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Boundary instability of a two-dimensional electron fluid
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It was shown previously that the current-carrying state of a Field Effect Transistor with asymmetric source
and drain boundary conditions may become unstable against spontaneous generation of plasma waves [1]. By
extending the analysis to the two-dimensional case we find that the dominant instability modes correspond to
waves propagating in the direction perpendicular to the current and localized near the boundaries. This new type
of instability should result in plasma turbulency with a broad frequency spectrum. More generally, it is shown that
a similar instability might exist, when a strong enough current goes through a single boundary between the gated
and ungated regions.
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It was shown previously [1] that the current-carrying
state of a Field Effect Transistor may become unstable
against spontaneous generation of plasma waves in the
transistor channel, provided there is an asymmetry in the
boundary conditions at the source and at the drain. An
extreme case of such asymmetry is the ac short-curcuit
condition at the source and the ac open curcuit at the drain.
For submicron gate lengths the frequencies of the plasma
oscillations belong to the terahertz range, thus the FET can,
in principle, serve as a generator of terahertz radiation. The
nonlinear properties of the electron fluid in the transistor
channel can be also used for detection and frequency mixing
in the terahertz domain [2].

Experimentally, both terahertz emission [3–5] and de-
tection [6] in nanometric transistors were demonstrated.
Fig. 1 presents experimental data [7] for a GaAlN/GaN
HEMT at 4 K clearly showing the emission threshold at a
certain source-drain voltage (or current) and a typical broad
emission spectrum in the terahertz domain. Contrary to
the prediction of Ref. [1], the spectrum depends neither on
the gate length, nor on the gate voltage. Similar results for
terahertz emission were obtained at room temperature [5].

It is not firmly established that the observed emission is
indeed related to the instability predicted in [1] (see [5]).
However, one cannot directly compare the theory with the
experiments because the experimental geometry is very
different from the one-dimensional model adopted in [1]. In
the standard experimental situation, the width of the gate W
is much larger than the gate length L, typically W/L ∼ 100,
see Fig. 2, left. Under such conditions the one-dimensional
model, where the plasma density and velocity depend on
the coordinate x only, is not appropriate, since obviously
oblique plasma waves with a non-zero component of the
wave vector in the y direction can propagate. In such a
geometry, the gated region is not a resonator, but rather a
waveguide with a continuous spectrum of plasma waves, see
Fig. 2, right.

The purpose of this work is to extend the analysis of
stability of the steady-state flow [1] to the more realistic
geometry of Fig. 2. Since W� L, we will consider the

limit of a strip, which is infinite in the y direction. It
will be demonstrated that in such a geometry a new mode
of instability dominates, which is localized near the gate
boundaries. Moreover, a similar instability should exist in
the limit L→∞, i. e. near a single boundary of a current-
carrying two-dimensional plasma.

Within the hydrodynamic approach the electrons in a
gated 2D channel can be described by the following

Figure 1. Experimental results for THz emission from a
AlGaN/GaN HEMT at 4.2 K [7]. a — the drain current (right
scale) and the emission intensity (left scale), as functions of the
source-drain voltage, Usd. Note the pronounced threshold for
emission. b — the emission spectrum at Usd = 3 V.
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Figure 2. Left panel: the geometry of the gate. The width W
is much greater than the length L. Right panel: the plasma wave
spectrum in a strip, z = 2Lω/s is the dimensionless frequency,
p = 2qL/s is the dimensionless wave vector in the y direction, s
is the plasma wave velocity.

equations [1]:

∂V
∂t

+ (V∇)V = − e
m
∇U, (1)

∂U
∂t

+∇(UV) = 0, (2)

where V(r, t) is the electron hydrodynamic velocity, U(r, t)
is the gate-to-channel voltage swing, r is the vector in the
2D plane, e and m are the electron charge and the effective
mass respectively. Equation (1) is the Euler equation, and
Eq. (2) is, in fact, the continuity equation since the electron
density in the channel, n, is related to the voltage swing, U ,
by the relation

en= CU, (3)

where C is the gate to channel capacitance per unit area.
This equation holds if the scale of the variation of the
potential in the channel is large compared to the gate-to-
channel separation d (the graduate channel approximation).

Collision processes give an additional term −V/τ in the
right-hand side of Eq. (1), where τ is the momentum
relaxation time. In the following, this term will be neglected,
however it should be understood that the instabilities
studied below will practically exist only if the instability
increment is greater than 1/τ , a condition that determines
the instability threshold for the drift velocity, similar to the
situation in the one-dimensional model [1].

We chose the x axis in the direction from source (x = 0)
to drain (x = L) and, following Ref. 1, we impose the
asymmetric boundary conditions of a fixed voltage at the
source and a fixed current at the drain: U = U0 at x = 0
and j x = j 0 at x = L, where j x is the x component of the
current density. Because of Eq. (3), the latter condition can
be rewritten as (UVx)x=L = U0v0, where v0 = j 0/en is the
electron drift velocity.

It was pointed out in [1] that Eqs (1) and (2) are
identical to the equations describing the so called

”
shallow

water“ in conventional hydrodynamics [8], plasma waves in
the channel being analogous to water waves in the case
when the wavelength is much larger than the water depth.
Furthermore, it was shown that the current-carrying steady
state described by the stationary solution of Eqs (1), (2)
with the above boundary conditions, U = U0, Vx = v0, is
unstable against spontaneous generation of plasma waves
with a growth increment given by

γ =
s2 − v2

0

2sL
ln
∣∣∣s + v0

s− v0

∣∣∣, (4)

where s = (eU0/m)1/2 is the plasma wave velocity.
This result followed from a one-dimensional analysis,

e.g. small perturbations of the steady state were assumed
to be independent of the coordinate y in the direction
perpendicular to the current. As we shall see, the extension
of the analysis to y-dependent perturbations not only gives
corrections to Eq. (4) but, somewhat unexpectedly, gives a
new mode of instability which always dominates.

We study the time dependence of small perturbations
of the steady state. Accordingly we put U = U0 + (m/e)u,
Vx = v0 + vx, Vy = vy and we linearize Eqs (1), (2) with
respect to the small quantities u, vx, vy .

The boundary conditions become:

ux=0 = 0, (v0u + s2vx)x=L = 0, (5)

(zero ac voltage at the source and zero ac current at the
drain). We look for the solutions of the linearized equations
with u, vx, vy ∼ exp(−iωt + ikx + iqy), where k and q are
the components of the wave vector in the x and y directions
respectively. This procedure gives

(ω − kv0)vx − ku = 0, (6)

(ω − kv0)vy − qu = 0, (7)

(ω − kv0)u− s2(kvx + qvy) = 0. (8)

The dispersion relation for the plasma waves follows:

(ω − kv0)2 = s2(k2 + q2), (9)

the term kv0 taking into account the Doppler shift due to
the motion of the electron fluid. For given ω and q we
find two values for the x-component of the wave vector,
corresponding to oblique waves propagating downstream
and upstream:

k1,2 =
−ωv0 ± s

√
ω2 − (s2 − v2

0)q2

s2 − v2
0

. (10)

For q = 0 this reduces to k1 = ω/(s + v0), k2 =
= −ω/(s− v0). The general solution for u and vx can
be found using Eq. (6):

u = Aexp(ik1x) + B exp(ik2x), (11)

vx =
k1

ω − k1v0
Aexp(ik1x) +

k2

ω − k2v0
B exp(ik2x), (12)

where A and B are constants.
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The boundary conditions, Eq. (5), together with Eq. (10)
give the relation

exp
(
i (k1 − k2)L

)
= −ω − k1v0

ω − k2v0
, (13)

which can be rewritten in the form:

exp(i
√

z2 − p2) =
β
√

z2 − p2 − z

β
√

z2 − p2 + z
, (14)

where the dimensionless variables for frequency, wave
vector, and drift velocity are introduced:

z =
2sL

s2 − v2
0

ω, p =
2sL√
s2 − v2

0

q, β =
v0

s
. (15)

Equations (14), (15) define the complex frequency
ω = ω′ + iγ as a function of the drift velocity v0 and the
wave vector q. For q = 0 one obtains the previous one-
dimensional result [1] with ω′ = πl(s2 − v2

0)/(2sL), where
l is an odd integer, and the increment ω′′ = γ given by
Eq. (4).

In the general case Eq. (14) can be solved only
numerically. However, an analytical solution can be
obtained for drift velocities small compared to the plasma
wave velocity (β � 1). For β = 0 the solution of
Eq. (14) is z = (l 2 + p2)1/2, or in dimensional units

ω = s
(
(πl/L)2 + q2

)1/2
, which represents the spectrum of

plasma waves in an infinite strip with the assumed boundary
conditions at x = 0 and x = L (Fig. 2). The linear in β

correction to this value is purely imaginary:

γ =
v0

L
1

1 + (qL/(πl))2
. (16)

Thus, as q increases and becomes comparable to or larger
than the quantized value of k = πl/L for the l -th mode, the
instability increment decreases from its value v0/L given by
Eq. (4) for v0 � s. The correction to the real part of ω is
of second order in β .

However, in addition to this predictable result, another
solution of Eq. (14) exists, for which z (or ω) is purely
imaginary. For v0 � s this solution can be found analyti-
cally by assuming that |z| � p and (z2 − p2)1/2 ≈ i p. This
gives z = iβp tanh(p/2) or, in dimensional units ω′ = 0 and

γ = qv0 tanh(qL). (17)

For large qL this gives γ = |q|v0, thus in contrast to the
result given by Eq. (16), the growth increment of this new
mode increases at large q, so that this mode of instability
is the dominant one. The numerical solutions of Eq. (14)
for β = 0.5 are presented in the Fig. 3, together with the
approximate result for β � 1 given by Eq. (17).

It can be seen that for qL� 1 the new mode is localized
near the boundaries at x = 0 and x = L on a distance
∼ 1/q. For example, in the case β � 1, qL� 1 we have
k1 ≈ −k2 ≈ iq (see Eqs (9), (10)). Thus the instability
mode is formed by waves which are evanescent in the x
direction.

Figure 3. The instability increment z′′ as a function of the
transverse component of the wave vector p in dimensionless
units for β = v0/s = 0.5 (Eqs (14), (15), numerical calculation).
1, 2, 3 — for normal modes with l = 1, 3, and 5, respectively,
4 — for the new mode of instability, 5 — approximation given by
Eq. (17).

Since for large |q|L the growth increment for the new
mode does not depend on L, and since in this case the
mode is localized near the boundaries, it seems plausible
that a similar instability of the steady-state flow should exist
for a single boundary of an infinite (both in the y and the
x directions) two dimensional current-carrying plasma. We
now show that this is indeed the case.

Let a steady current with the drift velocity v0 flow across
the boundary (x = 0) of a semi-infinite sample situated at
x > 0. The general boundary condition at x = 0 is defined
by the impedance ζ relating the ac voltage and the ac
current (compare with Eq. (5)):

u = ζ (v0u + s2vx). (18)

The boundary condition at x =∞ corresponds to the
vanishing of the small perturbations, u = vx = vy = 0.

The impedance ζ will be considered as purely imaginary:
ζ = iλ/s, where λ is the dimensionless parameter propor-
tional to the effective capacitance. (The existence of a finite
resistance, described by the real part of ζ , will obviously
introduce damping of the initial perturbations and, if it is
large enough, any instability will be supressed).

To insure the boundary condition at x =∞, we now keep
only one exponent in Eqs (11), (12), with the wave vector k,
whose imaginary part is positive. These equations, together
with Eq. (18), give:

ω − kv0 = αsk, α =
iλ

1− iλβ
. (19)

Inserting this relation in Eq. (9), we find the value of the
wave vector k = i |q|(1− α2)−1/2, where the sign of the
square root should be chosen so that its real part be positive.
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Figure 4. The coefficient G in Eq. (20) for β = v0/s = 0.5 as a
function of the dimensionless parameter λ defining the boundary
condition at x = 0 (the boundary impedance is presented as
ζ = iλ/s). For large λ, G ∼ 1/λ3.

Finally, from Eq. (19) one finds ω. Its imaginary part γ
defines the instability increment:

γ = G|q|v0, G =
1
β

Re
( α + β√

1− α2

)
. (20)

Note, that the values of q in Eqs (17), (20) are limited
by the condition q < 1/d, where d is the gate-to-channel
separation. For larger q the graduate channel approximation,
used in deriving Eqs (1), (2) breaks down.

The dimensionless coefficient G depends on the value
of λ, defining the boundary impedance, and on the flow
velocity v0, see Eq. (19). For λ � 1, we have G = 1
and Eq. (20) coincides with Eq. (17) for large |q|L. With
increasing λ the coefficient G decreases (see Fig. 4),
reducing the instability increment, which however remains
always positive.

Thus, if the condition |q|v0 > 1/τ is satisfied, the current-
carrying steady state is unstable against small perturbations,
and the region of instability is localized near the boundary.
This is similar to what one observes in a river, when the
water flows with sufficient velocity across an abrupt step
in the waterbed: waves with wave vectors perpendicular to
the flow are excited, while the wave vectors in the direction
of the flow are purely imaginary, which accounts for the
localization of the turbulent region near the step.

Certainly, the linear theory cannot predict the outcome
of this instability. However, since the spectrum of plasma
waves is continuous, it seems likely that the instability will
result in a turbulent motion of the electron fluid near the
boundary of the gated region. The spectrum of the plasma
oscillations should be broad, similar to what is observed in
experiments (Fig. 1). The width of the spectrum is expected
to be limited by the value ωmax ∼ s/d, where d is the gate-
to-channel separation (see above).

The present theory can be also applied to the un-
gated electron fluid (analogous to the

”
deep water“ in

conventional hydrodynamics). It was shown [9] that a
one-dimensional instability similar to the one described
in Ref. [1] should exist in the ungated case too, under
appropriate boundary conditions. It can be easily shown,
that the boundary instability considered here will also occur
in the ungated region, if the drift velocity is directed inside
this region, similar to the results given by Eqs (17), (20)
for the gated electron fluid. Thus, at the boundary between
the gated and ungated regions, the turbulence should always
appear on the downstream side.

It appears that the above concept acounts for the
most important experimental observations [3–5]: the sharp
threshold for terahertz emission and the broad emission
spectrum, which does not depend on the gate length, and
only weakly depends on the gate potential. A possible
check of the proposed explanation would be to isolate the
emission coming from one gate edge and to verify that the
emission intensity (and possibly its spectrum) depends on
the direction of the the drift velocity.

On the theoretical side, the very difficult issue of the true
conditions at the boundary between the ungated and gated
regions should be elucidated. (From the hydrodynamical
point of view this is the problem of what happens for a
flow across the boundary between deep and shallow water).
Also, the role of the viscosity of the electron fluid, which
may supress the instability for large wave vectors q, remains
to be understood.

I thank Wojciech Knap, Nina Dyakonova, Michael Shur,
and Maria Lifshits for numerous helpful discussions.
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