07

Динамика микротрещин и временные зависимости деформации поверхности гетерогенного тела (гранита) при ударе

© В.И. Веттегрень, В.С. Куксенко, И.П. Щербаков

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Victor.Vettegren@mail.ioffe.ru

(Поступила в Редакцию 19 декабря 2011 г.)

С разрешением 10 пѕ исследованы динамика вспышек фрактолюминесценции и временные зависимости деформации поверхности гранита с различными размерами зерен полевого шпата при ударе по образцам металлическим бойком. В спектрах фрактолюминесценции наблюдается полоса ~ 1.9 eV, наличие которой означает, что под влиянием механических напряжений связи Si–O–Si разрываются, и образуются свободные радикалы \equiv SiO[•]. Фрактолюминесценция имеет вид вспышек длительностью ~ 10 пѕ. Предполагается, что каждая из них соответствует рождению микротрещины. По интенсивности вспышек и скорости распространения упругих волн оценен линейный размер микротрещин — от ~ 8 до 30 μ m. Они рождаются преимущественно в во время пробега волны деформации через зерна полевого шпата. Удар вызывает появление собственных колебаний всего образца, а растрескивание зерен — собственных колебаний зерен.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 10-05-00256-а и 11-05-00320-а).

1. Введение

Методы акустической эмиссии (АЕ), позволяющей изучать волны деформации, образующиеся при разрушении, широко используются для исследования механизма разрушения твердых тел [1-5]. В последнее время к ним добавился метод фрактолюминесценции (FL) [6-14], позволяющий исследовать образование возбужденных свободных радикалов и ионов при разрыве химических связей. Так, в работе [14] описаны результаты исследований динамики FL и AE, возникающих при ударе бойком по образцу из гранита. В спектрах FL наблюдались полосы ~ 1.9 и 2.6 eV, наличие которых означает, что при ударе Si-O-Si связи разрываются и образуются свободные радикалы \equiv SiO[•] и центры Si:. FL имеет вид вспышек длительностью $\sim 10\,\text{ns.}$ Было сделано предположение, что каждая вспышка соответствует рождению микротрещины. По их интенсивности и скорости распространения упругих волн оценен средний размер микротрещин — от ~ 8 до $40\,\mu$ m.

Известно [15], что гранит содержит ~ 30 vol.% зерен кварца и 60–70 vol.% полевого шпата. Прочность зерен полевого шпата меньше, чем кварца, и при нагружении в них в первую очередь зарождаются микротрещины [16]. Линейные размеры зерен обычно варьируются от 2 mm 1 до нескольких миллиметров. Настоящая работа проведена с целью выяснить, как влияет размер зерен полевого шпата на динамику образования микротрещин.

2. Методика эксперимента

Образцы гранита имели вид кубов с полированными гранями. Два из них имели длину ребер 40 mm и один

90 mm. На рис. 1 показан фрагмент фотографии поверхности одного из исследованных образцов. На ней наблюдаются светлые и темные пятна неправильной формы. Светлые пятна соответствуют зернам кварца, а темные — полевого шпата. Для определения среднего размера зерен использована следующая методика. Поверхность образцов фотографировали, обрабатывали с использованием компьютера и определяли интенсивность отраженного света в различных сечениях поверхности образца. Для примера на рис. 2 показано как изменяется интенсивность отражения в произвольно выбранных сечениях поверхности двух образцов. Зависимости интенсивности от координаты в сечениях представляют собой набор минимумов различной ширины, соответствующих отражению от зерен полевого шпата. Размер зерна *D* в выбранном сечении оценивался по ширине на половине максимальной интенсивности полосы. Оказалось, что исследованные образцы можно

Рис. 1. Фрагмент поверхности одного из исследованных образцов гранита.

Рис. 2. Распределение интенсивности отражения от поверхностей двух образцов гранита с различной величиной зерен полевого шпата в двух случайно выбранных сечениях образца.

разделить на три группы. В первой размеры зерен изменялись от ~ 1 до ~ 3 mm, во второй — от ~ 2 до ~ 5 mm, в третьей — от ~ 5 до 8 mm (см. таблицу).

Конструкция установки, использованной для исследования FL и волн деформации при ударе, описана в [12]. Волны возбуждались ударом груза массой 100 g, падающего с высоты ~ 10 cm на стальной боек, расположенный на поверхности образца в его центре. Возникающее излучение при помощи фокона фокусировалось на поверхность катода фотоэлектронного умножителя PEM-136. Для измерения профиля и скорости v (она оказалась равной $\sim 1 \text{ km/s}$), волны деформации, образующейся в образце, на его поверхность на расстоянии 3 mm от места внедрения бойка устанавливали квадратную пластину из пьезокерамики CTS-19, длина ребер которой составляла 4 mm.

Размеры ребер образцов (измеренные L и вычисленные L_s по периоду их собственных колебаний), размеры зерен полевого шпата (измеренные D и вычисленные по периоду τ слабоинтенсивных колебаний D_m и ширине временно́го периода Δt интенсивного рождения микротрещин D_c)

L, cm	L _s , cm	D, mm	$\Delta t, \mu s$	$ au,\ \mu$ s	$D_m,$ mm	$D_c,$ mm
4 8 8	4 8 8	$ \begin{array}{r} 1-3 \\ 2-5 \\ 5-8 \end{array} $	10-30 20-50 50-80	10-30 30-60 50-80	$ \begin{array}{r} 1-3 \\ 2-5 \\ 5-8 \end{array} $	$ \begin{array}{r} 1-3 \\ 2-5 \\ 5-8 \end{array} $

Интенсивность FL недостаточна для того, чтобы получить ее спектр и выяснить природу центров излучения. Поэтому для регистрации спектров была использована установка для изучения люминесценции при трении о стальной валик (триболюминесценции), аналогичная описанной в [13]. Полученный спектр корректировали, учитывая спектральную чувствительность PEM-136.

Электрическое напряжение на выходе РЕМ и на пластине CTS-19 подавалось на входы аналогово-цифрового преобразователя ASK-3106 фирмы "АКТАКОМ" с полосой пропускания 100 MHz. Система запускалась в момент касания бойка грузом. Напряжение на выходе ASK через каждые 10 ns записывалось в память компьютера.

Динамика микротрещин после удара

Спектр FL одного из образцов гранита показан на рис. 3. Спектры других образцов имели такой же вид. Известно [16], что полосы в спектрах FL имеют форму кривой Гаусса. Поэтому было проведено разложение наблюдаемого спектра на составляющие, имеющие форму гауссовых кривых, и найдено, что он состоит из двух широких полос с максимумами при ~ 1.9 и 2.3 eV. Полосу 1.9 eV в спектрах трибо- и фрактолюминесценции кварца ранее наблюдали авторы [6–14]. Она была приписана возбужденным свободным радикалам \equiv SiO[•], которые появляются при разрывах связей Si–O–Si. Полоса ~ 2.3 eV наблюдалась в спектрах фотолюминесценции. Она была приписана ионам Mn²⁺ [17–20].

Известно [16], что трещины, образующиеся при разрушении, распространяются в основном по границам зерен кварца и пересекают зерна полевого шпата. Это означает, что свободные радикалы $\equiv \text{SiO}^{\bullet}$ образуются в основном при разрыве связей внутри зерен полевого шпата. Ионы Mn^{2+} возбуждаются, вероятно, за счет передачи им энергии от разорванных связей Si–O–Si [17–19].

Типичные временные зависимости FL для двух исследованных образцов гранита показаны на рис. 4. Они содержат несколько тысяч вспышек разной интенсивности. Вероятно, каждая вспышка соответствует рождению микротрещины, а ее интенсивность пропорциональна площади микротрещины. Действительно, после удара на поверхности гранита с помощью оптического микроскопа в поляризованном свете наблюдаются микротрещины (рис. 5).

Детальный анализ формы вспышек показал, что независимо от интенсивности она одинакова (рис. 6): за 10 ns интенсивность достигает максимального значения,

Рис. 3. Спектр FL гранита. (Пунктиром показаны полосы, при наложении которых образуется наблюдаемый спектр).

Рис. 4. Фрагменты временны́х зависимостей FL (1) и деформации поверхности (2) для двух образцов гранита с размерами зерен полевого шпата, от 1 до 3 (a) и от 5 до 8 mm (b).

а затем уменьшается экспоненциально от времени со средним временем затухания 30 пs. Постоянство этих значений обусловлено особенностями конструкции прибора, т.к. минимальное время отклика PEM-136 составляет 10 пs, а среднее время уменьшения сигнала от него после прекращения свечения (определяемое величиной паразитной емкости и сопротивлением нагрузки) — 30 пs. Таким образом, наша установка позволяет только зарегистрировать появление вспышек, но не обладает достаточным временным разрешением, чтобы определить действительную временную зависимость их интенсивности.

Интенсивность вспышки I пропорциональна числу разорванных связей и Si-O-Si и соответственно площади S трещин: $I \approx qS$, где q — коэффициент пропорциональности. Измерения показали, что в нашей установке средняя величина $I \approx 0.035$ V. Поскольку скорость волны упругой деформации $v \approx 1$ km/s, за ~ 10 ns трещины вырастают на $\sim 10 \,\mu$ m, а площадь их поверхности составляет $\sim 1 \cdot 10^2 \,\mu$ m. Отсюда $q \approx 3.5 \cdot 10^{-4} \,\text{V}/\mu\text{m}^2$ и линейный размер микротрещин можно оценить как $L(\mu\text{m}) \approx 53(I)^{1/2}$. Наибольшая величина амплитуды вспышек для образцов гранита составляет ~ 0.37 V, а наименьшая — ~ 0.022 V. Тогда можно оценить размер самых крупных и самых мелких трещин: ~ 30 и $8\,\mu m$ соответственно.

Обратимся вновь к временны́м зависимостям FL (рис. 4). Видно, что трещины образуются сериями — по 10^2 штук в каждой. Между собой серии разделены интервалами длительностью $50-100\,\mu$ s, внутри которых число трещин и их размеры в несколько раз меньше, чем внутри интервалов. Длительность серий Δt тем больше, чем больше размер зерна (см. таблицу). Вычислим расстояние D_c , которое пробегает волна деформации за Δt : $D_c \approx v \Delta t$. Оказалось, что $D_c \approx D$, т.е. размеру зерна. Это означает, что длительность серий задана временем пробега волны деформации через зерна полевого шпата.

Число микротрещин, образовавшихся после удара в граните с размерами зерен от 5 до 8 mm, составило ~ 200 штук на зерно, а их размер достигал $\sim 30\,\mu$ m. В граните с размерами зерен от 1 до 3 mm в таких

Рис. 5. Фрагмент фотографии поверхности зерна полевого шпата после удара. Темные полосы — микротрещины.

Рис. 6. "Одиночные" вспышки FL.

Рис. 7. Фрагменты временной зависимости деформации поверхности для образцов с размерами зерен от 1 до 3 (a) и от 5 до mm (b).

же условиях образовалось ~ 10 штук на зерно, а их размер не превысил $10\,\mu$ m. Таким образом, увеличение размеров зерен в $\sim 3-4$ раза привело к увеличению количества микротрещин на порядок, а их максимального размера в ~ 1.4 раза.

4. Временная зависимость деформации

Из рис. 4 и 7 видно, что на поверхности гранита с размерами зерен от 1 до 3 mm через ~ 71 μ s после удара формируются слабоинтенсивные колебания с периодом $\tau \approx 10-30 \,\mu$ s. Через ~ 160 μ s появляются мощные колебания, период которых (~ 100 μ s) остается неизменным вплоть до конца измерений.

На поверхности гранита со средним размером зерен от 5 до 8 mm (рис. 4) через $30-40\,\mu$ s после удара формируется мощная волна, бегущая от места удара к краям образца. Через ~ $72\,\mu$ s на ее фоне появляются слабоинтенсивные колебания с периодом τ от 50 до $80\,\mu$ s (рис. 7). Амплитуда мощной волны достигает максимального значения ~ $0.6\,V$ через $85\,\mu$ s, затем уменьшается, проходит через минимум при $125\,\mu$ s, увеличивается и вновь достигает максимальной величины при $165\,\mu$ s. Таким образом, ее период составляет ~ $140\,\mu$ s. Повидимому, эта волна представляет собой вынужденное колебание гранита, вызванное ударом по его поверхности. Начиная со $170\,\mu$ s, эта волна трансформируется в другую — с периодом $180\,\mu$ s, который в дальнейшем остается неизменным (рис. 5).

Таким образом, размер зерен гранита оказывает существенное влияние на формирование мощной вынужденной волны и период слабоинтенсивных колебаний. На поверхности образцов гранита с размером зерен от 5 до 8 mm сначала формируются мощные, а затем слабоинтенсивные колебания. На поверхности гранита с размером зерен от 1 до 3 mm, наоборот, сначала возникают слабоинтенсивные колебания, а затем мощные. Кроме того, период слабоинтенсивных колебаний оказался зависящим от размера зерна: чем меньше размер зерен, тем меньше величина периода (см. таблицу).

Выясним природу мощных колебаний с неизменным периодом. Известно, что длина волны λ собственных колебаний образца приблизительно в 2 раза больше его размера *L*. Умножая скорость пробега волн деформации на время полупериода, нашли размеры образцов L_s . Вычисленные значения совпали с измеренными (см. таблицу). Это означает, что установившиеся мощные колебания представляют собой собственные колебания образцов.

Точно так же, умножая скорость пробега волны деформации на время полупериода слабоинтенсивных колебаний, находим значения D_m , которые совпали с измеренными размерами зерен (см. таблицу). Это позволяет приписать слабоинтенсивные колебания собственным колебаниям зерен полевого шпата в граните.

Наконец, оказалось, что собственные колебания зерен возникают одновременно с появлением микротрещин (рис. 4). По-видимому, они вызываются растрескиванием зерен полевого шпата.

5. Заключение

Удар стальным бойком по поверхности гранита приводит к появлению волн деформации и вспышек FL, которая вызвана релаксацией энергии в возбужденных радикалах \equiv SiO[•], образующихся после разрыва связей Si-O-Si. Предполагается, что разорванные связи располагаются главным образом на берегах микротрещин. Это позволило оценить линейные размеры микротрещин (от ~ 8 до 30 μ m). Микротрещины образуются во время пробега волны деформации через зерно. Удар вызывает появление собственных колебаний всего образца, а растрескивание зерен полевого шпата — их собственных колебаний зерен.

Список литературы

- [1] V.S. Kuksenko, V.S. Ryskin, V.I. Betechtin, A.I. Slutsker. Intern. J. Fracture Mech. 11, 829 (1975).
- [2] Н.Г. Томилин, Е.Е. Дамаскинская, В.С. Куксенко. ФТТ 36, 3101 (1994).
- [3] В.И. Веттегрень, В.С. Куксенко, Н.Г. Томилин, М.А. Крючков. ФТТ 46, 1793 (2004).
- [4] В.Р. Регель, А.И. Слуцкер, Э.Е. Томашевский. Кинетическая природа прочности твердых тел. Наука, М. (1974) 560 с.
- [5] В.А. Петров, А.Я. Башкарев, В.И. Веттегрень. Физические основы прогнозирования долговечности конструкционных материалов. Политехника, СПб (1993) 475 с.
- [6] G.N. Chapman, A.J. Walton. J. Appl. Phys. 54, 5961 (1983).
- [7] А.Н. Стрелецкий, А.Б. Пакович, И.Ю. Бутягин. Известия АН СССР. Сер. хим. 50, 477 (1986).
- [8] Y. Kawaguchi. Phys. Rev. B 52, 9224 (1995).

- [9] Y. Kawaguchi. Phys. Rev. B 54, 9721 (1996).
- [10] Y. Kawaguchi. Jpn. J. Appl. Phys. 37, 1892 (1998).
- [11] А.Т. Тохметов, В.И. Веттегрень. ФТТ 32, 33 (1990).
- [12] В.И. Веттегрень, А.Я. Башкарев, Р.И. Мамалимов, И.П. Щербаков. ФТТ **50**, 29 (2008).
- [13] В.И. Веттегрень, В.С. Куксенко, И.П. Щербаков. ЖТФ 81, 4, 148 (2011).
- [14] В.И. Веттегрень, В.С. Куксенко, Р.И. Мамалимов, И.П. Щербаков. Физика Земли. 4, 1 (2012).
- [15] www.mining-enc.ru/g/granit/.
- [16] N.J. Turro. Modern molecular photochemistry. University science book, N.Y. (1991). 628 p.
- [17] Y. Kudo, O. Sano, N. Murashige, Y. Mizuta, K. Nakagawa. Pageoph. 138, 641 (1992).
- [18] В.И. Корепанов, В.М. Лисицин, В.И. Олешко, Е.Ф. Полисадова, С.С. Вильчинская. ЖПС **73**, 339 (2006).
- [19] S.E. Sommer. Chem. Geology 9, 275 (1972).
- [20] R.F. Sippel, A.B. Spencer. Science 167, 3918, 677 (1970).