), \quad C_1 = \frac{a^3}{32} (c_{11} - c_{12}). \tag{10}$$

При эпитаксиальном росте монокристаллических пленок твердых растворов на подложках с различными постоянными решетки параметр кристаллической решетки эпитаксиального слоя в плоскости роста a^{\parallel} совпадает с параметром решетки подложки *a*, но отличается от постоянной решетки эпитаксиального слоя в направлении роста a^{\perp} . Теория упругости позволяет определить параметр решетки твердых растворов a^{ν} с учетом упругих напряжений в гетероэпитаксиальном слое как

$$a^{\nu} = a^{\perp} \frac{1 - \nu}{1 + \nu} + a^{\parallel} \frac{2\nu}{1 + \nu}, \qquad (11)$$

где *v* — коэффициенты Пуассона для эпитаксиальных слоев.

Таблица 3. Концентрационные зависимости матричных элементов c_{11} и c_{12} тензора упругости для твердых растворов AlInAs и InGaAs

Соединение	Матричные элементы, 10 ¹¹ дин/см ²
$Al_{1-x}In_xAs$	$c_{11} = 12.02 - 3.68x$ $c_{12} = 5.7 - 1.16x$
$In_{1-x}Ga_xAs$	$c_{11} = 8.34 + 3.56x$ $c_{12} = 4.54 + 0.8x$

Для эпитаксиальных слоев соединения $AB_x C_{1-x}$, выращенных на подложке соединения DE, параметр решетки a^{ν} выражается следующим образом:

$$a_{AB_{x}C_{1-x}}^{\nu} = a_{AB_{x}C_{1-x}}^{\perp} \frac{1 - x\nu_{AB} + (1 - x)\nu_{AC}}{1 + x\nu_{AB} + (1 - x)\nu_{AC}} + a_{DE}^{\nu} \frac{2[x\nu_{AB} + (1 - x)\nu_{AC}]}{1 + x\nu_{AB} + (1 - x)\nu_{AC}}.$$
 (12)

Расстояние между ближайшими соседями в структуре типа сфалерита *d* определяется как

$$d = \frac{a\sqrt{3}}{4}.$$

Таким образом, на основании формул (9)-(12) и результатов дисперсионного анализа ИК спектров можем рассчитать постоянную кристаллической решетки эпитаксиального слоя *a* с учетом упругих напряжений и оценить относительные напряжения для связей колеблющихся атомов.

Относительные напряжения, возникающие в окружающих эпитаксиальных слоях при увеличении количества погруженных монослоев, определялись в соответствии с классической теорией

$$\varepsilon = \frac{\Delta d}{d}.\tag{13}$$

При расчете было использовано значение параметра решетки InP a = 5.8687 Å [10]. Концентрационные зависимости матричных элементов c_{11} и c_{12} тензора упругости для твердых растворов AlInAs и InGaAs, приведенные в табл. 3, были взяты из работы [11].

В табл. 4 для каждой пары образцов приведены значения относительных напряжений ε соответствующих связей, возникающих в эпитаксиальных слоях с увеличением количества погруженных слоев (образцы EM825–EM830 и EM863–EM863) и изменением толщины окружающих (образцы EM884–EM959), рассчитанные с учетом формул (9)–(12).

Как видно из полученных данных (табл. 4), при увеличении количества погруженных слоев InAs в гетероструктурах AlInAs/InAs/AlInAs/InP(100) увеличиваются длины связей Al-As и In-As, о чем го-

Образен	Состав и толшины пленок гетероструктур	Относительные напряжения ε для связей			
F		In-As	Ga-As	Al-As	
EM825	AlInAs/InAs/AlInAs 0.2 мкм/6 MC/0.4 мкм	0.053	_	0.035	
EM830	AlInAs/InAs/AlInAs 0.2 мкм/8 MC/0.4 мкм				
EM863	InGaAs/GaAs/InGaAs 0.2 мкм/8 MC/0.6 мкм	-0.028	0.021	—	
EM864	InGaAs/GaAs/InGaAs 0.2 мкм/12 MC/0.6 мкм				
EM884	AllnAs/InGaAs/GaAs/InGaAs/AlInAs 0.2 мкм/300 Å/8 MC/300 Å/0.4 мкм	_	_	-0.041	
EM959	AlInAs/InGaAs/GaAs/InGaAs/AlInAs 0.2 мкм/100 Å/8 MC/100 Å/0.4 мкм				

Таблица 4. Результаты расчетов относительных напряжений

ворят положительные знаки относительных напряжений для этих связей. В эпитаксиальных многослойных структурах InGaAs/GaAs/InGaAs/InP(100) с ростом количества погруженных слоев GaAs, исходя из знаков относительных напряжений, происходит искажение тетраэдрических связей кристаллических решеток эпитаксиальных твердых растворов, так как напряжения для связи In-As уменьшаются, а для связи Ga-As увеличиваются с ростом числа погруженных слоев GaAs. Что же касается структуры многослойных эпитаксиальных гетероструктур с W-канавками AlInAs/InGaAs/GaAs/InGaAs/AlInAs/InP(100), то с уменьшением толщины слоев InGaAs в W-канавке уменьшается длина связи Al-As, что может свидетельствовать о сжатии в слоях W-канавки, передающемся внешним слоям гетероструктуры AlInAs/InGaAs/GaAs/ InGaAs/AlInAs, содержащей связи Al-As.

5. Обсуждение полученных результатов и выводы

Анализ имеющихся данных дисперсионного анализа и расчетов относительно упругих напряжений кристаллической решетки многослойных эпитаксиальных гетероструктур позволяет сделать следующие выводы.

В эпитаксиальных гетероструктурах AlInAs/InAs/ AlInAs/InP(100) с погруженными слоями InAs возникает увеличение частоты LO-мод колебаний Al—As в слоях AlInAs. Оно происходит с ростом числа погруженных монослоев вследствие различия параметров решеток окружающего AlInAs и погруженного слоя InAs ($a_{AIInAs} < a_{InAs}$). Возрастание числа монослоев InAs приводит к росту внутрислоевых напряжений в результате растяжения окружающих слоев. В результате большего сжатия погруженного слоя и происходит формирование квантовых точек.

Изменение частот LO-мод колебаний Ga—As и In—As в спектрах отражения гетероструктур InGaAs/GaAs/ InGaAs/InP(100) с увеличением количества погруженных слоев GaAs также вызвано различием параметров решеток окружающего InGaAs и погруженного слоя GaAs ($a_{InGaAs} > a_{GaAs}$), что приводит к сжатию окружающих слоев и искажению координационных тетраэдров кристаллических решеток эпитаксиальных твердых растворов. В результате растягивающих напряжений в погруженных слоях формируются квантовые точки.

Относительное уменьшение LO-мод колебаний Al–As в спектрах структур AlInAs/InGaAs/GaAs/InGaAs/ AlInAs/InP(100) с W-канавками вызвано тем, что с уменьшением толщин окружающих слоев InGaAs, в результате рассогласования параметров решеток окружающих слоев AlInAs, InGaAs и погруженных слоев GaAs ($a_{AlInAs} > a_{InGaAs} > a_{GaAs}$), слои AlInAs испытывают большие напряжения сжатия.

Возникновение тонкой структуры у моды InAs в структурах InGaAs/GaAs/InGaAs/InP(100) с квантовыми точками GaAs и в AlInAs/InGaAs/GaAs/InGaAs/ AlInAs/InP(100) с W-канавками происходит ввиду того, что монослои GaAs вызывают напряжения растяжения в окружающих слоях InGaAs, что может приводить к частичному расслоению твердых растворов InGaAs и локализовывать в них оптические фононы так, как это происходит в случае сверхрешеток [12].

Работа поддержана грантом РФФИ № 06-02-96313р.

Список литературы

- [1] A. Madhukar et al. Appl. Phys. Lett., 64, 2727 (1994).
- [2] F. Hatami et al. Appl. Phys. Lett., 67, 656 (1995).
- [3] Д.А. Винокуров, В.А. Капитонов, Д.Н. Николаев и др. ФТП, 35 (2), 242 (2001).
- [4] E.P. Domashevskaya, P.V. Seredin et al. Surf. Interf. Analysis, 38, 4 (2006).
- [5] Ю.И. Уханов. Оптические свойства полупроводников (М., Наука, 1977).
- [6] W.G. Spitzer, D. Kleiman, D. Walsh. Phys. Rev., 113, 1 (1959).
- [7] H.W. Verleur. JOSA, **58**, 1356 (1968).
- [8] С.П. Козырев. ФТП, 36 (10), 3008 (1994).
- [9] W.A. Harrison. Electronic Structure and the Properties of Solids, ed. by W.H. Freeman (San Francisco, 1980).
- [10] Yu.A. Goldberg. In: Handbook Series on Semiconductor Parameters, ed. by M. Levinshtein, S. Rumyantsev and M. Shur (World Scientific, London, 1999) v. 2, p. 1.
- [11] Характеристики новых полупроводниковых материалов.

http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/basic.html [12] U. Pusep et al. Письма ЖЭТФ, **52**, 9 (1991).

Редактор Т.А. Полянская

Infrared reflection spectra of multilayered epitaxial heterostructures with quantum dots InAs and GaAs

P.V. Seredin, E.P. Domashevskaya, A.N. Lukin, I.N. Arsent'ev*, D.A. Vinokurov*, I.S. Tarasov*

Voronezh State University, 394006 Voronezh, Russia * loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The influence of InAs and GaAs nanolayers of IR lattice reflection spectra have been investigated for multilayer heterostructures AlInAs/InAs/AlInAs, InGaAs/GaAs/InGaAs and AlInAs/InGaAs/GaAs/InGaAs/AlInAs grown by MOVPE on InP(100) substrates. The estimation of internal stress crystalline lattice in enveronmental and embedded layers has been made.