Малошумящие фотодиоды на основе двойной гетероструктуры GaSb/GaInAsSb/AIGaAsSb для спектрального диапазона 1–4.8 мкм

© Б.Е. Журтанов, Н.Д. Ильинская, А.Н. Именков[¶], М.П. Михайлова, К.В. Калинина, М.А. Сиповская, Н.Д. Стоянов, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 17 сентября 2007 г. Принята к печати 26 сентября 2007 г.)

Исследованы фотодиодные гетероструктуры *n*-GaSb/*n*-GaInAsSb/*p*-AlGaAsSb с красной границей фоточувствительности 4.8 мкм. Показано, что большое содержание In в узкозонном слое и Al в широкозонном слое приводит к улучшению фотоэлектрических параметров за счет устранения туннельной утечки перехода *n*-GaInAsSb/*p*-AlGaAsSb. Получена обнаружительная способность $D_{\lambda}^* = 1.1 \cdot 10^9 \text{ см}\Gamma \text{q}^{1/2}\text{B}\text{T}^{-1}$ при комнатной температуре.

PACS: 85.60.Dw, 79.60.Jv

1. Введение

Фотодиоды с широким спектром фоточувствительности, перекрывающие область поглощения света природными и промышленными газами, представляют все больший интерес [1]. Ранее нами сообщалось о создании фотодиодов на основе двойной гетероструктуры *n*-GaSb/*n*-GaInAsSb/*p*-AlGaAsSb, перекрывающих спектральную область 1-4.8 мкм, не уступающих по своим параметрам структурам на основе гомо-*n*-*p*-перехода в GaInAsSb [2].

В настоящей работе мы сообщаем об улучшении параметров фотодиодов на основе двойной гетероструктуры с более высоким содержанием In в узкозонном слое *n*-GaInAsSb и Al в широкозонном слое *p*-AlGaAsSb.

Методика создания и исследования фотодиодов

Фотодиодные структуры (рис. 1) создавались методом жидкофазной эпитаксии на подложке *n*-GaSb (100), легированной Те до концентрации электронов $4 \cdot 10^{17}$ см⁻³. Последовательно выращивались нелегированные слои: узкозонный *n*-Ga_{0.04}In_{0.96}As_{0.87}Sb_{0.13} и широкозонный *p*-Al_{0.64}Ga_{0.36}As_{0.05}Sb_{0.95} с толщинами соответственно 2 и 1.5 мкм (рис. 1, *a*). Ширина запрещенной зоны узкозонного слоя составляла ≈ 0.26 эВ, а широкозонного слоя ≈ 1.3 эВ.

В фотодиоде на основе двойной гетероструктуры излучение проходит через широкозонный слой (оптическое "окно") AlGaAsSb и генерирует электроннодырочные пары в узкозонном слое GaInAsSb (рис. 1, b). N-p-переход на границе узкозонного и широкозонного слоев служит для разделения электронно-дырочных пар. Изотипный n-n-переход на границе подложки и узкозонного слоя предназначен в качестве контакта к узкозонному слою. Излучение, прошедшее в подложку, может отражаться от задней стороны структуры и, возвращаясь в узкозонный слой, генерировать в нем дополнительные электронно-дырочные пары.

Из выращенных структур изготавливались фотодиоды с площадью n-p-перехода 0.2 мм^2 и кольцевым оптическим контактом площадью 0.1 мм^2 методом фотолитографии. Мезы фотодиода монтировались подложечной стороной на кристаллодержателях TO-18 с плоским столиком. Антиотражающее покрытие не использовалось во избежание искажений спектра фоточувствительности. Омический контакт на подложечной стороне был сплошным, отражающим излучение, падающее на него со стороны кристалла [3].

В работе исследовались вольт-амперные характеристики, спектры фототока короткого замыкания и спектры излучения при температуре фотодиода 300 К.

3. Результаты эксперимента и их анализ

3.1. Спектры фототока

Исследованные двойные гетероструктуры n-GaSb/ n-Ga_{0.04}In_{0.96}As_{0.87}Sb_{0.13}/p-Al_{0.64}Ga_{0.36}As_{0.05}Sb_{0.95} обладают чувствительностью в диапазоне длин волн 1–5 мкм (рис. 2, кривая I). В интервале длин волн 1.8–5 мкм

Рис. 1. *а* — схема расположения слоев малошумящего фотодиода на основе GaInAsSb, *b* — энергетическая диаграмма фотодиода.

[¶] E-mail: Imenkov@iropt1.ioffe.ru

Рис. 2. Спектры квантовой фоточувствительности (1) и электролюминесценции (2) малошумящих фотодиодов на основе GaInAsSb.

фоточувствительность обусловлена генерацией электронно-дырочных пар в узкозонном слое *n*-GaInAsSb. В интервале длин волн 1-1.8 мкм вклад в фототок дает также генерация электронно-дырочных пар в *n*-GaSb, куда фотоны частично проникают через узкозонный слой. Фотоны с длиной волны меньше 1 мкм поглощаются в широкозонном приповерхностном слое *p*-AlGaAsSb и практически не дают вклада в фототок. В интервале длин волн 1.8-5 мкм спектр квантовой фоточувствительности достаточно плоский, как должно быть при наличии зеркального отражения излучения от задней стороны подложки [3]. При диффузном отражении спектр был бы еще более плоским. Квантовая фоточувствительность в интервале длин волн 1.8-4.5 мкм составляет, по оценкам, 15-20%, а в интервале длин волн 1-2 мкм достигает 30%, что все же в 2 раза меньше, чем в фотодиодах аналогичной конструкции, созданных для спектрального диапазона 1-2.5 мкм [3]. Одной из причин снижения квантовой фоточувствительности может быть ударная рекомбинация неосновных носителей заряда, скорость которой пропорциональна квадрату концентрации основных носителей заряда. Концентрация основных носителей заряда — электронов — определялась нами из спектров электролюминесценции.

3.2. Спектры электролюминесценции

Спектры излучения исследуемых структур (рис. 2, кривая 2) были однополосными с энергией фотона в максимуме $hv_m = 0.282$ эВ и шириной $\delta = 68$ мэВ. Форма спектра излучения соответствует межзонной рекомбинации дырок, инжектированных из широкозонного "окна" в узкозонный слой, и позволяет вычислить ширину запрещенной зоны этого слоя E_g и концентрацию в нем электронов. Величина E_g вычислялась по полученным

Физика и техника полупроводников, 2008, том 42, вып. 4

нами полуимперическим формулам:

$$E_g = hv_{\rm m} - rac{kT}{2}$$

- $(\delta - 1.5kT)^2 rac{0.3}{kT}$ при $\delta < 2.65kT,$ (1)

$$E_g = h v_{\rm m} - \delta + 1.75 kT$$
 при $\delta > 2.65 kT.$ (2)

Глубина залегания уровня Ферми в зоне проводимости ξ_n в единицах kT может быть определена из соотношения

$$\xi_n = x_m + \ln\left(2x_m \frac{u_g + x_m}{u_g + 5x_m} - 1\right),$$
 (3)

где $x_{\rm m} = (hv_{\rm m} - E_g)/kT$, $u_g = E_g/kT$.

Зная ξ_n , можно вычислить концентрацию электронов в узкозонном слое:

$$N = N_c e^{\xi_n}$$
 при $\xi_n < -1,$ (4)

$$N = N_c \frac{1}{0.25 + e^{-\xi_n}} \quad \text{при} \quad -1 < \xi_n < 5, \qquad (5)$$

где N_c — эффективная плотность состояний в зоне проводимости

$$N_c = 2.5 \cdot 10^{19} \left(\frac{kT}{0.026} \frac{m_n}{m_0} \right)^{1.5},\tag{6}$$

 $m_n/m_0 = 0.023$ [4] – отношение эффективной массы электрона в зоне проводимости к массе свободного электрона.

Из спектров электролюминесценции с использованием формул (1)–(6) определены следующие значения параметров узкозонного слоя: $E_g = 0.26$ эВ, $\xi_n = -0.54$, $N_c = 8.7 \cdot 10^{16}$ см⁻³ и $N = 4.45 \cdot 10^{16}$ см⁻³. Таким образом, было получено, что в узкозонном слое концентрация доноров в 5 раз меньше, чем в работе [2], что обеспечило увеличение квантовой фоточувствительности почти во столько же раз, благодаря уменьшению скорости ударной рекомбинации, о чем речь пойдет далее.

3.3. Вольт-амперные характеристики

Были измерены вольт-амперные характеристики диодной структуры при T = 300 К. Наблюдалось увеличение тока с ростом напряжения сверхлинейно как в прямом, так и в обратном направлении (рис. 3, кривая 1). В обратной ветви вольт-амперной характеристики не наблюдалось тока насыщения. Поэтому была сделана попытка выделить туннельную составляющую n-p-перехода при обратных напряжениях.

Предполагалось, что инжекционный ток I определяется падением напряжения на n-p-переходе V_{np} и на n-nпереходе V_{nn} :

$$I = I_{p0}e^{\frac{qV_{np}}{kT}} - I_{p0} = I_{n0}e^{\frac{qV_{np}}{kT\beta}} - I_{n0}e^{\frac{qV_{np}}{kT}(\frac{1}{\beta}-1)}, \quad (7)$$

где I_{p0} и I_{n0} — токи насыщения n-p- и n-n-переходов соответственно, β — коэффициент неидеальности.

Рис. 3. Вольт-амперная характеристика малошумящего длинноволнового фотодиода на основе GaInAsSb (1) и зависимость туннельного тока n-p-перехода (2) от всего напряжения на фотодиоде.

Рис. 4. Зависимость дифференциального сопротивления фотодиода $\frac{dV}{dI}$ от величины обратной сумме токов $I + I_1$.

Для расчета использовалась только прямая ветвь вольт-амперной характеристики.

Ток *I* создает еще и падение напряжения V_s на последовательном омическом сопротивлении R_s . Все напряжения суммируются, давая напряжение на диоде *V*. R_s определялось известным способом (рис. 4): экстраполяцией зависимости $\frac{dV}{dI}$ от $\frac{1}{1+I_1}$ к $\frac{1}{1+I_1} = 0$. Ток I_1 подбирался так, чтобы эта зависимость была прямолинейной при малых $\frac{1}{1+I_1}$. Ток I_1 отождествлялся с током насыщения n-p-перехода I_{p0} , поскольку второе слагаемое в формуле (7) для n-p-перехода сохраняется при стремлении тока к бесконечности, а для n-n-перехода стремится к нулю. По наклону этой зависимости определялся параметр β :

$$\beta = \frac{q}{kT} \frac{d \frac{dV}{dI}}{d \frac{1}{I+I_1}} - 1.$$
(8)

Из величины *I*_{*p*0} вычислялось дифференциальное сопротивление *n*-*p*-перехода в нуле напряжений:

$$R_{p0} = kTq^{-1}I_{p0}^{-1}. (9)$$

Дифференциальное сопротивление n-n-перехода в нуле напряжений R_{n0} вычислялось вычитанием R_s и R_{p0} из дифференциального сопротивления всего фотодиода в нуле напряжений R_0 .

Таким образом, из вольт-амперной характеристики, представленной на рис. 3, были оценены следующие параметры: $R_0 = 33.3$ Ом, $R_{p0} = 15.3$ Ом, $R_{n0} = 14$ Ом, $R_s = 4$ Ом, $I_{p0} = 1.7$ мА, $I_{n0} = 1.9$ мА, $\beta = 1.43$. Это позволило определить инжекционную составляющую тока n-p-перехода и вычитанием ее из полного тока найти туннельный ток. Туннельный ток (рис. 3, кривая 2) наблюдается только при обратных напряжениях, превышающих 10 мВ. В нуле напряжений туннельный ток отсутствует и не генерирует соответствующий шумовой ток в отличие от структуры, исследованной в работе [2], где исследовались структуры с содержанием Al в оптическом "окне" 34%, а не 64%, как в настоящей работе.

3.4. Обнаружительная способность

Наибольшая фоточувствительность была получена при энергии фотона hv = 0.3 эВ:

$$R_{\lambda} = \frac{\eta}{h\nu} = 0.56 \,\mathrm{A} \cdot \mathrm{Br}^{-1}. \tag{10}$$

Абсолютная величина квантовой фоточувствительности при этом составляет $\eta = 0.17$ электрон/фот. Расчетное значение темнового шума $\langle i_n \rangle$ в исследуемой структуре можно оценить как

$$\langle i_n \rangle = (4kT\Delta f/R_0)^{0.5} = 2.2 \cdot 10^{-11} \,\mathrm{A} \cdot \Gamma \mathfrak{u}^{-0.5}, \qquad (11)$$

что в 2.6 раз меньше, чем в [2].

При этом пороговая чувствительность или шумовой эквивалент мощности

$$NEP = \langle i_n \rangle / R_{\lambda} = 3.9 \cdot 10^{-11} \,BT \cdot \Gamma \mu^{-0.5}, \qquad (12)$$

что на порядок меньше, чем в [2].

Плотность темнового тока J_0 , от величины которого зависит обнаружительная способность, определяется полным дифференциальным сопротивлением фотодиода

Физика и техника полупроводников, 2008, том 42, вып. 4

в нуле напряжений $R_0 = 33.3$ Ом и площадью n-p-перехода $S = 2 \cdot 10^{-3}$ см²:

$$J_0 = \frac{kT}{qR_0S} = 0.39 \,\mathrm{A} \cdot \mathrm{cm}^{-2}.$$
 (13)

При этом обнаружительная способность D_{λ}^{*} в максимуме чувствительности R_{λ} составила при T = 300 К

$$D_{\lambda}^{*} = R_{\lambda} (4qJ_{0}\Delta f)^{-0.5} = 1.1 \cdot 10^{9} \,\mathrm{cm} \cdot \Gamma \mathrm{u}^{0.5} \cdot \mathrm{Br}^{-1}, \quad (14)$$

что в \sim 6 раз больше, чем в нашей предыдущей работе [2]. Обнаружительная способность ценна для сравнения различных фотоприемников, потому что не зависит от площади фотоприемника.

3.5. Роль ударной генерации

Для сравнения результатов эксперимента с теорией определим скорость генерации неосновных носителей заряда (дырок), обусловленную двумя основными процессами: излучательным и безызлучательным. Излучательная генерация дырок происходит при межзонном поглощении фотонов с энергией $h\nu > E_g$. Ударная генерация в полупроводнике *n*-типа происходит при переходе электрона из валентной зоны в зону проводимости с использованием энергии и импульса другого электрона, понижающего свою энергию в зоне проводимости (так называемый СНСС процесс). Для расчета мы использовали модифицированные формулы нашей работы [5], выведенные для вычисления порогового тока гетеролазеров. Будем использовать значения параметров узкозонного слоя, приведенные в [4]. Величина спинорбитального расщепления валентной зоны Δ , по нашим оценкам, составляет $\Delta = 0.47$ эВ, эффективная масса тяжелых дырок $m_h = 0.414m_0$ и собственная концентрация равновесных носителей заряда $n_i = 5.2 \cdot 10^{15} \, \mathrm{cm}^{-3}$.

Скорость излучательной генерации вычислим по модифицированной формуле

$$G_{\rm rad} = \frac{2}{N_c} \frac{n_r E_g^2 q^2 1.36}{c^3 \hbar^2 m_n} \frac{E_g + \Delta}{3E_g + 2\Delta} \left(\frac{m_n}{m_{\rm ph}}\right)^{3/2} n_i^2, \qquad (15)$$

где $n_r = 3.6$ — коэффициент преломления, c — скорость света, \hbar — постоянная Планка.

Мы получили для исследуемого узкозонного твердого раствора величину $G_{\rm rad} = 1.1 \cdot 10^{21} \,{\rm c}^{-1} {\rm cm}^3$. При этом коэффициент излучательной рекомбинации $B = G_{\rm rad}/n_i^2 = 4 \cdot 10^{-11} \,{\rm c}^{-1} {\rm cm}^3$, что близко к значениям, приведенным в работах [4,6].

Скорость ударной генерации дырок в фотодиоде выразится формулой

$$G_{\text{CHCC}} = \frac{18}{\sqrt{\pi}} \frac{Nq^4 m_n}{\varkappa^2 \hbar^3} \left(\frac{kT}{E_g}\right)^{2.5} \left(\frac{E_g + \Delta}{3E_g + 2\Delta}\right)^{1.5} \\ \times \left(\frac{3E_g + \Delta}{2E_g + \Delta}\right)^{0.5} e^{-\xi_n} F_{1/2}(\xi_n) e^{-\varepsilon_3}, \qquad (16)$$

Физика и техника полупроводников, 2008, том 42, вып. 4

где ε_3 — пороговая энергия ударной ионизации в единицах kT, \varkappa — диэлектрическая проницаемость. В первом приближении

$$\varepsilon_3 = \frac{E_g}{kT} + \frac{E_g}{kT} \frac{m_n}{m_{\rm ph} + 2m_n} \frac{2E_g + \Delta}{E_g + \Delta} \frac{3E_g + 2\Delta}{3E_g + \Delta}.$$
 (17)

Из формул (16) и (17) получим $\varepsilon_3 = 10.9$, $G_{\text{CHCC}} = 3.9 \cdot 10^{22} \,\mathrm{c}^{-1} \mathrm{cm}^{-3}$.

Коэффициент ударной генерации получается $C_{nCHCC} = \frac{G_{CHCC}}{Nn_i^2} = 3.25 \cdot 10^{-26} \text{ c}^{-1} \text{см}^{-3}$, что согласуется с [4,6].

Таким образом, скорость ударной генерации оказывается значительно больше, чем излучательной. Уменьшить ее вклад в несколько раз можно при понижении концентрации электронов в узкозонной области, приближаясь к собственной концентрации.

Суммарная скорость генерации дырок равна

$$G_{\Sigma} = G_{
m rad} + G_{
m CHCC} = 4 \cdot 10^{22} \, {
m c}^{-1} {
m cm}^{-3},$$

при этом время жизни дырок составляет

$$\tau_p = \frac{n_i^2}{NG_{\Sigma}} = 1.5 \cdot 10^{-8} \,\mathrm{c.}$$
 (18)

Диффузионная длина дырок в узкозонном *n*-слое составит

$$L_p = \sqrt{\frac{kT}{q}\mu_p\tau_p} = 2 \cdot 10^{-4} \,\mathrm{cm} \tag{19}$$

при подвижности дырок $\mu_p = 100 \text{ см}^2 \text{B}^{-1} \text{c}^{-1}$. Темновой ток, обусловленный излучательной и ударной генерацией, соответствующей процессу СНСС, составил

$$I_0 = qSG_{\Sigma}L$$
th $\frac{l}{L} = 1.8 \cdot 10^{-3} \,\mathrm{A},$ (20)

что близко к экспериментально наблюдаемому току насыщения исследуемого n-p-перехода $I_0 = 1.7$ мА и позволяет говорить о близости теории и эксперимента.

Надо отметить, что дифференциальное сопротивление n-n-перехода GaSb/GaInAsSb R_{n0} уменьшает фототок короткого замыкания всего фотодиода I_{50} по отношению к фототоку Φ короткого замыкания n-p-перехода GaInAsSb/AlGaAsSb согласно формуле

$$I_{S0} = \frac{\Phi R_{p0}}{R_{p0} + R_{n0} + R_s}.$$
 (21)

В нашем случае из-за потерь на последовательных сопротивлениях R_{n0} и R_s фототок снижается в 2 раза. Уменьшение скорости безызлучательного оже-процесса в узкозонном слое и уменьшение последовательных сопротивлений должно позволить увеличить обнаружительную способность.

4. Заключение

Созданы фотодиоды *n*-GaSb/*n*-Ga $_{0.04}$ In $_{0.96}$ As $_{0.87}$ Sb $_{0.13}$ / *p*-Al $_{0.64}$ Ga $_{0.36}$ As $_{0.05}$ Sb $_{0.95}$, чувствительные в диапазоне 1–5 мкм, с большим содержанием In в активном узкозонном слое и большим содержанием Al в широкозонном слое оптического "окна".

Большое содержание In в узкозонном слое позволило получить достаточно низкую концентрацию электронов в узкозонном слое $4.45 \cdot 10^{16}$ см⁻³, что только на порядок превышает собственную концентрацию носителей заряда $n_i = 5.2 \cdot 10^{15}$ см⁻³.

Большое содержание Al в оптическом "окне" позволило реализовать гетеропереход I типа на границе *n*-GaInAsSb и *p*-AlGaAsSb и расширить область объемного заряда и тем самым снизить туннельный ток.

Устранена туннельная утечка в прямом направлении и при обратных напряжениях, меньших 10 мВ, в результате использования широкозонного *р*-слоя с большим содержанием Al.

Установлено, что темновой ток обусловлен в основном ударной генерацией дырок в узкозонном слое и что излучательная составляющая в несколько раз меньше ударной. Ударная рекомбинация контролирует время жизни и диффузионную длину неосновных носителей заряда.

Получено значение обнаружительной способности при комнатной температуре до $D_{\lambda}^{*} = 1.1 \cdot 10^{9} \text{ см} \cdot \Gamma \mu^{0.5} \text{Br}^{-1}$ и показана возможность ее увеличения.

Работа поддержана грантами РФФИ № 06-02-01364 и 06-02-08279-офи.

Авторы выражают благодарность А.П. Астаховой за проведение экспериментов по электролюминесценции и за техническую поддержку.

Список литературы

- [1] Analitical Chemistry, 28 (8), 219 (1956).
- [2] А.П. Астахова, Б.Е. Журтанов, А.Н. Именков, М.П. Михайлова, М.А. Сиповская. Н.Д. Стоянов, Ю.П. Яковлев. Письма ЖТФ, **33** (1), 23 (2007).
- [3] А.П. Астахова, Б.Е. Журтанов, А.Н. Именков, М.П. Михайлова, М.А. Сиповская. Н.Д. Стоянов, Ю.П. Яковлев. Письма ЖТФ, 33 (19), 9 (2007).
- [4] Handbook Series on Semiconductor Parameters, ed. by M. Levinshtein, S. Rumyantsev and M. Shur, vol. 1, 2 (World Scientific, Singapore–N.J.–London–Hong Kong, 1996).
- [5] А.А. Андаспаева, А.Н. Баранов, Б.Л. Гельмонт, Б.Е. Журтанов, Г.Г. Зегря, А.Н. Именков, Ю.П. Яковлев, С.Г. Ястребов. ФГП, 25 (3), 394 (1991).
- [6] M.G. Mauk, V.M. Andreev. Semicond. Sci. Technol., 18, 5191 (2003).

Редактор Л.В. Беляков

Low-noise Photodiodes Based on GaSb/GaInAsSb/AlGaAsSb Double Heterostructure for $1-4.8\,\mu\text{m}$ Spectral Range

B.E. Zhurtanov, N.D.II'inskaya, A.N. Imenkov, M.P. Mikhailova, M.A. Sipovskaya, N.D. Stoyanov, Yu.P. Yakovlev

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract *N*-GaSb/*n*-GaInAsSb/*p*-AlGaAsSb heterostructure photodiodes with red cut-off edge at $\lambda = 4.8 \,\mu\text{m}$ were studied. It was established that high content of In in the narrow-gap layer and Al in the wide-gap layer leads to improving photoelectrical parameters of the photodiodes due to elimination of the tunnel current leakage at the *n*-GaInAsSb/*p*-AlGaAsSb interface. Detectivity $D_{\lambda}^{*} = 1.1 \cdot 10^9 \,\text{cm} \cdot \text{Hz}^{1/2}\text{W}^{-1}$ at room temperature was achieved.