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Thermal orientation of electron spins
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It is shown that the spin orientation of free electrons occurs in low-symmetry semiconductor structures if only
the electron gas is driven out of thermal equilibrium with the crystal lattice. The proposed mechanism of such a
thermal orientation of electron spins is based on spin dependence of the electron-phonon interaction which tends to
restore equilibrium. The microscopic theory of the effect is developed here for asymmetric (110)-grown quantum
wells where the electron gas heating leads to the spin orientation along the [11̄0] axis in the quantum well plane.

PACS: 72.25.Rb, 73.63.Hs, 75.75.+a

1. Introduction

The spin-related phenomena in semiconductors have been
attracting considerable attention since the discovery of the
optical orientation of electron and nuclear spins and the
basic mechanisms of spin relaxation [1]. Much effort in
this field is currently focused on the development of novel
methods of spin orientation of free carriers ranging from
the spin Hall effect [2] and spin-dependent tunneling [3]
to the optical orientation by linearly polarized light [4].
Here we show that the spin orientation of free electrons
can be achieved in semiconductor nanostructures by simple
electron gas heating. We demonstrate that, in nanostructures
of sufficiently low space symmetry, the electron-phonon
interaction tending to restore equilibrium between the
electrons and the crystal lattice is spin-dependent and leads
to the spin orientation of carriers. Such a thermal orien-
tation of electron spins is considered here for asymmetric
(110)-grown quantum wells (QWs) where the electron gas
heating leads to the spin orientation along the [11̄0] axis in
the QW plane.

The possibility to achieve the spin polarization of car-
riers S caused by the disturbance of thermal equilibrium
in asymmetric (110)-grown QWs follows from symmetry
analysis. Indeed, such structures belong to the point
group Cs that contains only two symmetry elements,
namely, identity and a mirror plane perpendicular to the x
axis. Here we use the following coordinate frame: x ‖ [11̄0]
and y ‖ [001̄] are the in-plane axes, and z ‖ [110] is the
growth direction. Reflection by the mirror plane changes
the sign of the y and z components of the spin axial vector
S but does not modify the x component. Therefore, the spin
component Sx is an invariant in asymmetric (110)-grown
QWs suggesting that the spin polarization along the x axis
can emerge if the electron gas is driven out of equilibrium
by any means. Particularly, in the case of disturbance of
thermal equilibrium between the electrons and the crystal
lattice, the spin orientation can phenomenologically be
described by

Sx ∝
1T
Te

, (1)

where 1T = Te− T0, Te and T0 are the electron and lattice
temperatures, respectively.

2. Microscopic model

Microscopically, the thermal orientation of electron spins
is caused by the energy relaxation of hot carriers and
includes two stages which are illustrated in Figure, a and
Figure, b.

In the first stage (Figure, a), the carriers lose a part of
their kinetic energy by emitting phonons. Such energy
relaxation processes shown by curved arrows are spin-
dependent [5]. In QW structures without an inversion
center, spin-orbit interaction adds an asymmetric term to the
probability of electron scattering by phonons which is linear
in the wave vector components [6]. As is shown in the
next Section, the dominant spin-dependent contribution to
the probability of electron scattering in (110)-grown QWs is
proportional to σz(kx + k′x), where σz is the Pauli matrix, kx

and k′x are components of the initial and scattered electron
wave vectors. Due to the spin-dependent asymmetry of
the electron-phonon interaction, electrons with the spin

”
up“ (along the z axis) predominantly vacate the excited

states with positive kx while electrons with the spin
”
down“

vacate the excited states with negative kx . This leads to a
nonequilibrium distribution where the spin-up hot carriers
occupy mainly the left-hand branch of the dispersion curve
(carriers with the opposite spin orientation have gone to
the subband bottom) while the spin-down carriers occupy
mainly the right-hand branch.

In the second stage (Figure, b), a net spin orientation
of the electron gas appears as a result of the subsequent
spin precession of nonequilibrium carriers in the effective
magnetic field induced by the spin-orbit interaction [7]. The
field has nonzero in-plane components in asymmetrically
growth QWs, e. g., due to the Rashba effect [8]. Therefore,
the spins of nonequilibrium carriers, directed along or
opposite to the z axis after the phonon emission, will
precess in the effective field as shown in Figure, b. Note
that electrons with the initial spin −1/2 and wave vector
kx > 0 are acted upon by the effective field with the
Larmor frequency �k, while particles with the initial spin
+1/2 and the negative wave vector feel the field with
the Larmor frequency �−k. The effective magnetic field
induced by spin-orbit interaction is an odd function of
the wave vector, therefore, �−k = −�k, and the spins of
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Microscopic origin of the electron gas spin orientation due to the
energy relaxation of hot carriers: a — spin-dependent asymmetry
of the electron-phonon interaction followed by b — spin precession
in the effective magnetic field leads to the spin orientation of
electrons along the x axis.

particles with positive and negative values of kx rotate in
opposite directions. This gives rise to the spin component
Sx > 0 for all hot electrons in the subband and the net spin
polarization of the electron gas.

We note that the electron spin caused by the energy
relaxation processes is nonequilibrium and, therefore, can
be rotated by an external static magnetic field, similarly to
the Hanle effect in optics.

3. Theory

The spin-dependent asymmetry of the electron-phonon
interaction can be obtained if one takes into account
both k · p admixture of the valence-band states to the
conduction-band wave function and the phonon-induced
interband coupling. To first order in the k · p theory, where
k = (kx, ky) is the in-plane wave vector, the electron wave
function in a (110)-grown QW has the form

9k(r) = Sψ + X′
vx + vz√

2
+ Y′

vz − vx√
2
− Z′vy . (2)

Here S and X′, Y′, Z′ are the Bloch functions of the
conduction and valence bands at the 0 point of the Brillouin
zone, ψ and v = (vx, vy, vz) are the envelope spinors. The
Bloch functions X′, Y′, and Z′ in Eq. (2) are referred to the
cubic axes x′ ‖ [100], y′ ‖ [010] and z′ ‖ [001], respectively.
The envelope spinors of the valence-band states are related
to the conduction-band spinor by

v = −~Pcv

3m0

(3Eg + 21so)k + i1so[σ × k]
Eg(Eg + 1so)

ψ, (3)

where Pcv = 〈S|pz′ |Z′〉 is the interband matrix element of
the momentum operator, m0 is the free electron mass, Eg

is the band gap, 1so is the valence-band spin-orbit splitting,
and σ is the vector of the Pauli matrices.

We consider the electron scattering by acoustic phonons
due to the deformation-potential mechanism. In cubic
noncentrosymmetric crystals such as zinc-blende-type semi-
conductors, the strain induces a coupling between the

conduction-band and valence-band states [1,9]. The matrix
elements of such a coupling have the form VS,X′ = 4cvuy′z′ ,
VS,Y′ = 4cvux′z′ , VS,Z′ = 4cvux′y′ , where 4cv is the inter-
band constant of the deformation potential, and uαβ are the
strain tensor components used here in the primed coor-
dinate system. It is the strain-induced interband coupling
together with the spin-orbit splitting of the valence band
that leads to spin-dependent asymmetry of the electron-
phonon interaction. Taking into account k · p mixing given
by Eqs (2) and (3) and allowing for the interband coupling,
we derive for the Hamiltonian of the electron-phonon
interaction in (110)-grown quantum wells

Vel-phon(k′, k) = 4c

∑
α

uαα + ξ 4cv

{
(kx + k′x)

×
[
σz(uz z− uxx)/2− σyuyz

]
+ (ky + k′y)

[
σxuyz + σzuxy

]}
,

(4)
where 4c is the intraband constant of the deformation
potential responsible for the dominant (spin-independent)
part of the electron-phonon interaction, and ξ is the
coefficient given by

ξ =
i~Pcv

3m0

1so

Eg(Eg + 1so)
. (5)

In deriving Eq. (4), we have expressed the strain ten-
sor components in the primed axes via those in the
QW coordinate system xyz by using the equalities
ux′y′ = (uz z− uxx)/2, ux′z′ = −(uxy + uyz)/

√
2, uy′z′ =

= (uxy − uyz)/
√

2.
The probability of electron scattering is determined by

squared matrix elements of the electron-phonon interac-
tion (4). The dominant contribution to spin-dependent
asymmetry of the electron scattering in quantum wells
is given by terms proportional to the uz z component of
the phonon-induced strain tensor. This is because the
strain tensor components depend on the wave vector and
polarization of the phonon involved, and the in-plane
component of the phonon wave vector q‖ = |k− k′| is
typically much smaller than the out-of-plane component
qz ∼ π/a, where a is the QW width. Thus, the principle
contribution to the scattering asymmetry in (110)-grown
QW structures is proportional to σz(kx + k′x). This term
is taken into account in calculations which follow. We note
that k-linear terms in the matrix elements of the electron-
phonon interaction can also be obtained in the second order
in the k · p theory, as was done in Ref. [10] for the electron
scattering by charge impurities. However these terms lead
to no essential contribution to asymmetry of the electron
scattering by phonons nor the spin orientation caused by
the energy relaxation processes.

As is shown in Section 2, spin-dependent asymmetry
of the scattering processes followed by the precession
of electron spins in the effective magnetic field leads to
spin orientation of the electron gas. We assume that the
spin relaxation time of carriers is much longer than the
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thermalization time controlled by electron-electron collisions
which is in turn much longer than the momentum relaxation
time τp, and �kτp� 1. Then, the spin generation rate is
given by [4]

Ṡ =
∑

k

τp [�k × gk] , (6)

where gk = Tr[σG(k)]/2, G(k) is the spin matrix describ-
ing the carrier redistribution in k-space due to the scattering
by phonons. Components of the matrix G(k) have the
form (see, e. g., Ref. [9])

Gss′(k) =
2π
~
∑
s1,k1

∑
q,±

{
V(±)

sk,s1k1V
(±)∗
s′k,s1k1 f (εk1)

[
1− f (εk)

]
× δ(εk − εk1 ± ~ωq)−V(±)∗

s1k1,skV
(±)
s1k1,s′k f (εk)

[
1− f (εk1)

]
× δ(εk1 − εk ± ~ωq)

}
, (7)

where V(±)
sk,s1k1 is the matrix element of the electron

scattering assisted by emission (+) or absorption (−) of
a phonon, f (εk) is the distribution function of carriers,
εk = ~2k2/(2m∗) is the kinetic energy, and ωq is the phonon
frequency. Note that spin-orbit splitting of the energy
spectrum is neglected in Eq. (7).

In (110)-grown QW structures, components of the Lar-
mor frequency of the effective magnetic field have the form

�k =
2
~

(γxyky, γyxkx, γz xkx). (8)

The parameter γz x is caused here by the lack of an inversion
center in the host crystal, while γxy and γyx are non-zero due
to the QW asymmetry only. We assume that electrons obey
the Boltzmann statistics and the lattice temperature is not
very low, kBT0 � ~ωq. Then, one derives

Ṡx = −τpγyx
4c4cv

2ρ
ξm∗2

~4

1T
Te

Ne

+∞∫
−∞

[
dϕ2(z)

dz

]2

dz, (9)

where ρ is the crystal density, Ne = 26k f (εk) is the two-
dimensional electron concentration, and ϕ(z) is the function
of size quantization.

In the steady state regime, when the electron temper-
ature Te and the lattice temperature T0 are maintained
constant, the spin density Sx is determined by balance
between the spin generation and relaxation processes;
Sx = ṠxTx , where Tx is the spin relaxation time. In (001)-
grown QWs, the time Tx is given by [11]

T−1
x = −

∞∫
0

τp

f (0)
d f (εk)

dεk

(
〈�2

k,y〉+ 〈�2
k,z〉
)
dεk, (10)

where the angle brackets mean averaging over directions of
the wave vector. For the Boltzmann distribution, Eq. (10)
assumes the form

T−1
x =

4m∗τp

~4

(
γ2

yx + γ2
z x

)
kBTe. (11)

Finally, we obtain for the steady spin density

Sx = −m∗ξ
8ρ

γyx4c4cv

γ2
yx + γ2

z x

1TNe

kBT2
e

+∞∫
−∞

[
dϕ2(z)

dz

]2

dz. (12)

The estimation for the average electron spin gives
Sx/Ne ∼ 10−5 for the electron temperature Te = 100 K, the
ratio 1T/Te ≈ 1, the quantum well width a = 100 Å, and
band parameters m∗ = 0.07 m0, ξ = 0.4 Å, γ/~ = 105 cm/s,
4c = −8 eV, 4cv = 3 eV [1] corresponding to GaAs-
based QW structures. Thus, for the carrier density
Ne = 1011 cm−2, the spin density Sx is of the order of
106 cm−2 which is well above the experimental resolution.
We also note that the modest estimated value of the spin
polarization is due to the fact that the energy relaxation by
acoustic phonons is ineffective. The spin polarization can
considerably increase if optical phonons are involved in the
energy relaxation process.

Acknowledgments. This work was supported by the
Russian Foundation for Basic Research, programs of the
Russian Academy of Sciences, and the President Grant for
young scientists.

References

[1] Optical Orientation, ed. by F. Meier, B.P. Zakharchenya
(Elsevier Science, Amsterdam, 1984).

[2] M.I. D’yakonov, V.I. Perel’. Pis’ma Zh. Eksp. Teor. Fiz. 13,
657 (1971).

[3] V.I. Perel’, S.A. Tarasenko, I.N. Yassievich, S.D. Ganichev,
V.V. Bel’kov, W. Prettl. Phys. Rev. B, 67, 201 304 (2003).

[4] S.A. Tarasenko. Phys. Rev. B, 72, 113 302 (2005); Phys. Rev.
B, 73, 115 317 (2006).

[5] E.L. Ivchenko, G.E. Pikus. Izv. Akad. Nauk SSSR, Ser. Fiz.,
47, 2369 (1983).

[6] S.D. Ganichev, V.V. Bel’kov, S.A. Tarasenko, S.N. Danilov,
S. Giglberger, Ch. Hoffmann, E.L. Ivchenko, D. Weiss,
W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. De Boeck,
G. Borghs, W. Prettl. Nature Physics, 2, 609 (2006).

[7] M.I. D’yakonov, V.I. Perel’. Fiz. Tverd. Tela (Leningrad), 13,
3581 (1971).

[8] Yu.A. Bychkov, E.I. Rashba. Pis’ma Zh. Eksp. Teor. Fiz., 39,
66 (1984).

[9] E.L. Ivchenko, S.A. Tarasenko. Zh. Eksp. Teor. Fiz., 126, 476
(2004).

[10] N.S. Averkiev, L.E. Golub, M. Willander. J. Phys.: Condens.
Matter, 14, R271 (2002).

[11] M.I. D’yakonov, V.Yu. Kachorovskii. Fiz. Tekh. Poluprovodn.
(Leningrad), 20, 178 (1986).

Редактор Л.В. Беляков

Физика и техника полупроводников, 2008, том 42, вып. 8


