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Residual resistance and Joule heat generation in bulk
samples and nanostructures
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The Joule heat generation under residual resistance conditions in bulk samples of metals and degenerate
semiconductors is discussed. We assume that the conductance of the system is determined by elastic scattering of
conduction electrons and consider Ohmic regime. We come to conclusion that the amount of Joule heat generated
in such a system is determined by the residual resistance provided the length of phase coherence of the electron
wave functions is smaller than the dimensions of the sample. For a quantum well this condition is imposed on its
lateral dimensions and does not concern its width. It is indicated that this is only a sufficient condition that can be
relaxed by further investigations.

PACS: 44.90.+c, 65.40.Gr, 73.23.Ad

The purpose of the present paper is to discuss the physics
of heat generation under residual resistance conditions in
bulk samples of metals and degenerate semiconductors. In
a way, this might be considered as the simplest example of
heat generation. This case is particularly instructive as one
can sometimes find in the physical literature statements that
only inelastic electron collisions can result in generation of
heat as the collisions with impurities conserve the electron
energy. We will describe a mechanism of the heat genera-
tion where the amount of heat is determined by the residual
resistance, i. e. by elastic electron−impurity collisions. We
will demonstrate that such a mechanism of heat generation
is effective provided it is accompanied by a sort of inelastic
electron scattering. Yet it is remarkable that this scattering
need not result in an energy transfer but rather in destruc-
tion of the phase coherence of electron wave functions over
some length Lϕ smaller than the sample dimensions.

The formulation of the problem is similar to that discussed
in Ref. [1]. Namely, we will consider an isolated physical
system consisting of a capacitor discharging through the
conductor in consideration. The current is assumed to be
almost stationary. In such a case the rate of heat generation
is given by (see Landau and Lifshitz [2], §13)

dQ

dt
= T

dŜ

dt
= T

∫
d3r

[
dS
dt

]
coll

, (1)

where T is the temperature (we set kB ≡ 1 and assume that
the Ohm’s law is valid, so the electron distribution is only
slightly shifted from equilibrium under the action of electric
field), Ŝ is the total entropy of the electron system, S is the
entropy density, and the integrand on the right-hand side of
Eq. (1) describes its variation due to collisions. In our case
these are collisions of the conduction electrons with defects
of crystal lattice, i. e. with impurities.

The scattering potential of randomly distributed impuri-
ties is

V(r) =
∑

n

V(r− rn), (2)

where rn is the position of the nth impurity.
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The electron scattering amplitude in the Born approxima-
tion is given by

〈p′|V ||p〉 =
∑

n

∫
d3rψ∗p′(r)ψp(r)V(r− rn)

=
1
�

∑
n

∫
d3rei qrV(r− rn) =

1
�

Vq

∑
n

ei qrn,

(3)
where � is the volume,

q = (p− p′)/~, Vq =
∫

V(r)ei qrd3r. (4)

The transition probability is proportional to

|〈p′|V ||p 〉|2 =
1
�2
|Vq|2

∑
n,n′

ei q(rn−rn′ )

=
1
�2
|Vq|2

[
N + 2

∑
n6=n′

cos q(rn − rn′)
]
. (5)

The first term in the square brackets is a result of summation
over n = n′. It gives the total number of scatterers N. The
second term is a sum of N(N− 1) random items that can
have either sign. For a fixed value of q it is of the same
order as the first term. This means that Eq. (5) cannot
be used directly for derivation of the Boltzmann equation
with a configuration averaged collision term. (There is
an interesting generalization of a transport equation where
the positions of scattering centres in the collision term are
fixed [3]. However, it cannot be used directly for calculation
of an entropy production).

Now we will assume that along with the impurity
scattering there is a phase relaxation with characteristic
length Lϕ (see papers [4–7]). The phase destruction of
electron wave function can be brought about for instance
by electron–phonon or electron–electron interaction. Then
instead of the product of four wave functions one should
introduce a two-particle density matrix

ρpp′(r, r′) = ψ∗p (r)ψ∗p′(r′)ψp(r′)ψp′(r) (6)
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and instead of Eq. (5) one gets

|〈p′|V ||p〉|2 =
∑
n,n′

∫
d3r

∫
d3r ′ψ∗p (r)ψ∗p′(r′)ψp(r′)ψp′(r)

×V(r− rn)V(r′ − rn′). (7)

As the correlation described by the density matrix relaxes
over the length Lϕ one can write

ψ∗p (r)ψ∗p′(r′)ψp(r′)ψp′(r) =
1
�

ei q(r−r′)e−|r−r′ |/Lϕ . (8)

The electron de Broglie wavelength is usually much smaller
than Lϕ, so that one has for characteristic values of q

q� L−1
ϕ . (9)

Now we will discuss the situation where the dimensions
of the specimen are bigger than Lϕ . As a result, we get
instead of Eq. (5)

|〈p′|V ||p〉|2 =
N

�2
[1 + O(L3

ϕ/�)], (10)

where the second term in the square brackets is of the order
of

L3
ϕ/�� 1, (11)

i. e. negligibly small. This inequality is sufficient to
get a standard (configuration averaged) electron−impurity
collision term of the Boltzmann equation.

As N is the total number of impurities, ni = N/� is
their concentration that appears in the collision term[

∂Fp

∂t

]
coll

= ni

∫
d3p′

(2π~)3
w(p′, p)(Fp′ − Fp). (12)

w(p, p′) is the specific probability of electron–impurity scat-
tering from state p′ into state p; in the Born approximation
it is symmetric in regard to p↔ p′ and equal to

w(p′, p) =
2π
~
|Vq|2δ(εp − εp′), (13)

where εp is the energy of the state p.
We will present the electron distribution function in the

form
Fp = F(0)(εp) + 1Fp, (14)

where

F (0) =
1

exp[(εp − µ)/T] + 1
(15)

is the equilibrium Fermi function that is symmetric in regard
of p→ −p while the second term is antisymmetric. The
linearized Boltzmann equation (for an arbitrary anisotropy
of the electron spectrum and interaction with impurities) is

I1F = −∂F(0) (εp)
∂εp

eEv, (16)

where E is the electric field, v = ∂εp/∂p, and I is the
linearized collision operator with the impurities; we assume
it to be of the order of 1/τe, τe being the characteristic time
of elastic collisions. The integral∫

dξpI1F

vanishes as the electron−impurity collisions conserve the
number of electrons. Here dξp ≡ d3p/(2π~)3, and the
factor 2 due to the spin summation is implied where
necessary. The integral over dξp of the function on the right-
hand side of Eq. (16) also vanishes as v is an odd function
of p while the other functions are even. This indicates that
Eq. (16) has a solution. Now, operator I is defined within
the class of functions whose average over any surface of
constant energy vanishes. The function on the right-hand
side of Eq. (16) belongs to such a class. This means that one
can introduce the inverse operator and write the solution of
Eq. (16) in the following symbolic form

1F = −∂F(0)(εp)
∂εp

eEI−1v

=
1
T

F (0)
(

1− F (0)
)

eEI−1v. (17)

Here I−1 is the inverse operator acting on the electron
velocity v.

One can write for the entropy production due to the
electron−impurity collisions (see for instance Ref. [1])

S = −[Fp ln Fp + (1− Fp) ln(1− Fp)], (18)

[
∂S
∂t

]
coll

=
∫

dξp ln
1− Fp

Fp

[
∂F
∂t

]
coll

. (19)

One gets for the heat release per unit volume

dQ
dt

= T

[
∂S
∂t

]
coll

= Tni

∫
dξp

∫
dξp′w(p′, p)(Fp − Fp′) ln

(1− Fp′)Fp

(1− Fp)Fp′
,

(20)
where Q = Q/�. One can see that expression (20) is
nonnegative. It vanishes if Fp is an arbitrary function of
electron energy, εp. Physically this means that collisions
of electrons with impurities relax the electron distribution
function within a constant energy surface.

Taking into account comparatively rare inelastic collisions
one can see that F (0) is a Fermi function of an electron
temperature Te = T + 1T . Here 1T is determined by a
small parameter proportional to E2τeτi where τi (τi � τe)
is the characteristic time of inelastic collisions. Its exact
value is immaterial for, as we will see, in the case of Fermi
degeneracy it does not enter the final result for the heat
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generation. Making use of Eq. (17) we get[
∂S
∂t

]
coll

= −
∫

dξp
1Fp

F (0)
p

(
1− F (0)

p

) I1Fp, (21)

or[
∂S
∂t

]
coll

= − 1

Te
2 Ei Ek

∫
dξpF (0)

p

(
1− F (0)

p

)
v i I
−1vk. (22)

Integration over dξp can be split into two independent
integrations in the following way∫

dξp · · · =
∫

dε
∫

dνε . . . (23)

where the first integration is over the energy while the
second one is over the surface of constant energy εp = ε

(and includes the factor 2(2π~)−3). The first integration is
easily carried out provided the electrons are degenerate. As
a result, we get

dQ

dt
= Te

[
∂Ŝ

∂t

]
coll

= �σikEi Ek, (24)

where

σik = −e2
∫

dξpδ(εp − ε)v i I
−1vk. (25)

It is instructive to consider this problem for nano-
structures, such as quantum wells. Then one has to take
into consideration electron scattering by the impurities that
are within or outside the quantum well. The spectrum
of electrons in a quantum well consists of a number of
minibands of spatial quantization. We assume that all the
occupied states and the scattering processes are within the
lowest miniband, so that the band index can be omitted.
The Boltzmann equation describing the impurity scattering
has the form[

∂Fp

∂t

]
coll

=
∫

dz
∫

d2p
(2π~)2

ni (z)w(p′, p; z)(Fp′ − Fp).

(26)
Here p is a two-component electron quasimomentum
parallel to the plane of quantum well, z indicates the
z-coordinate of impurity; the z-axis is perpendicular to the
plane of quantum well. The scattering probability depends
on z as a parameter. This means that for a quantum well
one should in general deal with several sorts of scatterers.
Further derivation goes along the same lines as above, so it
is needless to repeat it. The result is Eq. (24) for the heat
generation where σik is a 2D conductivity and volume �

should be replaced by the area of the quantum well.
In summary, we have come to the conclusion that the

amount of generated heat can be determined by elastic
collisions. This has a clear physical meaning. The amount of
order in the electron distribution resulting in electric current
can bring about mechanical work. For instance, one can let
the current flow through a coil and a magnetic rod can be

drawn into the coil. In such a way the electrons transferring
the current can execute a work on the rod. As a result of
scattering the amount of order in the electron distribution
diminishes and this means dissipation of mechanical energy
of the electron system into heat.

In the example considered in the present paper inelastic
collisions do not determine the generated heat. If the
electron contribution to the specific heat is predominant
over the lattice (Debye) contribution the energy will remain
within the electron system even for the case there is
some inelastic electron–phonon scattering. For the opposite
specific heat ratio, it may eventually go to the lattice. But
even in such a case, if the electron–impurity collisions are
predominant (i. e. are more efficient than the electron–
phonon ones) it is they that determine the heat generation.
Of course, the inelastic processes are necessary for the
electron system to reach full equilibrium as well as for the
dephasing. However, under our assumptions they do not
manifest essential explicit influence on the resistance and
heat generation.

In future it would be very useful to investigate in more
detail the conditions of applicability of the Boltzmann equa-
tion with electron–impurity collision term (12). I believe
that the condition (11) for applicability of this equation can
be relaxed. It would be interesting to find out the particulars
of such a relaxation.

It it a great honor for me to present a paper for
V.I. Perel’ memorial issue of this journal. V.I. Perel’ was
an outstanding scientist whose profound understanding of
physics, readiness to lend an ear for discussions with his
colleagues, his human kindness and willingness to give his
advice and help will be remembered for long.

The author is indebted to V.V. Afonin and V. I. Kozub
who read the manuscript of the paper and made a number
of valuable comments.

The author acknowledges support for this work by the
Russian National Foundation for Basic Research, grant
No 06-02-16384.

References

[1] V.L. Gurevich. Phys. Rev. B, 55, 4522 (1997).
[2] L.D. Landau, E.M. Lifshitz. Statistical Physics (Moscow,

Fizmatlit, 2001) pt 1.
[3] Yu.M. Galperin, V.I. Kozub. Europhys. Lett., 15, 631 (1991);

ZhETP, 100, 323 (1991).
[4] E. Abrahams, P.W. Anderson, T.V. Ramakrishnan. Phys. Rev.

Lett., 43, 718 (1979); E. Abrahams, P.W. Anderson, P.A. Lee,
and T.V. Ramakrishnan. Phys. Rev. B, 24, 6783 (1981).

[5] B.L. Altshuler, A.G. Aronov, D.E. Khmelnitskii, A.I. Larkin.
ZhETP, 81, 768 (1981).

[6] B.L. Altshuler, A.G. Aronov, D.E. Khmelnitskii. J. Phys. C:
Sol. St. Phys., 15, 7367 (1982).

[7] V.V. Afonin, Yu.M. Galperin, V.L. Gurevich. ZhETP, 88, 1504
(1985).

Редактор Л.В. Шаронова

Физика и техника полупроводников, 2008, том 42, вып. 8


