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Superfluid–insulator transition in dirty ultracold Fermi gas
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Superfluid–insulator transition in an ultracold Fermi gas in the external disorder potential of the amplitude V0 is
studied as a function of its concentration n and the magnetic field B in the presence of the Feshbach resonance. We
find the zero temperature phase diagrams in the plane (B, n) at a given V0 and in the plane (V0, n) at a given B.
We study the transition between cases of classical and quantum random potentials which can be implemented by
tuning intensity of speckles. Our results for Bose−Einstein condensation side of the diagram are also valid for a
Bose gas.

PACS: 71.10.-w

Using the Feshbach resonance in the magnetic field B one
can study lots of interesting physics in ultracold Fermi gases
(see the recent review article [1] and references therein). In
the vicinity of the Feshbach resonance B = B0 the scattering
length of two fermions typically changes as

a = a0
1B

B0 − B
, (1)

where we omitted the non-resonant term. As a result by the
decreasing magnetic field the Fermi gas can be transformed
from the phase of weakly attracting fermions (at B > B0)
to the phase of repelling each other compact composite
bosons, dimers made of two fermions with opposite spins
(at B < B0). In a clean Fermi gas all mentioned above
phases are superfluid. Far enough from the resonance
at B > B0 superfluidity is described by the Bardeen–
Cooper–Schrieffer (BCS) theory, while on the other side, at
B < B0, the theory of Bose–Einstein condensation (BEC)
of composite bosons works. Thus, reduction of magnetic
field B leads the gas through the BCS–BEC crossover.

The aim of this paper is to consider both sides of
BCS–BEC crossover in a

”
dirty“ Fermi gas, i. e. in the

gas situated in a three-dimensional (3D) random potential.
Such a random potential can be created, for example, by
superposing a 3D speckle pattern on the ultracold gas.
Obviously, a strong enough disorder can localize the Fermi
gas on BCS side and the BEC condensate on BEC side,
destroying superfluidity in both cases. For brevity, we call
the localized phase

”
insulator“ and the localization transition

”
superfluid–insulator“ (SI) transition. In this paper we are

talking about SI transition in uniform infinite gas but our
results can be applicable to experiments with traps.

Expansion of BEC condensate of ultracold Bose gases in
the disorder potential of one-dimensional speckles has been
recently studied experimentally [2–4]. It was found that the
disorder stops expansion at some distance. In this case,
however, a big role may be played by rare very high hills
of the random potential. Apparently several laboratories are
planning similar studies of SI transition in a potential created
by 3D speckles. One can expect that in this case the rare
high hills are less important and theory of SI transition in
infinite system is relevant.
¶ E-mail: shklovsk@physics.umn.edu

In a Fermi gas in a fixed external random potential the SI
transition can be driven by the decreasing concentration of
fermions n at a given magnetic field B, or by the decreasing
B at a given n. Therefore, one can think about the SI
phase diagram of a Fermi gas in the plane (B, n). In
this paper, we find the zero temperature SI border line
n(B) on such a phase diagram (see Fig. 1). Because B
and n can be independently controlled this diagram can be
verified experimentally. We characterize disorder by the
amplitude of the random potential energy V0 (mean square
deviation of random potential V(r ) from average value) and
the characteristic size of potential wells and hills R. In the
first part of this paper we assume that both V0 and R are so
large that if m is the mass of the fermion

V0 �
~2

mR2
. (2)

This means that we are dealing with a classical random
potential. We also assume that n(B) is so large that the
average number of atoms in well nR3 � 1. Below we
verify that near the SI border this inequality actually follows
from (2).

Let us first consider BCS phase corresponding to B > B0.
Here the criterion of superfluidity coincides with the
condition that the Fermi level of weakly interacting Fermi

Figure 1. The phase diagram of the SI transition. Magnetic field
B is plotted on the horizontal axis, while the fermion concentration
n is plotted on the vertical one. S stands for superfluid and I
for insulator. B0 is the Feshbach resonance point. Critical
concentrations nf and nb(B) are straight lines given by Eqs. (3)
and (10) respectively for the classical random potential, and by
Eqs. (18) and (19) for the quantum one.
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gas reaches the mobility edge in a given external potential.
Roughly speaking, this happens when the Fermi energy of
the gas EF = (~2/2m)(3π2n)2/3 becomes larger than the
amplitude V0 of the random potential. This condition leads
to the critical concentration of SI transition n = nf on the
side of free fermions (B > B0)

nf = C f R−3

(
V0

~2/mR2

)3/2

. (3)

Thus, the segment of the SI border at B > B0 is horizontal
as shown in Fig. 1. It is known that in a classical long range
potential the coefficient C f can be found using the idea that
in the classical potential (2) the mobility edge coincides
with the classical percolation level Vp [5,6]. This is the level
at which Fermi gas lakes formed in the random potential
wells merge to create the infinite cluster or the Fermi sea.
In a generic three-dimensional gaussian potential with the
distribution function

F(V) =
1

V0

√
2π

exp(−V2/2V2
0 ), (4)

this level corresponds to occupation of θc = 17% of the
space by lakes [6,7]. This gives

Vp = −0.96V0. (5)

Now we can find nf as the total concentration of fermions
in wells deeper than Vp. Inequality (2) lets us use Thomas–
Fermi (TF) approximation

nf =
1

3π2

Vp∫
−∞

[
2m(Vp−V)

~2

]3/2

F(V)dV. (6)

For a gaussian potential this leads to the coefficient in
Eq. (3)

C f =
2

3π5/2

Vp/V0∫
−∞

[Vp/V0 − x]3/2 exp(−x2/2)dx ≈ 0.008.

(7)
Let us switch to the less trivial BEC side of the diagram
which corresponds to B < B0. In this case, interaction of
dimers plays the crucial role. Following Ref. [1] we refer
to the scattering length of the two dimers as add. Then the
uniform gas of interacting dimers has the positive chemical
potential

µ(n) =
4π~2(n/2)add

2m
=
π~2nadd

m
. (8)

Here we took into account that the concentration of dimers
is n/2, while the dimer mass is 2m. If µ(n) is larger
than the amplitude of the random potential V0, the gas
of dimers can screen the random potential redistributing
a small fraction of its density from the hills of the random
potential to the wells. On the other hand, if µ(n)� V0

the gas is fragmented in many disconnected lakes. Thus,
the condition of delocalization of dimers and, therefore, the

condition of superfluidity in this case is roughly speaking
µ(n) = V0. Substituting the nontrivial result of Ref. [8]

add = 0.6a (9)

into Eq. (8) and using Eq. (1) we get for the SI border
concentration of fermions nb on the dimer side (B < B0)

nb(B) = CbR−3 R
a

V0

~2/mR2

= CbR−3 R
a0

V0

(~2/mR2)
B0 − B
1B

. (10)

In order to estimate the numerical coefficient Cb we
consider the percolation level 2Vp in the potential energy
of a dimer 2V(r ). The local concentration n(r )/2 of
dimers adjusts to external potential according to the Gross–
Pitaevskii equation (GPE)

µψ(r ) =
[
−~

2∇2

4m
+ 2V(r ) +

4π~2add

2m
|ψ(r )|2

]
ψ(r ), (11)

where µ is the condensate chemical potential, 2V(r )
is the potential acting on a dimer, and the condensate
wave function ψ(r ) is normalized to total number of
dimers, ∫ dr |ψ(r )|2 = N/2, where N is the total number
of fermions. Thus, |ψ(r )|2 has the meaning of the local
concentration of dimers n(r )/2. Let us show that near the
SI border one can use the TF approzimation and drop the
kinetic energy term of GPE. This can be done if the healing
length lh = [(n/2)add]−1/2 � R. Using the above estimate
for the critical concentration nb we get that for the classical
disorder potential (Eq. (2)) at the BEC side SI border

lh(nb)
R

=
(
~2/mR2

V0

)1/2

� 1. (12)

Thus, one can proceed in the TF approximation, where
at every point local concentration of the condensate n(r )
satisfies equation

π~2nadd

m
+ 2V(r ) = µ. (13)

The chemical potential µ is determined by normalization
of concentration of dimers n(r )/2 to the total number of
dimers N/2 and grows with increasing N. If µ < 2Vp

we get only disconnected Bose gas lakes. If µ > 2Vp the
merging lakes form the Bose sea or the infinite cluster. Thus,
similarly to the BCS side on the BES side the SI transition
also happens when µ = 2Vp. For a gaussian potential with
the help of Eq. (9) this gives for Cb in Eq. (10)

Cb =

√
2

0.6π3/2

Vp/V0∫
−∞

[Vp/V0 − x] exp(−x2/2)dx ≈ 0.01. (14)

For more realistic [9] distribution of the speckle potential
we do not know the percolation threshold, but on the basis
of approximate universality [6] of the θc we guess that Cb is
the same as for guassian potential within 20%.
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Thus, the SI border n(B) consists of the two straight lines
shown in Fig. 1. At B < B0 it follows the line with the
negative slope, Eq. (10), and at B > B0 the border line
is horizontal, Eq. (3). Eq. (10) is valid until nb(B)� nf .
At B = B0 − δB, where δB = 1B[V0/~2/ma2

0]1/2 � B0

Eq. (10) crosses over to Eq. (3). In the interval of
the width 2δB around B = B0 interaction is strong, i. e.
n(B)|a|3 ∼ kF |a| ∼ lh/|a| ∼ 1.

We can not calculate n(B) in this crossover interval. In
Fig. 1 instead of leaving the crossover interval blank we
connect the two asymptotic straight lines by an arbitrary
smooth monotonic crossover. In principle it is possible that
the real phase diagram is non-monotonic and has minimum
in the crossover range, similarly to the curves of Ref. [10].
It is, however, difficult to see physical grounds for such a
behavior in the presence of a strong disorder.

The fact that the critical concentration nb exceeds nf is
easy to understand. Indeed, at a given n dimers have much
smaller chemical potential than weakly interacting fermions.
Thus, dimers need a larger concentration n in order to get
delocalized. In the similar way one can understand the
growth of n(B) with the decreasing B at B < B0. The
farther from the resonance, the more ideal the Bose gas
of dimers is, the smaller is its chemical potential. Again,
to compensate for this trend n(B) should grow with the
decreasing B.

Above we assumed that the number of particles in a
well of the random potential is large, nR3 � 1, and used
the mean field approximation on the BEC side, ignoring
discreetness of particles. As we see from Fig. 1 the
minimum value of the border concentration n(B) is nf .
Therefore, inequality nf R3 � 1 guarantees that everywhere
on the border n(B)R3 � 1. Substituting Eq. (3) into
nf R3 � 1 we arrive at inequality (2). Thus, it is the single
condition of validity of the above theory of the SI border.

It is clear from the above discussion that the insulating
phase on the BEC side consists of disconnected lakes,
populated by dimers. One can use the term Bose glass [11]
for this phase, because it has no excitation gap.

Until now we assumed that the disorder is classical in the
sense of inequality (2). Let us now discuss what happens
for a quantum random potential, obeying the opposite
strong inequality

V0 �
~2

mR2
. (15)

In an experiment one can move from inequality (2) to
inequality (15) by scaling down the intensity of the light
beams creating speckles, while keeping the rest of the
speckle set up (including R) fixed. How will then the phase
diagram in (B, n) plane change?

Let us start this discussion from the BCS side of the
diagram (B > B0) and concentrate on the disorder induced
density of states (DOS) at small energies. For simplicity,
we assume that we are dealing with a gaussian potential
V(r ) which two point correlation function decays as 1/r 3 or
faster at r � R. According to inequality (15) the wells of
the size R do not have levels. In this case, the characteristic
energy of the low energy tail of DOS is determined by
wells of the size L� R, which are large enough to get

a level [6,12,13]. The typical depth of such wells V(L)
is much smaller than V0, namely V(L) = V0(R/L)3/2 � V0.
This happens due to the cancellation of the majority of
(L/R)3 contributions of wells and hills of the size R. In the
volume L the number of wells of the size R can typically
be larger or smaller by (L/R)3/2 than number of hills of this
size. This is why we arrive at typical fluctuation of average
potential V(L).

Using condition of the level existence V(L) = ~2/mL2, we
find the characteristic size of the well, which has a single
level

Lc = R

(
~2

mR2V0

)2

. (16)

Substituting Lc into V(L) we arrive at the characteristic
energy scale of the low energy tail [6,12,13]

Vt = CtV0

(
V0

~2/mR2

)3

. (17)

The energy which separates localized and delocalized states,
the mobility edge, is also of the order of Vt . For a quantum
random potential (Eq. (15)) Vt � V0 and the concentration
of fermions which can be localized in the tails or, in other
words, the critical concentration of SI transition, nf , is very
small, too

nf ∼ R3

(
V0

~2/mR2

)6

, V0 � ~2/mR2. (18)

Let us switch now to the BEC side of the phase diagram
(B < B0). In this case, the tails of DOS can accommodate
more dimers in the band of energies Vt because we can
condense many bosons at one level. Only if the chemical
potential of bosons given by Eq. (8) becomes larger than Vt

the states become delocalized. Thus, nb can be estimated
equating µ and Vt . Using Eqs. (8), (9) and Eq. (17) we get
for V0 � ~2/mR2

nb ∼ R−3 R
a

(
V0

~2/mR2

)4

∼ R−3 R
a0

(
V0

~2/mR2

)4 B0 − B
1B

.

(19)
This result can be also obtained from the condition [14]
that the SI transition happens at µτ /~ ∼ 1, where τ is the
relaxation time of a delocalized boson with the energy µ. In
terms of radius of the cloud at a given number of atoms it
was also obtained in Ref. [15].

In the language of GPE the estimates we arrived above
correspond to the solution, where all three terms in the right
side of Eq. (11) play comparable roles. In other words,
expectations of the kinetic energy term, of the random
potential term and of the repulsion energy are of the same
order of magnitude at SI border. Note, that at the same time
the amplitude V0 of the bare potential is much larger than
the other terms. Only the quantum mechanical averaging
makes the disorder potential energy V(Lc) equal to the other
terms. For a Fermi gas, the idea of such averaging is known,
for a long time [6,12,13]. For a weakly non-ideal Bose
gas idea of quantum mechanical

”
smoothing“ of disorder

potential was explored only recently [9,16]. However, SI
phase diagram of an infinite, uniform in average gas could
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Figure 2. Schematic phase diagram of SI transition for a Fermi
gas at B < B0 or for a weakly non-ideal Bose gas. The critical
concentration of SI transition nb is plotted against the disorder
amplitude V0. S stands for superfluid and I for the insulator.
The crossover between regimes of quantum and classical random
potentials takes place at V0 = ~2/mR2.

not be studied in Refs. [9,16] because they dealt with an
one-dimensional disorder potential.

The crossover between Eqs. (18) and (19) hap-
pens in the interval of the width 2δB = 1B(a0/R)
× [V0/(~2/mR2)]2 � B0 around B0. In this interval interac-
tion is strong, n|a|3 ∼ kF |a| ∼ lh/|a| ∼ Lc/|a| ∼ 1 and we
again have no theory.

Let us discuss applicability of the mean field theory
(GPE) for calculation of nb. GPE is applicable if at
n = nb the characteristic length Lc or if nbL3

c � 1. It is
clear that nb � nf . Multiplying this inequality by L3

c and
using Eqs. (16) and (19) we arrive at necessary inequality
nbL3

c � nf L3
c ∼ 1. Thus, the mean field theory is applicable

for calculation of nb. (Mean field approach fails and one
arrives at single-particle regime [9] only at n� nb.)

We see from Eqs. (18) and (19) that in the case of
a quantum random potential V0 � ~2/mR2 both critical
concentrations nf and nb decrease very rapidly with the
decreasing V0. As a result, while the whole phase diagram
in this case still looks like Fig. 1, the concentrations nf

and nb are dramatically smaller than for a classical random
potential.

In Fig. 2 we summarize our results for the BEC phase
again plotting the critical concentration of SI transition nb

as a function of the amplitude of the random potential V0

(or the intensity of the speckle-building light), while
scattering length a and the characteristic scale of disorder R
are fixed. The fourth order parabola in the beginning of
nb(V0) curve is given by Eq. (19). At V0 = ~2/mR2 this
parabola crosses over to Eq. (10). Our results obtained
for the BEC phase of dimers shown in Fig. 2 are clearly
applicable to a generic weakly non-ideal Bose gas with the
scattering amplitude a > 0.

Let us make some numerical estimates. We assume that
characteristic size of the trap is 4 · 104 nm and the charac-
teristic of the white spot in the speckle is R = 2103 nm.
Assuming that the average distance between atoms is
200 nm we arrive at 1000 atoms in one white spot. Thus,
macroscopic approach of this paper is valid. In this
conditions the trap size is of the order of 20R. It is know
from the percolation theory [6] that this guarantees that

fluctuations of percolation threshold are less than 5%, so
that our percolation approach is reasonable as well.

In conclusion I have studied the zero temperature phase
diagram of the superfluid–insulator phase transition for
a Fermi gas going through Feshbach resonance with the
changing magnetic field and for a Bose gas. I dealt with
uniform infinite gases, did not consider the role of the
inverse parabolic profile n(r ) in the trap, and did not study
dynamics of the BEC phase expansion when the trap is
eliminated. A likely scenario of this expansion (similar
to that of Refs. [14,17]) is as follows. If the maximum
concentration of the gas in the center of the trap nm < nb

there is no expansion. On the other hand, if nm > nb only
bosons from the central domain r < r 0 where n(r ) > nb

leave reducing original n(r ) to the flat n(r ) = nb at r < r 0.
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