удк 621.315.592 Фазообразование и фазовые превращения в нанотолщинных пленках системы Bi—Te

© Г.М. Ахмедов¶

Институт физики Национальной академии наук Азербайджана, 371143 Баку, Азербайджан

(Получена 6 ноября 2007 г. Принята к печати 12 декабря 2007 г.)

Кинематической электронографией исследованы процессы фазообразования в бинарной системе Bi-Te. Установлено, что при одновременном и послойном осаждении висмута и серы, независимо от порядка их напыления, на плоскости конденсации образуются фазы составов Bi₂Te₃ и BiTe в аморфном и кристаллическом состояниях соответственно. Аморфная фаза Bi₂Te₃ устойчива при комнатной температуре и кристаллизуется при температуре 423 К. Показано, что упорядочение фазы BiTe не является следствием атомной упорядоченности структуры, а обусловлено реальной структурой объекта — блочностью.

PACS: 73.61.Jc, 71.23.Cq

1. Введение

В ряде работ [1–5], посвященных исследованиям фазовых равновесий в системе Ві-Те, полученные результаты не согласуются между собой, и имеющиеся расхождения связаны в основном относительно области существования той или иной фазы и типа диаграммы состояния. Микроскопическими и рентгеновскими исследованиями, а также в результате изучения электросопротивления, термоэдс, магнитной восприимчивости, эффекта Холла и твердости установлено существование фазы состава Bi2Te3 с широким интервалом гомогенности данной фазы. Границы гомогенности Bi₂Te₃, согласно авторам работы [3], находятся при 36-40 и 53-55 весовых (48-52 и 65-67 ат.)% Те. В сплавах Ві-Те, кроме твердых растворов, образованных одним из компонентов (Bi) в Bi₂Te₃, обнаружена кубическая фаза BiTe типа NaCl с a = 0.647 нм, ПГС B1. Все сплавы системы Ві-Те, согласно [1,4], являются сплавами переменного состава, в связи с чем вопросы получения и исследования тонкопленочных образцов, представляющих собой микроструктурные объекты с их недостижимыми в массивных образцах ценными физическими свойствами, характеризуются необходимостью изучения соединений этой системы в процессе их термообработки и обусловливаются научным интересом в аспекте расширения области применения соединений этой системы в качестве детекторов инфракрасного излучения, термогенераторов, источников питания автономных систем космической техники и имплантируемых кардиостимуляторов [5-8].

В работах [9–12], посвященных тонким слоям, в основном рассматривается формирование пленок отдельных соединений системы Bi—Te с различной ориентацией кристалликов. В [10,11] показано, что пленки толщиной 30 нм, образующиеся на предварительно подогретых до 473 К различных подложках, текстурированы. С увеличением толщины пленок и температуры подложек текстурированность нарушалась. При конденсации Bi_2Te_3 на подложки NaCl, находящиеся при комнатной температуре, образовались мелкозернистые поликристаллические структуры [12]. Лазерное напыление Bi_2Te_3 на слюду при температуре 623 К приводило к строгой ориентации кристаллитов типа (0001) $Bi_2Te_3 \parallel (0001)$ слюды. Условия получения монокристаллических пленок установлены в [12].

Однако вопросы фазообразования на основе соединений системы Bi—Te не рассмотрены, а данные по фазовым переходам в тонких слоях в работах, библиография которых содержит достаточно большое количество названий, полностью отсутствуют.

2. Экспериментальные результаты и их обсуждение

Наиболее плодотворным в решении вопросов, связанных с растворимостью компонентов в соединениях системы Bi—Te, а также вопросов фазообразования и фазовых превращений в указанной системе может служить метод кинематической электронографии. В настоящей работе рассматривается образование фаз с различной субструктурой в результате реакций и процессов взаимодействия наноразмерных вакуумных конденсатов системы Bi—Te и кинетика фазовых переходов в тонких слоях Bi₂Te₃.

Для установления условий образования фаз в системе Ві-Те исследования проводились на пленках, полученных одновременным и последовательным испарением в вакууме $\sim 10^{-4}$ Па отдельных компонентов висмута и теллура из двух источников. Источники испарения расположенные на расстоянии 120 мм друг от друга, состояли из вольфрамовых конически навитых спиралей. Подложками служили свежесколотые кристаллы NaCl и аморфный целлулоид, находящиеся при комнатной температуре. В этом случае на плоскости конденсации

[¶] E-mail: axmedovqurban@rambler.ru

Рис. 1. Схема распределения бинарного поля Ві-Те.

Рис. 2. Кинематическая электронограмма, показывающая превращение аморфной фазы Bi₂Te₃ в кристаллическую.

образовывался слой пленок толщиной ~ 25 нм. Для получения полного представления о фазовом составе в широком интервале температур и концентраций полученные образцы исследовались при различных температурах — от комнатной и выше. Это осуществлялось с помощью метода кинематической электронографии [13], путем съемки серии изотермических электронограмм. По таким электронограммам определялся фазовый состав образца при любой из температур, и получалось несколько изотермических сечений области "состав-температура".

Анализ образцов, полученных методом бинарного поля, показал, что на плоскости конденсации (рис. 1) образовалось несколько областей: область соединения состава Bi_2Te_3 , область чистой гранецентрированной кубической фазы — ВiTe с периодами, установленными в [3], и область их смеси в непосредствленной близости от чистых соединений. Образующиеся пленки со стороны источника Te были аморфными, кристаллизация которых позволила идентифицировать их как тонкие слои состава Bi_2Te_3 . Значительная протяженность об-

разующихся фаз на плоскости конденсации возможно связана с большой подвижностью атомов висмута в молекулярном пучке в ходе испарения, выравниванием концентраций в результате их миграции по плоскости конденсации. Электронограммы, полученные от пленок, находящихся непосредственно под источниками Ві и Те, содержат линии чистых химических элементов, не участвовавших в реакции.

Характерные участки кинематических электронограмм, полученных от пленок Bi_2Te_3 , представлены на рис. 2. Участок *а* состоит из 2 частей. Первая часть электронограммы, соответствующая комнатной температуре, состоит из размытых дифракционных линий, свидетельствующих о дисперсности пленок. Аморфная фаза с значениями $S = 4\pi \sin \theta / \lambda = 19.03, 27.67, 37.16 \text{ нм}^{-1}$, соответствующими диффузным линиям на электронограмме, при температуре 423 К переходит в поликристаллическое состояние. Закристаллизовавшаяся фаза Bi_2Te_3 устойчива и дальнейший отжиг при 523 К и выше в течение 4-5 мин и более не приводит к какимлибо фиксируемым структурным изменениям или ее состава.

Однако, как видно из участка *b*, термообработка пленки в течение 30 мин при 573 К приводит к рекристаллизации объекта, и линии дифракционного поля на электронограмме становятся резче — происходит дальнейшее укрупнение кристалликов. Совокупность дифракционных линий на электронограмме от дискретной части (участок *c*) индуцируется на основе гексагональной сингонии с периодами элементарных ячеек кристаллической решетки a = 0.438, c = 3.05 нм, ПГС D_{3d}^5 и согласуются с данными [14].

Отжиг тонких слоев Bi-Te при $t \approx 423$ K, образующихся в отличие от пленок Bi₂Te₃ в кристаллическом состоянии, приводил к появлению дополнительных, по интенсивностям очень слабых линий на электронограммах. Появление новых линий, возможно, связано с процессом упорядочения, поскольку в этом случае сохраняются и основные дифракционные линии исходной кубической гранецентрированной решетки. Упорядоченная фаза устойчива в интервале температур 503-523 К, интенсивность ее линий растет с ростом температуры термообработки. Поскольку дополнительные дифракционные линии, интенсивность которых усиливается с ростом температуры и которые становятся более резкими, также индуцируются с периодами ГЦК решетки, то следует предположить, что упорядочение обусловлено реальной структурой объекта (блочностью) — укрупнением кристалликов и не является следствием атомной упорядоченности структуры.

Я признателен зав. Лабораторией электронографии НАН Азербайджана, канд. физ.-мат. наук Дж.И. Исмаилову за создание благоприятных условий при проведении экспериментов и полезные консультации при обсуждении полученных результатов, за ценные замечания и советы.

Список литературы

- [1] Н.Х. Абрикосов, В.Ф. Банкина. ЖНХ, 3, 659 (1958).
- [2] A. Broun, B. Lewis. J. Phys. Chem. Sol., 32, 1597 (1962).
- [3] М. Хажен, К. Андерко. Структура двойных сплавов (М., Металлургиздат, 1962) т. 2.
- [4] В.Т. Кузнецов, К.К. Палкина. ЖНХ, 8, 1204 (1963).
- [5] A. Glatz. J. Electrochem. Soc., 112, 1201 (1965).
- [6] C. Champness, L. Klipling. Canad. J. Phys., 44, 769 (1966).
- [7] Б.М. Гольцман, В.А. Кудинов, И.А. Смирнов. Полупроводниковые термоэлектрические материалы на основе Bi₂Te₃ (М., Наука, 1972).
- [8] Д.М. Гельфгат, З.М. Дашевский, Н.В. Коломиец. В сб.: *Термоэлектрические материалы и пленки* (Л., 1976) с. 240.
- [9] T. Harman. J. Phys. Chem. Sol., 2, 181 (1957).
- [10] H. Tamura. Jpn. J. Appl. Phys., 5, 593 (1966).
- [11] Ю.А. Боносвский, А.Г. Дудоладов, В.П. Козленков. Письма ЖЭТФ, 20 (5), 304 (1974).
- [12] Д.И. Исмаилов, Г.М. Ахмедов, Р.Б. Шафизаде. Электронографическое исследование бинарных пленок Bi-Te. Докл. АН АзССР, 45 (4), 6 (1989).
- [13] Г.А. Эфендиев, Р.Б. Шафизаде. ПТЭ, № 1, 142 (1963).
- [14] Физико-химические свойства полупроводниковых веществ, Справочник под ред. А.В. Новоселевой, В.Б. Лазарева (М., Наука, 1979).

Редактор Л.В. Беляков

The phase formation and phase transformations in nanothickness films Bi–Te systems

Q.M. Akhmedov

Institute of Phisics of National Academy of Sciences of Azerbaijan, 371143 Baku, Azerbaijan

Abstract By the kinematical electronography processes the phase formation in binary system Bi–Te are investigated. It is established, that at simultaneous and level-by-level sedimentation of bismuth and sulfur, irrespective of their order to raise dust, on the plane of condensation phases of structures Bi_2Te_3 and BiTe in amorphous ans crystal conditions accordingly are formed. Amorphous phase Bi_2Te_3 is steady at room temperature and crystallizes at temperature 423 K. It is shown, that ordering of phase BiTe is not a consequence of atomic orderliness of structure and is caused by real structure of object — by the blocks.