Свойства барьерных контактов к InP с наноразмерными слоями TiB_x

© И.Н. Арсентьев[¶], А.В. Бобыль, И.С. Тарасов, Н.С. Болтовец^{+¶¶}, В.Н. Иванов⁺, А.Е. Беляев^{*}, А.Б. Камалов^{*}, Р.В. Конакова^{*¶¶¶}, Я.Я. Кудрик^{*}, О.С. Литвин^{*}, В.В. Миленин^{*}, Е.В. Руссу[≠]

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

⁺ Научно-исследовательский институт "Орион",

03057 Киев, Украина

* Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины,

03028 Киев, Украина

≠Институт прикладной физики Академии наук Молдовы,

МД-2028 Кишинев, Молдова

(Получена 23 октября 2007 г. Принята к печати 6 ноября 2007 г.)

Исследованы структурные и электрические свойства многослойных барьерных структур $Au-TiB_x -nn^+n^{++}$ -InP и $TiB_x -nn^+n^{++}$ -InP на стандартных ("жестких") и пористых ("мягких") подложках n^{++} -InP. Полупроводниковые слои были изготовлены методом газофазной эпитаксии, металлические — магнетронным распылением, а пористые подложки — электрохимическим травлением стандартного InP. Образцы на пористых подложках имеют преимущества по следующим параметрам: токи утечек обратной ветви вольт-амперной характеристики меньше в 10 раз; на порядок больше диапазон экспоненциального роста тока на прямой ветви; при изменении площади контакта в 100 раз изменение фактора идеальности и высоты барьера Шоттки соответственно в 3 и ~ 10 раз меньше; более стабильная структура слоев при отжигах до 800°С.

PACS: 73.30.+y, 73.40.Cg, 73.40.Kp

1. Введение

Фосфид индия является одним из перспективных полупроводниковых материалов для СВЧ приборов. Почти не уступая GaAs по ширине запрещенной зоны и подвижности носителей тока, InP обладает рядом преимуществ: бо́льшая величина дрейфовой скорости, бо́льшие отношения дрейфовых скоростей электронов в максимуме и минимуме полевой зависимости дрейфовой скорости, меньшие времена междолинного перехода, более высокое значение отрицательного дифференциального сопротивления, более низкий коэффициент ионизации электронов и др. [1].

Однако эти преимущества могут быть нивелированы низким качеством электрических контактов к InP. К настоящему времени выполнены многочисленные исследования по изучению процессов контактообразования и электрических характеристик структур M-InP (здесь М — металл) [1-5], и было установлено следующее. Параметры барьеров Шоттки М-InP зависят от физикохимических свойств контактирующих металлов, характеристик поверхности полупроводника и температурных режимов обработки. Эти факторы определяют интенсивность протекания межфазной диффузии и химических реакций, которые изменяют фазовый состав контактирующих материалов, размывают границу раздела и нарушают стехиометрию приконтактных областей полупроводника. Присутствие собственного окисла трансформирует межфазные взаимодействия в контактах, которые зависят от его площади и химического состава.

Влияние отмеченных негативных явлений особенно существенно в тонкослойных (50-200 Å) системах металлизации даже при незначительном повышении температуры. Отметим, что до настоящего времени отсутствуют эффективные технологии повышения термической устойчивости контактов М-InP даже для обычных толщин металлического покрытия, в которых в качестве буферных слоев, препятствующих выходу атомов полупроводника на поверхность металлического покрытия, например Au, и атомов металла (Au) сквозь барьерообразующий слой в полупроводник, используются поликристаллические пленки тугоплавких металлов. Однако долговременная работа прибора на основе фосфида индия с такими контактами при повышенной температуре оказывается ограниченной межзеренной диффузией (или массопереносом) компонентов металлического покрытия и полупроводника сквозь поликристаллический буферный слой.

Повысить термостойкость барьерных контактов к InP можно, если использовать в качестве барьерообразующих материалов термостабильные и химически инертные аморфные (или квазиаморфные) пленки на основе боридов и нитридов тугоплавких металлов. Например, опыт применения пленок TiB_x в качестве буферных слоев в металлизации кремниевых IMPATT-диодов показал, что надежность таких диодов на 1.5–2 порядка выше, чем аналогичных диодов с обычными омическими контактами [6].

Цель данной работы состоит в изучении термической устойчивости контактов M–InP, изготовленных с включением в структуру контактных слоев наноразмерных пленок TiB_x .

[¶] E-mail: arsentyev@mail.ioffe.ru

^{¶¶} E-mail: bms@i.kiev.ua

^{¶¶¶} E-mail:konakova@isp.kiev.ua

2. Методика эксперимента

Контактообразующие пленки TiB_x формировались магнетронным распылением либо на поверхности монокристаллических подложек n^{++} -InP, либо на поверхности эпитаксиальных nn^+ -слоев InP, выращенных на стандартных и пористых подложках n^{++} -InP, и имели толщину ~ 50 нм. Концентрация легирующей примеси в подложках n^{++} -InP составляла ~ 10^{18} см⁻³, в эпитаксиальных слоях n-типа проводимости толщиной 2–3 мкм не превышала $3.8 \cdot 10^{16}$ см⁻³, в буферных слоях n^+ -InP достигала ~ $5 \cdot 10^{17}$ см⁻³.

Формирование слоев TiB_x осуществлялось при токе разряда ~ 0.4 А и позволяло получать квазиаморфные пленки TiB_x [7]. Типичная электронограмма такой пленки приведена на рис. 1, *а*. Размеры упорядоченных участков в пленке не превышали 3 нм. Верхний слой металлического покрытия толщиной 100 нм создавался магнетронным распылением золота.

Рис. 1. Рентгенодифрактограмма контактов $\text{TiB}_x - n^{++}$ -InP: I — исходный образец; 2, 3 — после отжига при $T_a = 400$ (2) и 800°C (3). На вставке — электронограмма слоя TiB_x при токе разряда 0.4 А.

Рис. 2. ТЕМ-изображение пористой подложки InP.

Пористый фосфид индия получали электрохимическим травлением массивных кристаллов. Изображение пористой подложки InP, полученное методом просвечивающей электронной микроскопии (TEM), приведено на рис. 2.

Исследовались два типа образцов: диодные структуры и тестовые (со сплошным контактом площадью ~ 1 см²). Диодные структуры $TiB_x - n^{++}$ -InP и Au-TiB_x - nn^+n^{++} -InP диаметрами D = 20-200 мкм формировались с помощью фотолитографии. Начиная с диаметра 20 мкм в каждом следующем эксперименте Dувеличивался на 20 мкм, вплоть до диаметра 200 мкм. Тестовые структуры представляли собой стандартные подложки n^{++} -InP со сплошными слоями TiB_x или Au-TiB_x. Тестовые структуры и часть диодных структур $TiB_x - n^{++}$ -InP, изготовленных на стандартной подложке n^{++} -InP, подвергались быстрой термической обработке (БТО) в течение 60 с при температурах $T_a = 400$, 600 и 800°С.

Для изучения межфазных взаимодействий использовалась оже-электронная спектроскопия в сочетании с ионным травлением (ионы Ar^+ , энергия E = 1 кэВ), рентгеноструктурный анализ, атомно-силовая микроскопия (ACM). Исследование фазового состава кристаллов проводилось на рентгеновской установке ДРОН-3М (излучение Cu K_{α} , однокристальная схема с использованием фокусирующего монохроматора перед детектором).

Изучение вольт-амперных характеристик (ВАХ) контактов позволило определить их основные электрофизические параметры. ВАХ измерялись на барьерах Шоттки, сформированных на массивном InP и эпитаксиальных структурах nn^+n^{++} -InP, выращенных на стандартных ("жестких") и пористых ("мягких") подложках.

3. Экспериментальные результаты и обсуждение

На рис. 3,4 представлены данные послойного ожеанализа контактов TiB_x-n^{++} -InP и Au- TiB_x-n^{++} -InP до и после быстрых термических отжигов. Приведенные экспериментальные данные указывают на отсутствие значительного перемешивания компонентов на границах раздела фаз как в исходных, не прошедших БТО, образцах, так и после отжига при температурах до $T_a = 600^{\circ}$ C. Эти результаты подтверждаются рентгенодифрактограммами (рис. 1), полученными на образцах TiB_x-n^+ -InP до и после быстрых термических отжигов при 400 и 800°C. Анализ рентгенодифрактограммы показал наличие квазиаморфной пленки TiB_x на n^{++} -InP. Быстрая термическая обработка к изменению структуры пленки TiB_x не привела.

При температурах отжига $T_a > 600^{\circ}$ С процессы, протекающие в контактной структуре, указывают на усиление химических реакций между атомами контактообразующей пары. В этом случае отсутствует механизм ограничения межфазных взаимодействий, связанный с

Рис. 3. Распределение компонентов в контактах $TiB_x - n^{++}$ -InP до (*a*) и после БТО при $T_a = 400$ (*b*), 600 (*c*) и 800°С (*d*).

Рис. 4. Распределение компонентов в контактах Au–TiB_x – n^{++} -InP до (*a*) и после БТО при $T_a = 400$ (*b*), 600 (*c*) и 800°С (*d*).

поступлением атомов к месту реакции и формированием сплава. Усиление массопереноса в контактах после их отжига при $T = 800^{\circ}$ С обусловлено релаксацией внутренних механических напряжений в контактах, сопровождающейся растрескиванием контактной системы. Проведенные измерения параметров барьеров Шоттки

796

Рис. 5. АСМ-изображения фрагментов поверхности эпитаксиальных слоев InP: на пористой подложке с буфером (a), на стандартной подложке с буфером (b) и без буфера (c).

Таблица 1.	Параметры	барьеров	Шоттки	$TiB_x - n^+$	-+-InP	до	И
после БТО							

T_a , °C	φ_B, B	η	
	0.5	1.1	
400	0.5	1.2	
600	0.53	1.5	
800	ВАХ близки к омическим		

(высоты барьера φ_B и фактора идеальности η) подтверждают сделанные заключения (см. табл. 1).

Перейдем теперь к рассмотрению особенностей формирования и электрофизических свойств контактов, изготовленных на эпитаксиальных слоях InP.

В качестве подложек для эпитаксии пленок использовались как стандартные, так и пористые пластины InP *n*-типа проводимости, а эпитаксиальный слой либо выращивался неспосредственно на этих подложках, либо после этапа формирования буферного слоя, отделявшего эпитаксиальный слой от подложки [8].

Морфологические особенности эпитаксиальных слоев InP, использованных при изготовлении контактов, представлены на рис. 5. Как следует из этих данных, полученных с помощью ACM, эпитаксиальные слои, выращенные на пористых подложках, оказываются морфологически более однородными по сравнению со слоями на стандартных подложках. При этом размеры зерен на поверхности эпитаксиальных слоев уменьшаются в последовательности: стандартная (47.0 нм) → стандартная с буфером (42.2 нм) → пористая подложка с буфером (6.9 нм).

Отметим также, что эпитаксиальные пленки InP на пористых подложках с буферным слоем имели наименьший уровень упругих макродеформаций, однородно распределенных по пластине.

Как ожидалось, улучшение структурно-морфологических характеристик эпитаксиальных слоев приводит к лучшим параметрам контактов металл-полупроводник. На рис. 6, *а* представлены прямые ветви вольт-амперных характеристик контактов Au-TiB_x- $n(n^+)n^{++}$ -InP к эпитаксиальным слоям, выращенным на стандартных и пористых подложках. Наблюдаются существенные различия в токопереносе этих двух типов контактных структур в области малых прямых смещений, где играют существенную роль структурно-фазовые неоднородности контактов. Для контактов к структурам на пористых подложках токи утечки меньше более чем на порядок.

Аналогичные тенденции проявляются и в обратных ветвях ВАХ этих диодных структур. Типичные обратные ветви ВАХ диодов Шоттки, изготовленных на эпитаксиальных структурах с подложками InP трех типов (пористой с буфером и двух типов стандартных — с буфером и без буфера), приведены на рис. 6, b. Видно, что ВАХ этих диодов различаются уровнем утечки и напряжением пробоя диода Шоттки. Заметим, что,

Рис. 6. Прямые (*a*) и обратные (*b*) ветви ВАХ диодных структур с барьером Шоттки Au–TiB_x $-n(n^+)n^{++}$ -InP: 1 — стандартная подложка без буфера, 2 — стандартная подложка с буфером, 3 — пористая подложка с буфером.

согласно измерениям концентрации легирующей примеси N с помощью вольт-фарадных характеристик, уровень легирования эпитаксиальных слоев был практически одинаков для всех трех типов образцов и соответствовал $(3.6-3.8) \cdot 10^{16}$ см⁻³. Однако напряжение пробоя V_b в образцах, изготовленных на стандартных подложках, меньше, чем на пористых. При этом для диодов Шоттки на пористой подложке напряжение пробоя $V_b = 27$ В при концентрации легирующей примеси $N = 3.8 \cdot 10^{16}$ см⁻³ и соответствует рассчитанному по формуле [9]

$$V_b = 60 \, \left(rac{E_g}{1.1}
ight)^{1.5} \left(rac{N}{10^{16}}
ight)^{-0.75},$$

где $E_g = 1.26$ эВ — ширина запрещенной зоны InP при температуре T = 300 K [10].

В этом случае V_b практически не зависит от диаметра барьера Шоттки, что указывает на однородность эпитаксиальных слоев InP, выращенных на пористых подложках с буфером.

В табл. 2 суммированы результаты вычислений φ_B и η из прямых ветвей ВАХ, измеренных при комнатной температуре, в зависимости от диаметра диодов Шоттки Dна эпитаксиальных слоях, изготовленных в экспериментах с пористой и стандартной подложками InP, с буферным слоем в обоих случаях. Видно, что с увеличением диаметра барьера Шоттки в случае пористой подложки с буфером φ_B изменяется незначительно (при изменении диаметра на порядок от 20 до 200 мкм φ_B уменьшается всего на 0.02 В), в то время как в случае стандартной подложки с буфером φ_B уменьшается на 0.07 В.

Влияние БТО при $T_a = 400^{\circ}$ С (600°С) на параметры барьеров Шоттки, независимо от диаметра барьеров, оказалось аналогичным приведенному в табл. 1. При этом изменение φ_B в барьерах Шоттки, изготовленных с использованием пористых подложек, составляет ~ 0.01 В.

Таким образом, преимущество первой структуры (на пористой подложке InP), как уже отмечалось, обусловлено большей структурной и топографической однородностью эпитаксиальных слоев и минимальным содержанием концентраторов напряжений в них по сравнению

Таблица 2. Зависимости высоты барьеров Шоттки φ_B и фактора идеальности η от диаметра D барьеров

<i>D</i> , мкм	Пористая подложка InP с буфером		Стандартная подложка InP, с буфером		
	φ_B, B	η	φ_B, B	η	
20	0.54	1.08	0.54	1.09	
40	0.54	1.08	0.54	1.09	
60	0.54	1.09	0.50	1.18	
80	0.53	1.09	0.50	1.18	
100	0.54	1.09	0.49	1.20	
120	0.54	1.10	0.49	1.21	
140	0.52	1.10	0.49	1.22	
180	0.52	1.10	0.48	1.24	
200	0.52	1.10	0.47	1.27	

со структурами, выращенными на стандартных подложках, что и обусловливает однородное распределение тока по всей площади барьера Шоттки и отсутствие тока утечки на начальном участке ВАХ.

4. Заключение

798

Приведенные экспериментальные данные по исследованию структурных и морфологических особенностей эпитаксиальных InP, выращенных на стандартных и пористых подложках с буферным слоем, а также барьерных контактов к ним, изготовленных с использованием наноструктурных аморфных фаз внедрения TiB_x , свидетельствуют о реальной возможности формирования на их основе термостойких до 600°С высококачественных приборных структур с барьером Шоттки.

Список литературы

- A. Dargys, J. Kundrotas. *Handbook on physical properties of Ge, Si, GaAs and InP* (Vilnius, Science and Encyclopedia Publishera, 1994).
- [2] L.S. Brillson, C.F. Brucker, A.D. Katnani, N.G. Stoffel, G. Margaritondo. Appl. Phys. Lett., 38, 784 (1981).
- [3] K. Hattori, Y. Izumi. J. Appl. Phys., 53, 6946 (1982).
- [4] Е.Ф. Венгер, Р.В. Конакова, Г.С. Коротченков, В.В. Миленин, Э.В. Руссу, И.В. Прокопенко. Межфазные взаимодействия и механизмы деградации в структурах металл–InP и металл–GaAs. (Киев, Книжная типография научной книги, 1999).
- [5] D.A. Evans, T.P. Chen, T.H. Chusse, K. Horn, M. von der Emde, D.R.T. Zahn. Surf. Sci., 269/270, 979 (1992).
- [6] Н.С. Болтовец, В.Н. Иванов, А.Е. Беляев, Р.В. Конакова, Я.Я. Кудрик, В.В. Миленин, И.Н. Арсентьев, А.В. Бобыль, П.Н. Брунков, И.С. Тарасов, А.А. Тонких, В.П. Улин, В.М. Устинов, Г.Э. Цирлин. ФТП, 40, 753 (2006).
- [7] Н.С. Болтовец, В.Н. Иванов, Р.В. Конакова, Я.Я. Кудрик, О.С. Литвин, П.М. Литвин, В.В. Миленин. ФТП, 38, 769 (2004).
- [8] И.Н. Арсентьев, М.В. Байдакова, А.В. Бобыль, Л.С. Вавилова, С.Г. Конников, В.П. Улин, Н.С. Болтовец, Р.В. Конакова, В.В. Миленин, Д.И. Войциховский. Письма ЖТФ, 28 (17), 57 (2002).
- [9] C.W. Rao, C.R. Crowell. Sol. St. Electron., 23, 881 (1980).
- [10] П.И. Баранский, В.П. Клочков, И.В. Потыкевич. Полупроводникая электроника. Справочник (Киев, Наук. думка, 1975).

Редактор Л.В. Шаронова

Properties of barrier contacts with TiB_x nanosized layers to InP

I.N. Arsentyev, A.V. Bobyl, I.S. Tarasov, N.S. Boltovets⁺, V.N. Ivanov⁺, A.E. Belyaev^{*}, A.V. Kamalov^{*}, R.V. Konakova^{*}, Ya.Ya. Kudryk^{*}, O.S. Lytvyn^{*}, V.V. Milenin^{*}, E.V. Russu[≠]

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia ⁺ State Enterprise Research Institute "Orion", 03057 Kiev, Ukraine * V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kiev, Ukraine [≠] Applied Physics Institute, Academy of Sciences of Moldova, MD-2028 Kishinev, Moldova

Abstract Structural and electrical properties of multi-layer barrier structures Au–TiB_x– nn^+n^{++} -InP and TiB_x– nn^+n^{++} -InP on standard ("rigid") and porous ("soft") substrates n^{++} -InP were studied. Semiconductor layers were fabricated by vapor phase epitaxy, metallic layers — by magnetron sputtering, while porous substrates — by electrochemical etching. The samples on the porous substrates had following advantages: on the reverse current–voltage characteristic, the leakage current was less by a factor of 10; the range of the forward current exponential growth was more by a factor of 10; at 100-fold changing of the contact area, variations of ideality factor and barrier height were less by a factor of 3 and ~ 10 respectively; the structure of the layers was more stable under thermal treatments up to 800°C.