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Magnetotransport in a 2D system with strong scatterers: renormalization
of Hall coefficient caused by non-Markovian effects
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We show that a sharp dependence of the Hall coefficient R on the magnetic field B arises in two-dimensional
electron systems with strong scatterers. The phenomenon is due to classical memory effects. We calculate
analytically the dependence of R on B for the case of scattering by antidots (modeled by hard disks of
radius a), rendomly distributed with concentration n0 � 1/a2. We demonstrate that in very weak magnetic fields
(ωcτtr . n0a2) memory effects lead to a considerable renormalization of the Boltzmann value of the Hall coefficient:
δR/R∼ 1. With increasing magnetic field, the relative correction to R decreases, then changes sign, and saturates
at the value δR/R∼ −n0a2. We also discuss the effect of the smooth disorder on the dependence of R on B.
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The problem of magnetoresistance (MR) in metal and
semiconductor structures has been intensively discussed in
literature during the past three decades. A large number
of both theoretical and experimental papers on this subject
was published. Most of these works were devoted to the
case of the degenerate two dimensional electron gas where
electrons move in the plane perpendicular to the magnetic
field and scatter on a random impurity potential, so that only
electrons with energy close to the Fermi energy participate
in conductance. The simplest theoretical description of
such a situation is based on the Boltzmann equation which
yields the well-known expressions for the components of
the conductivity tensor:

σxx =
σ0

(1 + ω2
cτ

2
tr )
, σxy =

σ0(ωcτtr)
(1 + ω2

cτ
2

tr )
. (1)

Here σ0 = e2nτtr/m is the Drude conductivity at B = 0,
ωc = |e|B/mc is the cyclotron frequency, τtr is the transport
scattering time and n is the electron concentration. The
resistivity tensor, which can be obtained by inverting the
conductivity tensor, has even simpler form:

ρxx =
m

e2nτtr
, ρxy =

mωc

e2n
= −RB, (2)

where R = 1/enc< 0 is the Hall coefficient. Thus, in the
frame of the Boltzmann approach, ρxx and R do not depend
on magnetic field B. Experimental measurements of ρxx

and R are widely used to find τtr and n.
It is known, that Eqs. (2) may become invalid due to

a number of effects of both quantum and classical nature.
The most remarkable of them is the quantum Hall effect.
Another quantum effect, weak localization, leads to the
decrease of ρxx with B, concentrated in the region of
weak magnetic fields [1]. Besides, the dependence of ρxx

on B appears due to quantum effects related to electron–
electron interaction [2] (see also [3] for review). At the
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same time, both weak localization and electron–electron
interaction (in frame of standard Altshuler–Aronov theory)
do not result in any dependence of R on B (see [4]
and [2,4–6], respectively), though such a dependence arises
in the regime of strong localization [7].

The dependence of ρxx on B may also be caused by
classical memory effects (ME) which are neglected in the
Boltzmann approach. Such effects arise as a manifestation
of non-Markovian nature of electron dynamics in a static
random potential. Physically, a diffusive electron returning
to a certain region of space

”
remembers“ the random

potential landscape in this region, so its motion is not purely
chaotic as it is assumed in the Boltzmann picture. For
B = 0, non-Markovian corrections to kinetic coefficients
are usually small. In particular, in the case of hard-core
scatterers of radius a randomly distributed with concentra-
tion n0, ME-induced relative correction to the resistivity is
proportional to the gas parameter β0 = a/l = 2n0a2 � 1
(here l = vFτ , vF is the Fermi velocity and τ is the
mean free time). However, for B 6= 0 the role of ME
is dramatically increased due to a strong dependence of
the return probability on B. In particular, two years
prior to Ref. [1] there appeared a publication [8] where a
classical mechanism of strong negative magnetoresistance
was discussed. The mechanism was investigated by the
example of a gas of non-interacting electrons scattering on
hard disks (antidots). It was shown that with increasing
magnetic field there is an increasing number of closed
electron orbits which avoid scatterers and therefore are not
diffusive (see also recent discussions [9–11] of this mecha-
nism). Electrons occupying these orbits do not participate
in diffusion (so-called

”
circling electrons“). As a result, the

longitudinal resistance turns out to be proportional to the
factor 1−P, where P = exp(−2π/ωcτ ) is the probability of
the existence of the circular closed orbit Another classical
mechanism was presented in Ref. [12], where the MR due
to non-Markovian dynamics of electrons trapped in some
region of space was discussed.
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Notwithstanding these developments, the role of classical
effects in magnetotransport was underappreciated for a long
time. A new boost to the research in this direction was
given by Ref. [13], where it was shown that if electrons
move in a smooth disorder potential and in a sufficiently
strong magnetic fields a phenomenon called

”
classical loca-

lization“ occurs. This phenomenon leads to the exponential
suppression of the longitudinal resistance: most electrons
are trapped in localized equipotential trajectories and do not
participate in diffusion. This work was followed by a series
of works [14–21] discussing different aspects of classical
magnetotransport in 2D systems. It was shown [15] that
for lower magnetic fields near the onset of the classical
localization the magnetoresistance is positive, i. e. the
longitudinal resistance grows with increasing magnetic field.
In Refs. [16,17] the combination of smooth disorder and
strong scatterers (antidots) was considered. It was shown
that in this system under certain conditions there are several
regimes of the behavior of magnetoresistance depending
on the strength of the magnetic field: first the longitudinal
resistance decreases with growing field, then it saturates and
then begins to grow. The role of non-Markovian effects in
the cyclotron resonance was also discussed [18].

In Refs. [8–18] magnetoresistance was studied in a situa-
tion where the magnetic field is classically strong, that is
where the parameter β = ωcτ is large. Recently, the region
of classically small magnetic fields β � 1 was investigated
numerically [19,20] for the case of electrons scattering on
strong scatterers. It was shown [19] that memory effects due
to double scattering of an electron on the same disk lead to a
negative parabolic magnetoresistance (in the Ref. [8], where
these processes were not taken into account, exponentially
small MR was predicted). The numerical simulations [20]
discovered a low-field classical anomaly of the MR. The
anomaly was attributed to the memory effects specific for
backscattering events. The simulations were performed for
the 2D Lorenz gas which is a system of 2D electrons
scattering on hard disks randomly distributed in plane with
average concentration n. Magnetotransport in this system is
characterized by two dimensionless parameters: β = ωcτ ,
and the gas parameter β0. The anomaly was observed in
the case β � 1, β0 � 1. Both the numerical simulations
and the qualitative considerations [20] indicated that at
zero temperature the MR can be expressed in terms of
a dimensionless function f (z) via

δρxx

ρ
= −β0 f

(
β

β0

)
, (3)

where ρ is the resistivity for B = 0. The analytical theory
of the effect was developed in Ref. [21] where it was shown
that the function f (z) has the following asymptotics

f (z) =

{
0.32z2 for z→ 0

0.39 − 1.3/
√

z for z→∞,
(4)

and can be well approximated by linear function

f (z) ≈ 0.032(z − 0.04), (5)

in the interval 0.05 . z . 2.
In spite of large number of publications, devoted to the

study of the influence of the non-Markovian effects on
the ρxx, the dependence of R on B induced by such effects
was investigated (to the best of our knowledge) only in the
context of

”
circling electrons“ [8]. It was found that though

the existence of circling orbits leads to a strong dependence
of ρxx on B in the region of classically strong B (ωcτtr � 1),
the corresponding dependence of R on B is very weak in
the whole range of B [8].

In this paper, we propose another mechanism of depen-
dence of R on B. It does not rely upon the existence
of non-colliding electrons but, in contrast, assumes that
transport properties of colliding electrons are modified by
classical ME. The mechanism turns out to be especially
effective in the region of very weak fields, ωcτtr . β0.

We will study dependence of R on B in 2D degenerated
electron gas in a system of randomly located classical
scatterers modeled by impenetrable disks of radius a� λF,
where λF = ~/mvF is the Fermi wavelength. The simplest
realization of such a system is a quantum well with
random array of antidots. We restrict ourselves to the case
ωcτtr � 1. The electron dynamics is studied classically. The
role of quantum effects is briefly discussed at the end of the
paper.

We start with recalling that in the frame of the Boltzmann
approach, the collision with a single scatterer is described
by a differential scattering cross-section σ (θ) (see Fig. 1, a)
and the collisions with different scatterers are independent.
Inverting in time the process shown in Fig. 1, a we get a
process shown in Fig. 1, a′, corresponding to scattering by
the angle −θ. This implies an important property of a single
scattering — the symmetry with respect to replacement of θ
by −θ (reciprocity theorem): σ (θ) = σ (−θ) [22]. This
is the property which provides that R does not depend
on B. If, for any reason, scattering cross-section acquires
an asymmetric correction δσ (θ) 6= δσ (−θ), the expression
for ρxy becomes

ρxy =
m(ωc +�)

e2n
= −B(R + δR), (6)

where

� = −n0vF

∫
dθ δσ (θ) sin θ,

δR
R

=
�

ωc
. (7)

In particular, such an asymmetric correction arises due
to ME specific for processes of double scattering on
a scatterer after return to it (see Fig. 1, b, b′, c, c′).
Though such processes are beyond the Boltzmann picture,
they can be formally included into the kinetic equation
by a slight modification of the Boltzmann collision in-
tegral. Specifically, one can introduce a small change
of the scattering cross-section σ (θ)→ σ (θ) + δσ (θ) on
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Figure 1. Processes of single scattering by angle θ (a)
and −θ (a′) characterized by a scattering cross-section σ (θ)
(σ (θ) = σ (−θ) both for B = 0 and for B 6= 0), and processes of
scattering on complexes of scatterers (b, b′, c, c′) including double
scattering on the scatterer 1. Correction to the cross-section due to
multi-scattering processes remains symmetric for B = 0. Magnetic
field bends trajectories as shown in b, b′, c, c′ by dashed lines. As
a result, the symmetry with respect to inversion of θ is broken, so
that δσ (θ) 6= δσ (−θ) for B 6= 0.

the disk where double scattering takes place (disk 1 in
Fig. 1, b, b′, c, c′) [21,23]. For B = 0, cross-section remains
symmetric: δσ (θ) = δσ (−θ). However, for B 6= 0 the
time inversion symmetry is broken, so that the cross-
section becomes asymmetric: δσ (θ) 6= δσ (−θ). The point
is that the influence of the magnetic field is different
for the processes where closed return path is passed
counterclockwise (Fig. 1, b, c) and clockwise (Fig. 1, b′, c′).

The return after one scattering (see Fig. 1, c, c′) needs
special attention because the probability of such a process
very sharply depends on B due to

”
empty corridor effect“

(ECE) [20,21]. The mechanism of this phenomenon
proposed in Ref. [20] is linked to the memory effects arising
in backscattering events. It has a close relation to the well
known non-analyticity of the virial expansion of transport
coefficients [24–28] which we briefly recall. For B = 0 the
leading nonanalytic correction to resistivity, δρ, is due to
the processes of return to a scatterer after a single collision
on another scatterer (see Fig. 2, a). The relative correction,
δρ/ρ, is proportional to the corresponding backscattering
probability, given by the product of e−r /l d8dr/l (which
is the probability to reach scatterer 2 without collision
and scatter in the angle d8) and the probability p to

return without collisions from 2 to 1 (here l is the mean
free pass). Assuming p = exp(−r /l) and integrating over
intervals 0 < 8 < a/r , a < r < ∞, one obtains [24–28]

δρ/ρ ∼
∞∫

a

dr
l

a/r∫
0

d8 e−2r /l ∼ β0 ln(1/2β0). (8)

In Ref. [20] it was shown that the probability p is actually
larger than exp(−r /l). Indeed, the exponent exp(−r /l) can
be written as exp(−nS), where S = 2ar . It represents the
probability of the existence of an empty corridor (free of
the centers of the disk) of width 2a around the electron
trajectory from 2 to 1. However, the passage of a particle
from 1 to 2 ensures the absence of the disks centers in the
region of width 2a around this part of trajectory (from 1
to 2). This reduces the scattering probability on the way
back. The correct value of p can be estimated as

p(R, 8) = exp
[
−n(S− S0)

]
= exp

[
−r /l + nS0(r, 8)

]
, (9)

where
S0(r, 8) = 2ar − r 2|8|/2 (10)

is the area of the overlap of the two corridors (see Fig. 2, a).
For example, for 8 = 0, we have S0 = 2ar and p = 1,
which reflects the obvious fact that the particle cannot
scatter if it travels back along the same path. Taking into
account the effect of

”
empty corridor“, we get

δρ

ρ
∼
∞∫

a

dr
l

a/r∫
0

d8 e−(2r /l)+nS0 ≈ β0 ln

(
C

2β0

)
, (11)

where C is a constant of the order of unity. Thus, for B = 0
the

”
empty corridor“ effect simply changes the constant in

the argument of the logarithm.

Figure 2. a — backscattering process responsible for leading
nonanalytic contribution to the resistivity at B = 0. b — for B 6= 0,
the overlap area, SB , between two corridors is small at large B.
c — for 8 = 0, SB decreases with B. d — for 8 6= 0 and small B,
the values of SB−S0 for time reversed trajectories have opposite
signs.
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Figure 3. Backscattering process is parameterized by the
angles ϕ0, ϕ f . The magnetic field changes the backscattering
angle φ = φ0 + φ f + r /Rc . a: the solid (dashed) line represents
electron trajectory for B = 0 (B 6= 0). b–e — different processes
contributing to cross-section renormalization.

The key idea suggested in Ref. [20] was that for B 6= 0
the area of the overlap of the two corridors, SB, sharply
depends on B, resulting in the observed MR. Indeed, it is
seen from Fig. 2, b that for β & β0 SB → 0 resulting in
sharp negative MR

δρxx

ρ
∼
∞∫

0

dr
l

a/r∫
0

dφ e−2r /l (enSB − enS0). (12)

The following qualitative explanation of the observed linear
MR was presented in Ref. [20]. The value n(SB−S0)
was estimated for φ = 0 (see Fig. 2, c) to the first order
in B as −nr2/Rc = −r 3/2alRc, where Rc is the cyclotron
radius. Assuming that this estimate also works at φ 6= 0
and expanding enSB−enS0 to the first order in B, one gets
δρxx/ρ ∼ −l/Rc = −ωcτ .

In fact, the physical picture of the phenomenon is more
subtle. The contribution of any trajectory with φ 6= 0 is
cancelled to the first order in B by the contribution of
the time-reversed trajectory, since the values of SB−S0 are
opposite for these paths (see Fig. 2, d, e). The cancellation
does not occur only at very small φ ∼ β . The integration
in Eq. (12) over φ < β yields δρxx/ρ ∼ −β2/β0. Larger
values of φ also give a quadratic in β contribution to
the MR. This contribution is positive and comes from
the second order term in the expansion of enSb−enS0

in B. A more rigorous approach [21] demonstrated that
the contribution of small angles is dominant resulting in a
negative parabolic MR and that the parabolic MR crosses
over to linear at very small β ≈ 0.05β0, which explains why
the parabolic MR was not seen in numerical simulations [20]
(see Eqs. (4), (5)).

The calculation of R is quite analogous to the calculation
of ρxx presented in [21]. As was shown in this paper,

the correction to cross-section arises due to four scattering
processes (see Fig. 3). In the process (+,+) (Fig. 3, b)
an electron has two real scatterings on a disk placed at
point r. The process (−, −) (Fig. 3, c) does not correspond
to any real scattering at point r. It just allows us to calculate
correctly the probability for an electron to pass twice the
region of the size a around point r without scattering.
To interpret the process (+,−), note that in the Boltzmann
picture, which neglects correlations, electron can scatter
on a disk and later passes through the region occupied
by this disk without scattering (Fig. 3, d). The (+,−)
correction to the cross-section modifies the Boltzmann result
by substracting the contribution of such unphysical process.
Analogous consideration is valid for the process (−,+)
shown in Fig. 3, e. The rigorous method of calculation
δσ (θ) accounting for both four processes was developed
in Ref. [21]. The calculations yield

δσ (θ) =
1
4l

∞∫
a

dr
r

e−2r /l

2π∫
0

dϕ0

2π∫
0

dϕ f σ (ϕ0)σ (ϕ f )en0SB

×
[
δ(θ−ϕϕ0 ,ϕ f )+δ(θ−π)−δ(θ−ϕϕ0 ,0)−δ(θ − ϕ0,ϕ f )

]
.

(13)
Here ϕϕ0,ϕ f = (π + ϕ0 + ϕ f )(mod2π), σ (ϕ) = (a/2)
× | sin(ϕ/2)| is the single scattering cross-section,

SB =

r∫
0

dr ′(2a − |φr ′ − r ′2/Rc|)2
[
2a − |φr ′ − r ′2/Rc|

]
,

2[· · · ] is the Heaviside step function, φ = 8+ r /Rc, Rc is
the cyclotron radius and 8 ≈ (a/r )[cos(ϕ0/2) + cos(ϕ f /2)]
(see Fig. 1, c). Four terms [δ(θ − ϕϕ0,ϕ f ) + δ(θ − π)
− δ(θ − ϕϕ0,0)− δ(θ − ϕ0,ϕ f )] in Eq. (13) correspond to
four types of non-Markovian processes shown in Fig. 3.
Introducing dimensionless variables T = r /l , z = ωcτ /β0

and using Eq. (7), we get

δR
R

= g(z)

= −
∞∫

0

dT
T

e−2T

π∫
0

dα

π∫
0

dγ sin(α+γ) sin2 α sin2 γ
esz−es0

2z
.

(14)
Here

sz =

T∫
0

dt

(
1−

∣∣∣ζ t − zt2

2

∣∣∣)2(1−
∣∣∣ζ t − zt2

2

∣∣∣),
ζ = (cosα + cos γ)/2T + zT/2, s0 = sz→0. Function g(z)
calculated numerically with the use of Eq. (14) is plotted
in Fig. 4. For z� 1, g(z) ≈ 0.064 − 4z2. For z � 1,
g(z) decreases as 0.35/z3/2. It worth emphasizing that
δR/R∼ 1 for z . 1. This means that the correction is
not parametrically small in a gas parameter β0 which is
usually considered as expansion parameter for ME-induced
corrections.
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Figure 4. Magnetic field dependence of the relative correction to
the Hall coefficient caused by ECE.

Next we calculate δR for stronger fields, β0 � ωcτtr � 1.
At such fields empty corridor effect is suppressed and
returns after one scattering (Fig. 1, c, c′) and after a number
of scatterings (Fig. 1, b, b′) equally contribute to δR. In this
case, one can also introduce the effective scattering cross-
section [23] which turns out to be frequence-dependent and
for ω = 0 reads1

δσ (θ − θ′) = vF

∫ [
σ (θ − ϕ)− σ0δ(θ − ϕ)

]
G̃(0, ϕ − ϕ′)

×
[
σ (ϕ′ − θ′)− ϕ0δ(ϕ′ − θ′)

]
dϕdϕ′. (15)

Here σ0 = ∫ dϕσ (ϕ) is the total cross-section for single
scattering, G̃(0, ϕ − ϕ′) = G̃(r, ϕ, ϕ′)|r→0, G̃(r, ϕ, ϕ′) =
= G(r, ϕ, ϕ′)−Gball(r, ϕ, ϕ′), G(r, ϕ, ϕ′) is the Green
function of the stationary Boltzmann equation,

Gball(r, ϕ, ϕ′) =
exp(−θr /β)
vFr cos(θr /2)

δ(ϕ − ϕr + θr /2)

× δ(ϕ′ − ϕr − θr/2)

is the Green function of the Boltzmann equation without
in-scattering term, ϕr is the angle of vector r, and
θr = 2 arcsin(βr /2l). Substituting Eq. (15) into Eq. (7) and
using the property ∫ dϕdϕ0G(0, ϕ, ϕ′) sin(ϕ − ϕ′) = 0,2

we get after some algebra

δR
R

= −n0σ
2
tr

2π
� 1. (16)

where σtr = ∫ dθσ (θ)(1 − cos θ) = 8a/3. Hence, with
increasing B relative correction decreases according
to Eq. (14), then changes sign and saturates at small
negative values. It is noteworthy that, as follows from the

1 Eq. (15) is obtained by integration over time Eq. (13) of [23]
and extracting contribution of ballistic term. The latter one represents
propagation without collision and, evidently, can not give any contribution
to return processes.

2 To obtain this property we first integrate the Boltzmann equation
(in q-space) over ϕ which yields ∫ Gq(ϕ, ϕ′)iqvdϕ = 1. One can show
that integration over ϕ′ yields the same result ∫ Gq(ϕ, ϕ′)iqv′dϕ′ = 1.
Using these identities we get ∫ dϕdϕ′dqGq(ϕ, ϕ′) sin(ϕ − ϕ′) =
= ∫ dϕ dϕ′d q Gq (ϕ, ϕ′) [ sin (ϕ − ϕq) cos (ϕq − ϕ′) + cos (ϕ − ϕq)×
× sin(ϕq − ϕ′)] = 0.

above derivation, Eq. (16) is valid not only for the case of
impenetrable disks but also for any type of well-separated
scatterers.

Above we discussed an idealized system where only
strong scatterers are present. Let us now assume
(see [29–31]) that in addition to strong scatterers there
is a weak smooth random potential U(r) with the rms
amplitude U and the correlation length d (a� d� l). The
presence of such a potential does not influence the ECE pro-
vided that 3� l , where 3 ∼ d(EF/U)2/3 is the Lyapunov
length, characterizing the divergence of the electron trajec-
tories in the potential U(r). In the opposite limit, 3� l ,
one should restrict integration over r in Eq. (13) by 3.
In this case, relative correction to R decreases: δR/R∼ 3/l .
On the other hand, the field needed for suppression of the
ECE increases and can be found from the following estimate
ωcτtr ∼ β0(l/3)2 (at such a field two corridors correspon-
ding to passage 1→ 2 and 2→ 1 (see Fig. 2, a) between
disks 1 and 2 separated by a distance r ∼ 3 cease to over-
lap). One can also show, that at stronger fields the effect of
smooth disorder leads to appearing of a very weak parabolic
dependence of R on B: δR/R∼ −(ωcτ )2(d/l)2(U/EF)2.

Finally, we briefly discuss the role of quantum effects.
As was mentioned in Ref. [21], for λF > a2/l the corridor
effect is suppressed by diffraction on the disk’s edges. In
this case, the integration over r in Eq. (13) is limited by
3′ = a2/λF. Hence, δR/R∼ 3′/l < 1, and the field needed
for suppression of the ECE can be found from the following
estimate ωcτtr ∼ β0(l/3′)2.

To conclude, we have shown that the classical memory
effects might strongly renormalize Hall coefficient. The most
interesting phenomena arise due to empty corridor effect
which leads to a sharp field dependence of return probability
and, in turn, results in a sharp dependence of R on B. The
analytical calculation of dependence R(B) was presented
for 2D system with random array of antidots modeled by
hard-core spherical scatterers. It was demonstrated that
empty corridor effect leads to a very sharp dependence
of R on B concentrated in the region of very weak fields
(ωcτ . a/l). The total variation of R in this region of fields
is on the order of the Boltzmann value of R. At larger
fields, where a/l � ωcτtr � 1, the ME lead to a small field-
independent correction to R and (in a presence of smooth
disorder) to a very weak parabolic dependence.
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Russian Scientific School, and by programmes of the RAS.
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