Термостойкий диод Шоттки TiB_r-*n*-GaP

© А.Е. Беляев, Н.С. Болтовец*[¶], В.Н. Иванов*, А.Б. Камалов, Л.М. Капитанчук⁺, Р.В. Конакова^{¶¶}, Я.Я. Кудрик, О.С. Литвин, В.В. Миленин, М.У. Насыров

Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины, 03028 Киев, Украина

* Государственное предприятие НИИ "Орион",

03057 Киев, Украина

⁺ Институт электросварки им. Е.О. Патона Национальной академии наук Украины,

03680 Киев, Украина

(Получена 5 сентября 2007 г. Принята к печати 14 сентября 2007 г.)

Изучалось влияние быстрой термической обработки на параметры барьеров Шоттки $TiB_x - n$ -GaP и межфазные взаимодействия на границе раздела $TiB_x - GaP$. Показано, что контактная система $TiB_x - n$ -GaP обладает повышенной термостойкостью без изменения электрофизических параметров барьера Шоттки вплоть до $T = 600^{\circ}$ С.

PACS: 85.30.Hi, 81.40.Rs, 73.40.Gk

1. Введение

Фосфид галлия ($E_{\rm g}\approx 2.25\,{\rm sB}$ при $T=300\,{\rm K})$ широко применяется для изготовления целого ряда оптоэлектронных приборов [1-4]. В то же время как широкозонный полупроводник, хорошо изученный и воспроизводимо получаемый в виде монокристаллов и эпитаксиальных слоев, фосфид галлия представляет интерес для микроэлектронных приборов высокотемпературной электроники. С этой точки зрения представляются целесообразными исследования как термической стабильности полупроводника, так и термостойкости контактов. Для диодов Шоттки на основе фосфида галлия одним из основных условий их устойчивой работы при повышенных температурах должно быть отсутствие межфазных взаимодействий на границе раздела металл-GaP. К настоящему времени эта область физико-технологических исследований фосфидгаллиевых диодов с барьером Шоттки мало изучена, хотя барьерные контакты к GaP, формируемые чистыми металлами, известны давно [5–7] и показана возможность создания барьеров Шоттки с вольт-амперными характеристиками (ВАХ), близкими к идеальным (с фактором идеальности порядка 1) при $T = 300 \, \text{K}$ [8]. Их термостойкость, однако, ограничена межфазными взаимодействиями и фазообразованием при сравнительно невысоких температурах [9,10], а также массопереносом компонентов металла и полупроводника, расширяющим переходную область в контакте. Поэтому поиск барьерообразующих контактов, не взаимодействующих с GaP, представляется актуальным.

В данной работе исследовалось влияние быстрой термической обработки на параметры барьеров Шоттки TiB_x-*n*-GaP и межфазные взаимодействия на границе раздела TiB_y-GaP.

Учитывая опыт создания термостойких барьерных контактов на основе аморфных фаз внедрения (боридов

и нитридов тугоплавких металлов) к Si [11] и к таким полупроводникам как GaAs и SiC [12,13], можно исключить из деградационного процесса в контактах межзеренную диффузию, характерную для контактов, сформированных поликристаллическими пленками металлов (сплавов). Этот опыт нам представлялось целесообразным применить к GaP.

2. Методика эксперимента

Барьерные слои TiB_x толщиной ~ 100 нм формировались магнетронным распылением на поверхности монокристаллической пластины GaP (предварительно подвергнутой фотонному отжигу) с концентрацией донорной примеси ~ 10^{17} см^{-3} и толщиной ~ 350 мкм. Формирование слоев TiB_x осуществлялось при токе разряда ~ 0.4 A, что позволяло, как следует из [11], создать квазиаморфные пленки TiB_x .

Омические контакты формировались магнетронным напылением слоев Ge, Au, TiB_x. Оптимальные толщины слоев составляли 30 нм Ge, 180 нм Au, 100 нм TiB_x, а также дополнительный слой металлизации 200 нм Au. Пленочный пакет Au с Ge в весовых процентах соответствует 97 и 3% соответственно. Точка плавления такого сплава ~ 1000° С.

Диодные структуры с барьером Шоттки TiB_x-*n*-GaP диаметром 100 мкм создавались с помощью фотолито-графии.

Для оценки термостойкости барьерных контактов использовалась быстрая термическая обработка (БТО) при температурах 400 и 600°С в течение 60 с.

До и после БТО на тестовых структурах со сплошным слоем TiB_x толщиной ~ 50 нм методом атомносиловой микроскопии (ACM) исследовалась морфология поверхности пленки TiB_x на серийном атомно-силовом микроскопе Nanoscope IIIa. На дифрактомерте ДРОН-2 (K_a — линия Cu) исследовался фазовый состав метал-

[¶] E-mail: bms@i.kiev.ua

^{¶¶} E-mail: konakova@isp.kiev.ua

лизации. Для получения профилей распределения компонентов металлизации использовался метод электронной оже-спектрометрии.

На диодных структурах до и после БТО измерялись вольт-амперные характеристики (ВАХ), из которых определялись высота барьеров Шоттки (φ_b) и фактор идеальности (n).

3. Экспериментальные результаты

Общим требованием к контактам с повышенной термостабильностью является отсутствие или слабое взаимодействие между слоями металлизации и на границе раздела металл–GaP.

Как следует из приведенных далее исследований, структура $TiB_x - n$ -GaP обеспечивает эти условия. На рис. 1, 2, 3 представлены данные послойного ожеанализа пленки TiB_x и ее морфологические особенности до и после БТО. Из профилей распределения компонентов видно, что существенное перемешивание на границе раздела $TiB_x - n$ -GaP отсутствует как в исходных образцах, так и прошедших БТО при T = 400 и 600°С.

Приповерхностный слой TiB_x как до, так и после БТО содержит некоторое количество соединений бора с кислородом в виде ВО и B_2O_3 . БТО на изменение содержания ВО и B_2O_3 в приповерхностном слое TiB_x не повлияла. Содержание углерода и кислорода в пленке TiB_x в результате БТО также существенно не изменилось.

Рентгенофазовый анализ (рис. 4) показал, что пленки TiB_x содержат как аморфную фазу (широкий низкий пик в районе 25° на рентгенограмме), так и незначительное количество поликристаллического гексагонального TiB_2 . Отжиг не повлиял на фазовый состав пленки. Поэтому можно полагать, что наблюдаемые незначительные изменения на межфазной границе связаны со структурной модификацией контактирующего слоя.

Таблица 1. Параметры шероховатости поверхности до и после БТО при T = 400 и 600° С

Образец	Z_r , нм	RMS, нм	R_a , нм
Исходный	24.5	1.4	1.0
БТО 400°С	25.5	2.4	1.6
БТО 600°С	19.3	2.2	1.5

Примечание. Z_r — размах высот неровностей поверхности, RMS — среднеквадратическая шероховатость, R_a — среднеарифметическая шероховатость. Площадь анализируемой поверхности 1×1 мкм².

Действительно, как видно из рис. 1-3 и табл. 1, поверхность исходного образца состоит из зерен диаметром ~ 50 нм с нечеткими границами высот до 24.5 нм. БТО при 400 и 600°С поверхность изменяет слабо (см. изменение величины Z_r).

Рис. 1. Профили распределения компонентов (*a*), морфология поверхности (*b*) и *с* — гистограмма распределения высот неровностей (масштаб: x = 0.2 мкм/дел, y = 10 нм/дел) для структуры TiB_x – *n*-GaP до термической обработки.

Физика и техника полупроводников, 2008, том 42, вып. 4

Рис. 2. Профили распределения компонентов (*a*), морфология поверхности (*b*) и *с* — гистограмма распределения высот неровностей (масштаб: x = 0.2 мкм/дел, y = 10 нм/дел) для структуры TiB_x-*n*-GaP после быстрой термической обработки при $T = 400^{\circ}$ C.

Рис. 3. Профили распределения компонентов (*a*), морфология поверхности (*b*) и *с* — гистограмма распределения высот неровностей (масштаб: *x* = 0.2 мкм/дел, *y* = 10 нм/дел) для структуры TiB_x -*n*-GaP после быстрой термической обработки при *T* = 600°C.

Измерения ВАХ (рис. 5) показали, что прямая ветвь ВАХ диодных структур в широком диапазоне токов описывается известной экспоненциальной зависимостью тока *I* от напряжения *V*:

где

Intensity, arb. units

15

25

35

45

$$I_{\rm S} = AST^2 \exp\left(-\frac{e\varphi_{\rm b}}{kT}\right)$$

 $I = I_{\rm S} \exp\left(\frac{eV}{nkT}\right),\,$

— ток насыщения, k — постоянная Больцмана, e — заряд электрона, T — температура, S — площадь диодной структуры, A — постоянная Ричардсона для GaP, $\varphi_{\rm b}$ — высота барьера Шоттки, n — фактор идеальности.

Оказалось, что величина *n* при комнатной температуре для разных диодов составляет 1.12–1.21, что в соответствии с [14] отвечает термоэлек-

GaP(111

Рис. 4. Рентгенофазовый анализ структур $TiB_x - n$ -GaP до (1) и после отжига (2, 3) при температурах 400 и 600°C соответственно.

 2θ , deg

55

65

75

85

Whyn 1

95

Рис. 5. Прямые ветви вольт-амперных характеристик диодов Шоттки TiB_x -*n*-GaP. Символы 1-10 соответствуют номерам образцов в табл. 2.

Таблица 2. Параметры барьеров Шоттки TiB_x – *n*-GaP, ВАХ которых представлены на рис. 3

Образец	п	$\phi_{ m b},$ эВ	$I_{\rm S}, {\rm A}$
1	1.16	0.90	$4.9\cdot10^{-13}$
2	1.15	0.91	$2.7\cdot10^{-13}$
3	1.15	0.91	$2.3 \cdot 10^{-13}$
4	1.14	0.92	$2.3\cdot 10^{-13}$
5	1.15	0.93	$2.6 \cdot 10^{-13}$
6	1.12	0.91	$3 \cdot 10^{-13}$
7	1.18	0.90	$4 \cdot 10^{-13}$
8	1.16	0.91	$2.9 \cdot 10^{-13}$
9	1.16	0.91	$2.9 \cdot 10^{-13}$
10	1.21	0.89	$7.8\cdot10^{-13}$

тронному механизму токопереноса, высота барьера Шоттки $\varphi_{\rm b} = 0.89 - 0.93$ эВ, ток насыщения $I_{\rm S} = 2.3 \cdot 10^{-13} - 7.8 \cdot 10^{-13}$ А (табл. 2). БТО при T = 400 и 600°С практически не изменила эти параметры, что коррелирует с данными о свойствах границы раздела TiB_x – *n*-GaP, полученными методами электронной ожеспектрометрии и рентгеновской дифракции.

Таким образом, совокупность комплексных исследований барьерных контактов $\text{TiB}_x - n$ -GaP методами ACM, рентгеновской дифракции, оже-спектрометрии и измерений BAX показала, что контактная система $\text{TiB}_x - n$ -GaP обладает повышенной термостойкостью без изменения электрофизических параметров барьера Шоттки, вплоть до $T = 600^{\circ}$ C.

Список литературы

- [1] С.И. Радауцан, Ю.И. Максимов, В.В. Негрескул, С.Л. Пышкин. Фосфид галлия (Кишинев, АН МССР, 1969).
- [2] Л.И. Марина, А.Я. Нашельский, Л.И. Колесник. Полупроводниковые фосфиды А^{III}В^V (М., Металлургия, 1974).
- [3] Л.М. Коган. Полупроводниковые светоизлучающие диоды (М., Энергоиздат, 1983).
- [4] А. Берг, П. Дин. Светодиоды (М., Мир, 1987).
- [5] C.A. Mead. Sol. St. Electron., 9 (11), 1023 (1966).
- [6] С.Г. Мадоян, М.К. Гусейханов, В.В. Болтовский. Обзоры по электрон. техн. Сер. 2. Полупроводниковые приборы, № 10 (328), 64 (1975).
- [7] Tan F. Lei, Chung L. Lee, Chun J. Chang. Sol. St. Electron., 21 (11), 1035 (1979).
- [8] Б.В. Царенков, Ю.А. Гольдберг, Е.А. Поссе. ФТП, 7 (12), 2326 (1973).
- [9] Ю.А. Гольдберг, Е.А. Поссе, Б.В. Царенков. ФТП, 20 (8), 1510 (1986).
- [10] Ю.А. Гольдберг, Е.А. Поссе. ФТП, **32** (2), 200 (1998).
- [11] M.A. Nicolet. TSF, **52**, 415 (1978).
- [12] Н.С. Болтовец, В.Н. Иванов, Р.В. Конакова и др. ФТП, 38 (7), 769 (2004).
- [13] I. Shalish, Yoram Shapira. J. Vac. Sci. Technol. B, 18 (5), 2447 (2000).
- [14] Э.Х. Родерик. Контакты металл-полупроводник (М., Радио и связь, 1982).

Редактор Т.А. Полянская

Heat-resistant $TiB_x - n$ -GaP Schottky barrier diode

A.E. Belyaev, N.S. Boltovets^{*}, V.N. Ivanov^{*}, A.B. Kamalov, L.M. Kapitanchuk⁺, R.V. Konakova, Ya.Ya. Kudryk, O.S. Lytvyn, V.V. Milenin, M.U. Nasyrov

V. Loshkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03028 Kiev, Ukraine
* State Enterprise Research Insitute "Orion", 03057 Kiev, Ukraine
+ E.O. Paton Institute of Electric Welding, National Academy of Sciences of Ukraine, 03680 Kiev, Ukraine

Abstract We studied the effect of rapid thermal annealing on the parameters of TiB_x -*n*-GaP Schottky barriers and interactions between phases at the TiB_x -GaP interface. It is shown that the TiB_x -*n*-GaP contact system has enhanced heat resistance, and the electrophysical parameters of the Schottky barrier do not change up to a temperature $T = 600^{\circ}$ C.