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Transmission distribution, PPPPP(ln T), of 1D disordered chain: low-T tail
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We demonstrate that the tail of transmission distribution through 1D disordered Anderson chain is a strong
function of the correlation radius of the random potential, a, even when this radius is much shorter than the
de Broglie wavelength, k−1

F . The reason is that the correlation radius defines the phase volume of the trapping
configurations of the random potential, which are responsible for the low-T tail. To see this, we perform the
averaging over the low-T disorder configurations by first introducing a finite lattice spacing ∼ a, and then
demonstrating that the prefactor in the corresponding functional integral is exponentially small and depends on
a even as a → 0. Moreover, we demonstrate that this restriction of the phase volume leads to the dramatic change
in the shape of the tail of P(ln T) from universal Gaussian in ln T to a simple exponential (in ln T) with exponent
depending on a. Severity of the phase-volume restriction affects the shape of the low-T disorder configurations
transforming them from almost periodic (Bragg mirrors) to periodically-sign-alternating (loose mirrors).

PACS: 71.23.An, 72.15.Rn, 73.20.Fz

1. Intoduction

All the states in one dimension are localized at the scale
of a mean free path, lε . This means that the typical
value of transmission through a 1D region of a length L
is T ∼ exp(−2L/lε). Since T is exponentially small, the
subject of recent theoretical studies [1,2] is the distribution
of the log-transmission, P(ln T) (and also violation of
the

”
orthodox“ 1D localization [3] for certain correlated

disorders [4]). These studies are mainly focused on the body
of the distribution P(ln T). A separate issue is the question
about the far tail of the distribution, i. e. the behavior of
P(ln T) at | ln T| � 2L/lε . This question is directly related
to a more general concept of the anomalously localized
states in disordered conductors [5–8]. In Ref. [9] and
in subsequent paper [10] it was asserted that the small-T
tail is dominated by specific configurations of the disorder,
V(x), namely, the Bragg mirrors. These configurations are
illustrated in Fig. 1. The potential V(x) = 2V cos(2kFx)
opens a gap 2V centered at energy ε = k2

F/2. The
corresponding wave function oscillates with a period π/kF

and decays as exp(−γx), where γ = V/(2kF)� kF is
the decrement. Then we have | ln T| = 2γL = VL/kF .
The important assumption adopted in Refs. [9,10] is that,
with exponential accuracy, P(ln T) can be found by
substituting 2V cos(2kFx) into the

”
white-noise“ probability,

exp
[
−
{

lε
∫ L

0 dxV(x)2/4k2
F

}]
, of the fluctuation V(x). This

yields [9,10] |ln P(ln T)| = (lε ln2 T)/2L. Remarkably,
the result coinsides with the asymptote of the

”
exact“

solution obtained by Altshuler and Prigodin [11] using the
Berezinskii technique [3].

The Bragg mirror configurations, V(x) = 2V cos(2kFx),
emerged in Refs. [9,10] upon applying the optimal fluc-
tuation approach [12,13]. This approach was specifically
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designed to deal with situations when the result is deter-
mined by a particular disorder configuration. The above
log-normal expression for P(T) corresponds to the saddle
point of the functional integral over disorder configurations.
Obviously, the statistical weight of an ideal Bragg mirror
is zero. Rigorous application of the optimal fluctuation
approach implies taking into account the configurations
close to optimal. This procedure corresponds to the
calculation of the prefactor in the functional intregral. In
most cases [14–17] the prefactor behaves as a power law
and, thus, cannot compete with the main exponent.

In the present paper we demonstrate that the situation
depicted in Fig. 1, a differs drastically from Refs. [9,10] due
to a large size of the optimal fluctuation. Resulting from
this large size, the large number of

”
degrees of freedom“

makes the prefactor exponentially small, so that, the final
result for P(ln T) is determined by the competition of the
prefactor and the main exponent. More specifically, as
illustrated in Fig. 1, b, c, weakly perturbed Bragg mirrors
include fluctuations with phase varying along x. These
fluctuations are

”
dangerous“, in the sense, that they result

in spatial modulation of the gap center (Fig. 1, c) and, thus,
suppress the decrement γ . Large size of a mirror translates
into a large statistical weight of these dangerous fluctuations,
i. e. it severely restricts the weight of the efficient Bragg
mirrors.

As we demonstrate in the present paper, due to the
reasons listed above, the proper application of the optimal
fluctuation approach, i.e. taking prefactor into account, has
dramatic consequences for the shape of the tail of P(ln T).
Namely,
(i) The log-normal result [9,10] has a

”
universal“ form, in

the sense, that it contains only the mean free path, lε . Thus,
it is insensitive to the actual value of the correlation radius
a of the disorder, (as long as a� lε). In contrast, we
demonstrate that, with prefactor taken into account, P(ln T)
depends on a exponentially strongly even for a � lε .
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(ii) It was assumed in Refs. [9,10] that the optimal Bragg-
mirror fluctuation extends over the entire region L. This is
indeed the case for Gaussian form of P(ln T). However,
with P(ln T) having non-Gaussian form, it turns out that
the optimal fluctuation corresponds to the Bragg mirror
occupying only a part, Lopt < L, of the interval L, as
illustrated in Fig. 2. The underlying reason for this is that
the prefactor makes the Bragg mirrors very

”
costly“.

The paper is organized as follows. In Sec. 2 we
introduce the discretization, which is always mandatory for
the functional integration. We choose the lattice spacing
to be finite, which is the most convenient discretization for
averaging over disorder configurations of the Braggmirror
type. In Sec. 3 the functional integral, which defines
P(ln T), is calculated with prefactor in the domain, where
the Bragg mirrors dominate the low-T configurations. In
Sec. 4 we consider the low-energy domain, where the
Bragg mirrors, being too costly, become inefficient. We
demonstrate that relevant low-T disorder configurations in
this domain are the loose mirrors, which are periodically-

Figure 1. a — schematic illustration of the decay of the
wave function within the Bragg mirror. b: solid line — potential
fluctuation corresponding to an

”
ideal“ Bragg mirror; dashed

line —
”
real“ Bragg mirror with fluctuating phase. c —

fluctuations of phase result in the fluctuations of position of the
gap center (dashed line) leaving the width of the gap (solid lines)
unchanged.

Figure 2. Disorder configuration in which the Bragg mirror
occupies only a part Lopt of the total length L. The decay of the
envelope of the wave function within the mirror and in the rest of
the sample is illustrated with dashed and dotted lines, respectively.

sign-alternating on-site energies. As we show in Sec. 4, such
loose mirrors form a well-defined subspace in the space of
all possible realizations of the on-site energies. In particular,
they dominate the functional integral for P(ln T), which we
calculate with prefactor. In Sec. 5 we turn to the continuous
limit a → 0. In contrast to Refs. [9,10], we find that, due to
the exponentially small prefactor in the functional integral,
it is loose mirrors, extending over a part of the chain, rather
than the Bragg mirrors, occupying the entire chain [9,10],
that dominate P(ln T) in this limit. In the Sec. 6 we trace
the reason why the loose mirrors are not captured in the
standard analytical techniques in 1D.

2. Genaral considerations

2.1. Discretization procedure

To calculate the prefactor of P(ln T), it is necessary,
as in any functional integration, to adopt some sort of
discretization [15]. In this paper we simply introduce a
finite lattice constant (equal to 1), and a finite hopping
between the sites (equal to 2), so that the problem reduces
to 1D Anderson model. The discrete on-site energies, Vm,
are random numbers; their distribution function, P(Vm), has
a characteristic scale 1� 1, which we identify with r.m.s.

1 =
[ ∞∫
−∞

dVmV2
mP(Vm)

]1/2

. (1)

The discrete version of the ideal
”
continuous“ Bragg mirror

V(x) = 2V cos(2kFx) has the period n and corresponds to
the on-site energies Vm = 2V cos(2πm/n). Then the discrete
analog of the energy k2

F/2 has the form

εn = 4 sin2(π/2n), (2)

where the energy is measured from the band edge (equal
to −2). To approximate the continuum, unlike Ref. [18],
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Figure 3. a — weakly disturbed Bragg mirror on a lattice; δV
is the tolerance in the on-site energies. b — loose mirror with

”
rigidity“ in signs of the on-site energies.

Figure 4. Left: schematic plot of the 1D density of states ρ

smeared by disorder; for energies ε < Et the states are strongly
localized. Right: low-T disorder configurations have the form as
in Fig. 3, b within the energy domain Et < ε < EB and the form
as in Fig. 3, a for energies ε > EB .

we will focuse on the energy interval close to the band
edge, i. e. n� 1. On the other hand, the energy should
be well above the fluctuation-tail domain, ε < Et , where
Et is determined from the following consideration. As
follows from the golden rule, for n� 1, the mean free
path is equal to lε = 8εn/1

2. Then the conductance, Gε ,
can be written as Gε = ε1/2lε . The upper boundary of
the fluctuation-tail domain is determined by the condition
GEt ≈ 1, which yields Et ≈ 14/3. The fact that we consider
energies above Et sets the lower bound for the values of n,
namely, n� 1−2/3.

Once the discretization procedure is specified, the
averaging over disorder realizations is well-defined. In
particular, to calculate the statistical weight of the Bragg
mirrors, providing a given value of ln T , one has to
integrate P(Vm) over the deviations of the on-site energies
from Vm = 2V cos(2πm/n) with a restriction that the

log-transmission for the set {Vm} is fixed and equal to
ln T . Translating the claim made in Refs. [9,10] into
the

”
discrete“ language, this weight is simply equal to∏

m P
(
2V cos(2πm/n)

)
, i. e. the deviations of Vm from

2V cos(2πm/n), that are responsible for the prefactor, can
be neglected within exponential accuracy. Below we test
this assertion by explicit calculation of the prefactor. The
result of this test can be summarized as follows.
1) Weakly disturbed Bragg mirrors (see Fig. 3, a) are
indeed the dominating disorder configurations, providing a
given value of ln T , only above certain energy, EB ≈ 14/5,
i. e. n≈ 1−2/5, as illustrated in Fig. 4.
2) Even for energies bigger than EB, the prefactor is
exponentially small. Whether or not it competes with the
main exponent [9,10] depends on the length L of disordered
region.
3) Our most important finding is that within a parametri-
cally wide energy domain, EB > εn > Et , the low-T disorder
configurations are dominated by the novel entity, which
we call

”
loose mirrors“. They are illustrated in Fig. 3, b

and represent the alternating regions of equal length n/2;
within each region the values of Vm are either random,
but strictly positive or random, but strictly negative. The

”
phase volume“ of these configurations is much bigger than

that of the Bragg mirrors. On the other hand, for these
configurations at large n the sign

”
rigidity“ of Vm within

each half-period is sufficient to provide the Bragg reflection.

2.2. Optimal length of the Bragg mirror
for a given length of the chain

Taking prefactor into account has a dramatic effect on
the structure of the optimal fluctuation. To clarify this
point, suppose that the Bragg mirror extends not over entire
distance L, but only over the interval L < L, see Fig. 2.
Denote with TL the transmission of the mirror. Then for the
transmission of the entire interval L we have

| ln T| = | ln TL|+ 2

(
L− L

lε

)
, (3)

where the second term describes the transmission through
the region outside the Bragg mirror (Fig. 2). It is apparent
that the first term in Eq. (3) increases with L, whereas the
second term decreases with L. This suggests the following
procedure to determine the optimal length of the mirror.
Denote with PL(ln T) the distribution function of TL. Then
the distribution function of the total transmission for a given
L can be written as PL {ln T + 2(L − L)/lε}. The fact that
the Bragg mirror has an optimal length can be expressed in
the form

| ln P(L, ln T)| = min
L

∣∣∣∣ln PL

{
| ln T|+ 2

(
L− L

lε

)}∣∣∣∣ .
(4)

It is seen from Eq. (4) that the calculation of the small-T
tail of the net transmission of the entire interval L reduces
to the calculation of the function PL (ln T), which is the
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characteristic of the Bragg mirror only. If now we use for
PL(ln T) the result [9,10] PL(ln T) = exp

[
−(lε ln2 T)/2L

]
,

which was obtained neglecting the prefactor, then the
minimum in Eq. (4) would correspond to L = L, i. e. to
the Bragg mirror extending over the entire interval L.
Below we demonstrate that, once the prefactor is taken
into account, the true optimal fluctuation corresponds to a

”
short“ Bragg mirror, L < L, within a parametrically wide

interval of | ln T|.

3. Weakly distorted Bragg mirrors

3.1. Calculation of the functional integral

Here we consider the case when the deviations, δVm,
of the on-site energies, Vm, from the optimal values,
Vm = 2V cos (2πm/n), are relatively small. For concreteness
we choose the Gaussian distribution of the on-site energies,
P(V) = π−1/21−1 exp(−V2/12). To calculate the prefactor
due to small deviations, δVm, we adopt the assumption
that δVm are homogeneously distributed within a small
interval (tolerance) δV � 1 (Fig. 3, a). On the one hand,
this assumption leads to a drastic simplification of the
calculation. On the other hand, as we will see below, it
yields an asymptotically correct result.

With homogeneously distributed δVm, the statistical
weight of distorted Bragg mirror, PL, can be easily
expressed through the tolerance δV ,

PL =
(
δV
1

)L

exp

[
−
(

1
12

)∑
m

V2
m

]

= exp

[
−L ln

(
1

δV

)
− V2L

212

]
. (5)

In Eq. (5) we have assumed that δV not only smaller than
1, but even stronger condition δV � 12/V is met. We will
check this condition below.

We now incorporate the fluctuations δVm into the log-
transmission of the Bragg mirror, ln T . As it was pointed
out above, random shifts, δεi , of the gap center reduce the
decrement γ = V/2kF = Vn/2π within each period. This
is due to the local detuning from the Bragg resonance.
Quantitatively, the reduction of the decrement γ can be
expressed as

γ(δεi ) = γ

√
1−

(
δεi

V

)2

. (6)

As a result, instead of 2γL in the absence of fluctuations,
the expression for | ln T| is modified to

| ln T| = 2n
∑

i

γ(δεi ) ≈ 2γL− nγ
∑

i

(
δεi

V

)2

. (7)

Consider now a given period, i , containing n sites. Denote
with V(i )

m the on-site energies within this period. Then the

shift, δεi , of the gap center for this period can be expressed
through V(i )

m via a discrete Fourier transform as follows

δεi =
(π

n

)2
∑n

m=1 V(i )
m sin(πm/n)∑n

m=1 V(i )
m cos(πm/n)

, (8)

where the summation is performed over the sites within
the i -th period. Obviously, for an ideal Bragg mirror,
Vm = 2V cos (2πm/n), we obtain from Eq. (8) that δεi = 0.
In the presence of fluctuations δVm the typical value of δεi

is proportional to δV and can be estimated from Eq. (8) as
follows. The numerator is the sum of n random numbers,
each being ∼ δV . Thus, the typical value of the numerator
is n1/2δV . On the other hand, the denominator is equal
to nV/2. Then we obtain

δεi =
Cε2n

(2n)1/2

(
δV
V

)
=

π2C
21/2n5/2

(
δV
V

)
, (9)

where the constant C is of the order of 1.
Looking at Eq. (6), it might seem that the condition

δV � V of the weak distortion of the Bragg mirror
by fluctuations, and the condition δεi � V of the weak
reduction of the decrement are quite different. It turns out,
as we will see later, that δV � V insures that |γi − γ| � γ ,
and thus justifies the expansion of γ(δεi ) used in Eq. (7).
Substituting Eq. (9) into Eq. (7) we get

| ln T| − VLn
π
≈ −C2 VL

2π

(
ε2nδV

V2

)2

≈ −8π3C2

(
LδV2

n4V3

)
. (10)

Using the fact that the r.h.s. in Eq. (10) is much smaller
than | ln T|, we can express V through | ln T| as follows

V =
π| ln T|

nL
+ 8πC2 L3δV2

n2| ln3 T|
. (11)

Further steps are straightforward. Using Eq. (11), we can
rewrite the exponent in Eq. (5) as

| ln PL| =
{

L ln

(
1

δV

)
+

V2L
212

}

=
π2 ln2 T
2n212L

+
{

L ln

(
1

δV

)
+

8π2C2L3δV2

n312 ln2 T

}
. (12)

Now it is easy to see that there exists the optimal tolerance

δV = δVopt =
V1n5/2

4π2
=

n3/21| ln T|
4πCL

, (13)

for which | ln PL| is minimal and is equal to

|ln PL| =
ln2 T
212L

(π
n

)2
+ L3(T), (14)
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Figure 5. Solid line: our main result of Eqs. (18), (19) for the
low-T tail of the transmission distribution. Dashed line: log-normal
P(T) of Refs. [9,10]. Inset: the portion of the chain occupied with
Bragg (loose) mirror.

where

3(T) = ln

(
1

δVopt

)
= ln

(
4πCL

n3/2| ln T|

)
(15)

depends on T very weakly. It is also seen from Eq. (15)
that C enters into the final result only as a factor under
the logarithm, so that our assumption about homogeneous
distribution of δVm is justified.

Now, in order to calculate the tail of the transmission
distribution, P(L, ln T), we substitute Eq. (14) into Eq. (4):

| ln PL| = min
L

{
1

2L

( π

n1

)2

×
[
| ln T|+ 2

(
L− L

lε

)]2

+ L3(T)
}
. (16)

Next we perform minimization with respect to L. This
yields the following equation for the optimal L = Lopt

Lopt =
π| ln T|√

23n1

[
1 + 2

(
L− Lopt

lε| ln T|

)]

×
[

1− 2
3

( π

n1

)2 | ln T|
lεLopt

{
1 + 2

(
L− Lopt

lε | ln T|

)}]−1/2

.

(17)
Since we are interested in anomalously low transmis-
sions, | ln T| � L/lε , the second term in the first square
brackets in Eq. (17) is small. The second term in the
second square brackets contains an additional parameter
∼ | ln T|/Lopt(n212lε). Since lε = 8εn/1

2, the combination
n212lε is ∼ 1. Thus, the above parameter reduces to
| ln T|/Lopt, which is also small. More precisely, it is of
the order of l−1/2

ε . Neglecting second terms in both square

brackets, and substituting Lopt from Eq. (17) into Eq. (16),
we arrive at the final result

| ln P(ln T,L)| =
(
π
√

23
n1

)
| ln T|,

(√
23
π

)
n1L > | ln T| > n212L, (18)

| ln P(ln T,L)| = 1
2L

( π

n1

)2
ln2 T + L3(T),

| ln T| >
(√

23
π

)
n1L. (19)

It is instructive to rewrite the above result in terms of
energy, εn ≈ (π/n)2, and conductance, Gn ≈ 1/(n312),

| ln P(ln T, L)| =
(

2π33Gn√
εn

)1/2

| ln T|,

(
23
√
εn

π3Gn

)1/2

L > | ln T| >
(√

εn

πGn

)
L, (20)

| ln P(ln T, L)| = π3

2L

(
Gn√
εn

)
ln2 T + L3(T),

| ln T| >
(

23
√
εn

π3Gn

)1/2

L. (21)

The behavior of Eqs. (18), (19) is illustrated schematically
in Fig. 5. We see, that the log-normal dependence of
Refs. [9,10] takes place only for very small transmission
coefficients | ln T| > L/

√
lε . Only in this domain the

Bragg mirror extends over the entire interval, and the
prefactor (second term in Eq. (19)) is smaller than the main
exponent. Within a wide domain L/

√
lε > | ln T| > L/lε

the probability, P (L, ln T), behaves as a simple exponent.
The underlying reason for such a behavior is that the
dependences of the main exponent and of the prefactor on
L are opposite. As a result, there exists an optimal mirror
length

L = Lopt =
π| ln T|√

23n1
, (22)

which leads to the result Eq. (18). Simple exponent
Eq. (18) corresponds to the situation when Lopt is shorter
than the length of the interval L. More precisely, the
portion of the interval L, occupied by the Bragg mirror, is
given by Lopt/L = π |ln T| /

√
23n1L. Within the domain

L/
√

lε > | ln T| > L/lε this portion changes from 1 to a
small value (1/G)1/3 � 1, as illustrated in the inset in
Fig. 5.

3.2. Justifications of the assumptions

The above calculation was based on three assumptions.
1) δV � 12/V; we used this condition in the expression
Eq. (5) for the probability PL.
2) δV � V; this is the condition that the Bragg mirror is
well defined. It was also used in deriving Eq. (5).
3) δεi � V; this condition was used in expansion Eq. (7).
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From the result Eq. (13) of the above calculation we find
δVopt/V = 1n5/2/(4π2). Thus, the assumption 2) is valid
under the condition

1n5/2 � 1. (23)

Below we demonstrate that the same condition Eq. (23)
guarantees the validity of the other two assumptions.
Assumption 1). Within the domain L/

√
lε > | ln T|> L/lε ,

where P(L, ln T) behaves as a simple exponent,
the amplitude of the Bragg mirror, given by
V = π| ln T|/nLopt, is equal to V =

√
231 and does

not depend on L, where, as follows from Eq. (15),
3 = 3(Lopt) = ln(4π2C/

√
231n5/2) ≈ ln(1/1n5/2). To

check the assumption 1) we rewrite the ratio VδV/12

as (δV/V)(V2/12) = (1n5/2/4π2)(V2/12) = 1
2π2 1n5/2

× ln(1/1n5/2). We see that V� 12/δV holds under the
condition 1n5/2 � 1, which is precisely the condition (23).
Assumption 3). From Eq. (9) we have the following esti-
mate for the ratio δεi /V� 1:

δεi

V
=

π2C
21/2n5/2

(
δV
V2

)
. (24)

Substituting into this equation the optimal value
δVopt = V1n5/2/(4π2), we obtain δε/V ∼ 1/V =
= [23(Lopt)]−1/2. On the other hand, 3(Lopt) = ln(1/1n5/2)
is large under the same condition Eq. (23). This large
logarithm justifies the assumption 3).

In conclusion of this Section we would like to make the
following two remarks.
1) The expression for the decrement γ = Vn/2π is the re-
sult of the two-wave approximation, within which propagat-
ing and Bragg-reflected waves are coupled only in the first
order, i. e. by a single harmonics of periodic potential. For
two-wave approximation to be valid, the second-order cou-
pling matrix elements must be much smaller than V. The es-
timate for these second-order elements is ∼ V2/εn ∼ V2n2.
Thus, the two-wave approximation is valid if V2n2 � V,
i. e. Vn2 � 1. As it is seen from Eq. (23), V� 11/2n−5/4.
Thus Vn2 � [11/2n−5/4]n2 = [1n5/2]1/2/n1/2. We see that
the applicability condition of the two-wave approximation is
weaker than the main condition 1n5/2 � 1.
2) The condition Eq. (23) implies that the energy εn

exceeds 14/5. This, in turn, suggests that the conductance
Gn = kFlε for ε = εn is equal to Gn = (12n3)−1, and is large
by virtue of this condition.

4.
”
Loose“ mirrors

4.1. Density of the loose mirrors

We now turn to the case of low energies. More precisely,
we consider the domain EB > εn > Et (Fig. 4). The upper
boundary of this domain corresponds to 1n5/2 ≈ 1, whereas
the lower boundary corresponds to 1n3/2 ≈ 1. For energies
εn > EB the transmission is dominated by weakly disturbed

Bragg mirrors, as discussed in the previous Section. For
energies ε < Et we have Gε < 1, i. e. these energies
correspond to the tail states.

As we enter the low energy (large-n) domain, the key
component of the above scenario of weakly disturbed
mirrors gets violated. Namely, at n∼ 1−2/5 we have
δV ∼ V. This implies that almost sinusoidal Bragg mirror
cannot retain its role as an optimal fluctuation which is
responsible for low-T values.

In general, optimal fluctuation constitutes a saddle point
in the functional space. In the previous Section, by
demonstrating that the disorder configurations contributing
to the functional integral differ weakly (by δV � V) from
the optimal configuration, we have justified that the saddle
point is well defined, or, in other words, the expansion
around the saddle point yields a narrow width of the
Gaussian in the functional space. In this Section we
demonstrate that in the energy domain EB > εn > Et there
exists a well-defined subspace of all realizations of the on-
site energies, {Vm}, which assumes the role of a saddle
point. We dub the elements of this subspace as

”
loose“

mirrors. A loose mirror is a configuration of alternating
regions of n random, but positive Vm and n random, but
negative Vm. It is illustrated in Fig. 3. Obviously, the
statistical weight of the loose mirrors is small. It is easy
to see that this weight is equal to 2−L. Most importantly,
despite the randomness of Vm, the fact of the sign rigidity
within each interval of length, n, is sufficient for the
formation of the Bragg gap with the well-defined width,
and thus, for generating the low transmission coefficients.

The key element of calculation of P(ln T) in the regime
of weakly distorted Bragg mirrors was the expansion
Eq. (7), which expressed the fact that the decrement γ

weakly fluctuates from period to period. It turns out that in
the regime of loose mirrors, 1n5/2 � 1, these fluctuations
are also weak. This can be seen from Eq. (24). Since in
the regime of loose mirrors the only scale for V and δV
is 1, Eq. (24) yields δεi /V ∼ (1n5/2)−1, which is small in
the regime of loose mirrors. Thus, the expansion Eq. (7) is
applicable in this regime as well.

To calculate the distribution P(ln T) in the regime of
loose mirrors, the calculation in the previous Section should
be modified in the following way. For loose mirrors the

”
period“ consists of interval of n positive Vm followed by an

interval of n negative Vm. The magnitude of the gap 2V and
corresponding decrement, γ = nV/2π, are determined by
discrete Fourier component of this realization of the on-site
energies. Then the expansion analogous to Eq. (10) takes
the form

| ln T| ≈ VLn
π

. (25)

Then the corresponding expression for V, analogous to
Eq. (11), reads

V =
π| ln T|

nL
. (26)

It is obvious that the typical value of V is ∼ 1 with variance
is ∼ 1/n1/2. It can be demonstrated that the full distribution
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of V is given by

p(V) =
(

n
πβ212

)1/2

exp

[
−n(V− β11)2

β212

]
, (27)

where the constants β1 and β2 depend on the actual
distribution P(V). For Gaussian P(V) they assume the
values β1 = 4π−3/2 and β2 = 1/2− 1/π.

Analogously to Eq. (5), the actual calculation reduces to
optimization with respect to L of the product

PL =
(

1
2

)L

[p(V)]L/n =
(

1
2

)L [
p

(
π| ln T|

nL

)]L/n

, (28)

where the power L/n emerges from the product over
periods. With Gaussian p(V), given by Eq. (27), this
optimization can be performed analytically in a similar
fashion as in the previous Section, yielding

Lopt =
π| ln T|
n1β1/2

0

, (29)

where β0 = β2 ln 2 + β2
1 is the constant of the order of 1.

The corresponding value of the gap width is

Vopt =
π| ln T|
nLopt

= 1β
1/2
0 . (30)

The resulting Eq. (29) is quite similar to Eq. (22), and
differs only by replacement of the logarithmic factor 23
by a constant β0, which is of the order of 1. Correspond-
ingly, the final results for P(ln T, L) are quite similar to
Eqs. (20), (21):

| ln P(ln T, L)| = βeff

(
2π3Gn√

εn

)1/2

| ln T|,

L

π

(
β0
√
εn

πGn

)1/2

> | ln T| >
(√

εn

πGn

)
L, (31)

| ln P(ln T,L)|=
(

π3Gn

β2ε
1/2
n L

)
ln2 T−

(
2π3β2

1Gn

β2
2
√
εn

)1/2

| ln T|

−
(
β0

β2

)
L, | ln T| > L

π

(
β0
√
εn

πGn

)1/2

, (32)

where βeff = [β1/2
0 − β1]/β2. For Gaussian distribution of

the on-site energies we have βeff ≈ 0.46. The results
Eqs. (31), (32) were obtained assuming that loose mirrors
are well-defined entities, in the sense, that the subspace
that they constitute within the functional space has a sharp
boundary. In the next subsection we examine the width
of this boundary and demonstrate that this width is indeed
relatively small.

4.2. Tolerance of the loose mirrors

In order to examine to what extent the loose mirrors are
well defined, we consider below two generic sources of
violation of the sign rigidity, which are illustrated in Fig. 6.

1) We allow the on-site energies within
”
positive“ periods

to assume slightly negative values, restricted by −W (see
Fig. 6, a), and the on-site energies within

”
negative“ periods

to assume small positive values, restricted by W� 1. This
allowance increases exponentially the number of configu-
rations constituting the loose mirrors. On the other hand,
such an allowance suppresses the gap. As a result of these
competing trends, there exists an optimal value of W, that
maximizes P(ln T,L).
2) We allow a small portion, κ, of on-site energies to
assume the

”
wrong“ sign preserving their magnitude ∼ 1.

This allowance also increases the number of loose mirrors
and suppresses the gap. Thus there exists an optimal κ � 1,
which we calculate below.

The quantitative characteristics of the
”
quality“ of the

loose mirror is the fluctuation, δε, of the gap center due
to the above violations, which is analogous to the tolerance
δV of Bragg mirror in the previous Section.

The enhancement of the portion of the loose mirrors
due to allowance W can be estimated as (1 + W/1)Lopt ≈
≈ exp(WLopt/1). This is an exponential

”
gain“ in

P(ln T, L). The
”
loss“ due to suppression of the gap, simi-

larly to Eq. (12), can be expressed as ∼ exp[−Lopt(δε/1)2].
The relation between δε and W can be established from
Eq. (8). Indeed, all the terms in numerator are of the same
sign and of the order of W, while the corresponding terms
in denominator are also sign-preserving and ∼ 1. Thus we

Figure 6. Possible violations of the sign rigidity of a loose mirror:
a — small (∼W� 1) on-site energies with

”
wrong“ sign are

allowed; b — sparse
”
large“ (∼ 1) on-site energies having the

”
wrong“ sign (hash-marked lines) are allowed.
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have δε ∼ (π/n)(W/1). Finally, the product

exp

[
Lopt

(
W
1

)]
exp

[
−Lopt

(
δε

1

)2
]

= exp

{
Lopt

[(
W
1

)
−
(
πW
n12

)2
]}

(33)

of the gain and loss has a maximum at Wopt ≈ n213.
We see, that the allowance is relatively small, since
Wopt/1 = n212 = (1/n)(Et/εn)3/2 � 1. This suggests that
the allowance does not change the result Eq. (31), since
the correction to ln P(ln T) due to allowance, Wopt,
amounts to a small portion ∼Wopt/1� 1 of the main
exponent Eq. (31).

Strictly speaking, the optimal value of the allowance W
is well defined if the exponent in Eq. (33) is much bigger
than one. Upon substituting Wopt into Eq. (33), we obtain
δ| ln P| ∼ n212Lopt ≈ n1| ln T|. From here we conclude,
that for large enough | ln T| > 1/(n1), the allowance W
indeed leads to δ| ln P| � 1. For smaller | ln T| . 1/(n1)
the gain does not play a role, so that the allowance
W is determined exclusively by the second term in the
exponent in Eq. (33). This term falls off at characteristic
W = n12/L1/2

opt . This allowance is bigger than Wopt, since
W/Wopt ≈ (n1| ln T|)−1/2 > 1, but still smaller than 1. The
latter can be seen if we rewrite W/1 = n1/L1/2

opt in the form

W/1 ≈ (Wopt/1)3/4 | ln T|−1/2, which is the product of two
small numbers. The fact that for small | ln T| . 1/(n1)
the allowance increase with | ln T| can be interpreted
qualitatively as follows. The smaller is | ln T|, the less
effort is required to create a disorder configuration with low
transmission T .

The enhancement of the portion of the loose mirrors due
to allowance, κ, is equal to (2κ)Lopt/n = exp[κ(L/n) ln 2]. The
loss can be estimated analogously to the case (i). Namely,
due to the sites with wrong sign of on-site energies the ratio∑n

m=1 V(i )
m sin

(
πm/n

)
/
∑n

m=1 V(i )
m cos

(
πm/n

)
in Eq. (8) is

∼ κ . This yields the estimate δε ∼ (π/n)κ, so that,
analogously to (i), the product of gain and loss can be
written as

exp

{
Lopt

[
κ −

(πκ
n1

)2
]}

. (34)

This product is maximal for κ = κopt = n212. We see that
κopt ≈Wopt/1, and thus is small, as discussed above.

The fact that the optimal allowances Wopt/1 and κopt are
small justifies that loose mirrors are well-defined entities.

5. Continuous limit

In this Section we establish the relation between the
above consideration on the lattice and the results of
Refs. [9,10] obtained within the continuous approach. To
establish this relation, we restore the lattice constant, a,
in the dispersion law, i. e. ε(k)a2 = 4 sin2(ka/2), where k

is the momentum. For lattice constant a = 1 the dimen-
sionless parameter that separates the regimes of weakly
disturbed (Eqs. (18), (19)) and loose (Eqs. (31), (32))
mirrors was equal to n12/5. To incorporate the arbitrary
lattice constant, it is convenient to first express this pa-
rameter through the conductance G for a = 1. From the
relation Gn = n−31−2 we find 12/5 = n−3/5G−1/5

n . Thus,
n12/5 = n2/5/G1/5

n . For arbitrary a, the number n should
be replaced by (ka)−1, while Gn should be replaced by
G(k) = [ε(k)/Et ]3/2, where Et is the upper boundary of the
tail states. For a = 1 this boundary is expressed through
1 as Et = 14/3. Thus, the parameter n12/5 for arbitrary
a transforms into G(k)−1/5(ka)−2/5. It is seen that this
parameter contains the lattice constant and in the white
noise limit a→ 0, considered in Refs. [9,10], it is much
bigger than 1, which corresponds to the regime of loose
mirrors. We thus conclude, that for small a the distribution
function P(ln T) is given by Eqs. (31), (32). With a
restored, these expressions take the form

| ln P(ln T, L)| = βeff

[
2π3G(k)

ka

]1/2

| ln T|,

β
1/2
0

π3/2

[
kL

G1/2(ka)1/2

]
> | ln T| > kL

πG
, (35)

| ln P(ln T, L)| =
[

π3G

β2L
√
ε

]
ln2 T −

[
2π3β2

1G

β2
2a
√
ε

]1/2

| ln T|

−
(
β0

β2

)
L

a
, | ln T| > β

1/2
0

π3/2

[
kL

G1/2(ka)1/2

]
. (36)

The result of Refs. [9,10] correspond to the first term of
Eq. (36). We see, however, that this result obtained ne-
glecting the prefactor does not survive the white-noise limit
a→ 0. Formally, taking the prefactor into account shifts the
domain of applicability of the log-normal distribution to very
small transmission coefficients, | ln T| > (β0kL2/π3Ga)1/2,
so that this domain vanishes when a → 0. Physically, the
result of Refs. [9,10] does not apply in the white-noise limit
due to the huge phase fluctuations, that are allowed for small
a. These fluctuations forbid the formation of a Bragg mirror
with a weakly distorted sinusoidal shape of Fig. 3, a. Instead,
the relevant fluctuations have the form of loose mirrors
shown in Fig. 3, b, where only the positions of sign changes
are adjusted to the de Broglie wave length, 2π/kF , of the
electron. In this regime the tail of P(ln T) is described
by a simple exponent Eq. (35) with a non-universal
coefficient ∝ a−2. Clearly, in the

”
continuous language“,

the lattice constant a should be identified with the smallest
scale in the problem, namely, the correlation length of the
random potential. Thus, we arrive at the conclusion that
the correlation length determines the coefficient in front
of | ln T| in the leading term of P(ln T). In terms of
the correlation length and dimensionless conductance, the
portion of the sample occupied by the loose mirror is given
by | ln T|(Ga/β0kL2)1/2.

5∗ Физика и техника полупроводников, 2008, том 42, вып. 8



964 V.M. Apalkov, M.E. Raikh

Figure 7.
”
Continuous“ realization of a loose mirror for short-

range disorder with correlation radius a � k−1
F .

Finally, we establish the energy interval, where the loose
mirrors, and thus Eqs. (35), (36), determine the far tail
of P(ln T). For this purpose, we equate the parameter
G(k)−1/5(ka)−2/5 to 1 and express the energy EB in Fig. 4
through the correlation length a as EB ≈ Et/(Eta2)2/5. This
yields the sought interval

Et < ε <
Et

(Eta2)2/5 . (37)

Recall that Et , the position of the boundary of the tail
states, does not depend on a. This is valid for small
a, such that (Eta2)� 1, i. e. the interval (37) is broad.
For Eq. (37) to apply, we should require that at the
upper boundary of the interval (37) the corresponding
momentum, kB, is much smaller than the inverse correlation
length. It is easy to see that this is indeed the case, since
kBa = aE1/2

B = (Eta2)3/10 � 1.
Fig. 7 illustrates the main qualitative outcome of our

consideration. Namely, for a short-range potential with a
correlation radius a� k−1

F , the low-T disorder configura-
tions for energies within the interval Eq. (37) have the shape
of loose mirrors depicted schematically in this figure.

6. Conclusion

In conclusion, let us address the relation between our
results and the analytical results in 1D, predicting the shape
of P(ln T). Neither of the

”
exact“ techniques [3,19] allows

to pinpoint the actual disorder configuration, responsible
for low-T values. Although they are believed to be exact,
each of these techniques contain a step at which mirror-
like configurations are lost. Let us illustrate this point using
the Berezinskii technique [3] as an example. In Fig. 8, a
three-impurity scattering configuration, employed in Ref. [3]
(see also [20]) to make the case for complete localization
in 1D, is depicted. As was explained by Berezinskii [3], the
key ingredient of the technique in Ref. [3] is the observation
that the scattering paths I and II correspond to the same
accumulated phase

φ = 2kF(x2 + x3 − 2x1), (38)

and, thus, interfere constructively for any φ. However,
within the

”
exact“ technique, the value of φ is assumed to

be random, and the averaging over φ is performed. Similar
procedure is a key element of the technique in Ref. [19].
Calculating the higher-order diagrams in Ref. [11] takes
into account increasingly large number of possibilities of
constructive interference of different paths, all of which are
of the type as in Fig. 8 (correspond to the same accumulated
random phase). However, each step involves averaging over
this phase. In contrast, the Bragg-like configurations are
those sparse realizations, for which the phase accumulated
upon traversing the period, π/kF , first forwards, and then
backwards, is not random, but close to 2π. Thus, in
our opinion, the complete coincidence of the estimate for
P(ln T) based on the Bragg mirrors and of the result [11]
is accidental.

Finally, let us briefly formulate the main message of
the present paper. Creating low-T disorder configuration
in 1D demands this configuration to possess a long-range
order, adjusted to the wave vector, kF . Ideal configurations
with such a long-range order are of the Bragg-mirror type.
However, they are very

”
costly“ to maintain over a large

distance. This is due to the phase fluctuations, those tend
to violate the Bragg condition. These fluctuations are not
captured at the stage of calculating the saddle point. They
show up at the next stage, i.e. calculating the prefactor. We
have demonstrated that loose mirrors, illustrated in Fig. 7, in
which the long-range order is present, but relaxed are much

”
cheaper“ to create than the Bragg mirrors. On the other

hand, as follows from the analysis that we have performed,
a loose mirror, shown in Fig. 7, still constitutes an efficient
low-T disorder configuration. The smaller is the correlation
radius a of the disorder, the wider is the energy interval
within which loose mirrors dominate the low-T tail of the
transmission distribution.

Lastly, we are not aware of any numerical work in which
the tail of P(ln T) was studied close to (but well above)
the band edge. Recent simulations are mostly focused
at the body of the distribution both in 1D [1,21] and in
2D [22,23], and are aimed at testing the scaling hypothesis.
With regard to the tail of the transmission distribution, the
related characteristics, namely, the density of anomalously
localized states, was studied numerically only in two [24]
and three [25–28] dimensions.

Figure 8. Illustration of the simplest building block of the
Berezinskii technique Ref. [3]. In course of moving along the
trajectories, I and II, an electron accumulates the same random
phase φ = 2kF(x2 + x3 − 2x1).
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