Механизм формирования отклика газового сенсора водорода на основе кремниевого МОП диода

© В.И. Гаман, В.И. Балюба, В.Ю. Грицык, Т.А. Давыдова, В.М. Калыгина[¶]

Сибирский физико-технический институт им. В.Д. Кузнецова Томского государственного университета, 634034 Томск, Россия

(Получена 14 мая 2007 г. Принята к печати 18 июня 2007 г.)

Обсуждаются экспериментальные данные по зависимости напряжения плоских зон и времени релаксации емкости области пространственного заряда МОП диода (Pd-SiO₂-*n*-Si) от концентрации водорода в газовой смеси водород/воздух. Предполагается, что в МОП структуре с толщиной слоя SiO₂ d = 369 нм изменение напряжения плоских зон U_{fb} при воздействии газовой смеси водород/воздух можно объяснить образованием диполей в зазоре Pd-SiO₂ за счет поляризации атомов водорода (H_a). Получено аналитическое выражения, описывающее зависимость изменения напряжения плоских зон ΔU_{fb} от концентрации водорода n_{H_2} . В МОП структурах с $d \leq 4$ нм (или МОП диодах) ΔU_{fb} в основном обусловлено процессом пассивации атомами водорода центров, ответственных за наличие на границе SiO₂-*n*-Si поверхностных состояний акцепторного типа. Получены аналитические выражения, описывающие зависимости ΔU_{fb} и времени релаксации емкости области пространственного заряда от n_{H_2} . Приводятся значения плотности центров адсорбции и теплоты адсорбции атомов водорода на границах раздела Pd-SiO₂ и SiO₂-*n*-Si.

PACS: 73.20.Hb, 73.40.Qv, 82.65.+r

1. Введение

В работах по исследованию влияния молекулярого водорода на вольт-фарадные характеристики (ВФХ) структур металл-окисел-полупроводник $(MO\Pi)$ Pd-SiO₂-*n*-Si c большой толщиной слоя SiO₂ $(d \ge 100 \, \text{нм})$ предполагается, что на Рd-электроде молекулы H_2 диссоциируют на атомы (H_a), которые затем за счет диффузии достигают границы раздела Pd-SiO₂ [1]. На этой границе за счет поляризации атомов На образуется дипольный слой, электрическое поле которого уменьшает контактную разность потенциалов (U_c) между Pd и n-Si. В результате уменьшается напряжение плоских зон (U_{fb}) , и ВФХ МОП структуры смещается вдоль оси напряжений. В итоге при фиксированном напряжении наблюдается изменение емкости МОП структуры.

В работах, посвященных МОП структурам с тонким слоем SiO₂ ($d \le 4$ нм) [2,3], существенная роль в формировании отклика на воздействие водорода отводится электронным процессам на границе раздела SiO₂-*n*-Si. В работе [3] показано, что время релаксации, характеризующее изменение емкости структуры Pd-SiO₂-*n*-Si при воздействии водорода, совпадает с временем релаксации процесса диффузии атомов водорода от Pd-электрода до границы раздела SiO₂-*n*-Si. При этом одновременно наблюдается уменьшение энергетической плотности быстрых поверхностных состояний (ПС).

На основе этих данных утверждается, что на границе раздела SiO_2-n -Si осуществляется пассивация атомами водорода дефектов, ответственных за наличие быстрых ПС акцепторного типа. Возможные механизмы пассивации подробно обсуждаются, например, в работе [4].

Существует также возможность внедрения атомов H_a в приповерхностный слой *n*-Si с последующей пассивацией донорной примеси [4,5]. Однако пассивирующая активность водорода в *n*-Si при комнатной температуре довольно низкая. Заметный эффект наблюдается при температуре T = 413 K [6].

В данном сообщении приводятся результаты исследований, в которых ставилась задача отдельно оценить вклад электронных процессов на границах раздела Pd-SiO₂ и SiO₂-*n*-Si в изменение U_{fb} при воздействии водорода на МОП структуры с туннельно-тонким слоем SiO₂ ($d \le 4$ нм). В дальнейшем такие структуры будем называть МОП диодами.

Для решения поставленной задачи были изготовлены МОП структуры с d=369 нм и МОП диоды на одной и той же подложке из *n*-Si. Образцы, изготавливались примерно по той же технологии, которая описана в работе [7].

Измерения ВФХ и временны́х зависимостей емкости C(t) МОП диодов и МОП структур в газовой смеси H_2 /воздух проводились с помощью автоматизированного комплекса на частоте 1 мГц. Зависимость ΔU_{fb} от концентрации водорода n_{H_2} исследовалась в интервале концентраций от 450 до $12 \cdot 10^3$ ppm, а временна́я зависимость емкости МОП диода — от 450 до 22 500 ppm.

2. Зависимость напряжения плоских зон МОП структуры от концентрации водорода

Напряжение плоских зон МОП структуры описывается выражением [3]

$$U_{fb} = -[Q_t(\varphi_s = 0) + Q_d]/C_d - U_c, \qquad (1)$$

где $Q_t(\varphi_s = 0)$ — поверхностная плотность заряда электронов, захваченных на акцепторные ПС при плоских зо-

[¶] E-mail: vmk@elefot.tsu.ru

нах, когда поверхностный потенциал на границе раздела SiO₂-*n*-Si $\varphi_s = 0$, Q_d — поверхностная плотность заряда в диэлектрике, $C_d = \varepsilon_d \varepsilon_0/d$ — удельная емкость слоя SiO₂, $\varepsilon_d = 3.9$ — относительная диэлектрическая проницаемось SiO₂, $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \Phi/\text{M}$ — электрическая постоянная; $U_c = -(\chi_{\text{Pb}} - \chi_{\text{Si}})/e$, χ_{Pb} и χ_{Si} — термодинамические работы выхода Pd и Si соответственно, e — заряд электрона. В газовой смеси H₂/воздух напряжение плоских зон уменьшается, и его можно записать в виде

$$U_{fbg} = -[Q_t(\varphi_s = 0) + Q_d + \Delta Q]/C_d - U_{cg}, \quad (2)$$

где $\Delta Q > 0$ — изменение плотности заряда на границе раздела SiO₂—*n*-Si за счет нейтрализации отрицательно заряженных акцепторных ПС атомами водорода, U_{cg} — контактная разность потенциалов в газовой смеси. Вычитая из выражения (1) выражение (2), получим

$$\Delta U_{fb} = \Delta Q/C_d + \Delta |U_c|, \qquad (3)$$

где $\Delta U_{fb} = U_{fb} - U_{fbg}, \Delta |U_c| = |U_c| - |U_{cg}|.$

В соответствии с литературными данными коэффициент диффузии атомов водорода D_H в палладии составляет $10^{-7} \text{ см}^2/\text{с}$ [8], а в SiO₂ — $1.9 \cdot 10^{-15} \text{ см}^2/\text{с}$ [2] при T = 297 К. При толщине слоя палладия $d_{\rm Pd} = 300$ нм время диффузии атомов H_a равно примерно 10^{-2} с. Время диффузии через слой SiO2 в МОП структуре — 7 · 10⁵ с. Эксперимент показал, что при воздействии водорода с $n_{\rm H_2} = 10^3 - 10^4$ ppm стационарное значение емкости МОП структуры устанавливается за 30-40 с. Выше приведенные оценки свидетельствуют о том, что граница раздела SiO₂-n-Si не играет заметной роли в формировании отклика МОП структуры, а диффузия атомов H_a через слой Pd не является процессом, лимитирующим изменение U_{fb} . Тогда изменение U_{fb} может быть полностью обусловлено адсорбцией и поляризацией атомов H_a на первой границе раздела (Pd-SiO₂) [1] и $\Delta U_{fb} = \Delta |U_c|$.

В атоме водорода реализуется достаточно сильная связь между электроном и ядром. Поэтому можно считать, что при поляризации атома орбита электрона смещается от равновесного положения на расстояние Δr , значительно меньшее радиуса орбиты. При этом образуется диполь с моментом $\mu_d = e\Delta r$. Предполагая, что слой диполей располагается в воздушном зазоре между палладием и SiO₂, и используя теорему Остроградского–Гаусса, получим

$$\Delta |U_c| = \mu_d N_{a1} / \varepsilon_0, \tag{4}$$

где N_{a1} — поверхностная плотность атомов H_a , адсорбированных на первой границе раздела. В соответствии с решением кинетического уравнения для активированной адсорбции в стационарном случае [9]

$$N_{a1} = N_{01} \eta_1 n_{\rm H_2} / (1 + \eta_1 n_{\rm H_2}), \tag{5}$$

где N_{01} — поверхностная плотность центров адсорбции атомов H_a на первой границе, $\eta_1 = \eta_{01} \exp(-\Delta E_1/kT)$, η_{01} — некоторая константа, $\Delta E_1 = E_{a1} - E_{d1}$, E_{a1} и E_{d1} — энергии активации процессов адсорбции и десорбции атомов (параметр E_{d1} также называют дифференциальной теплотой адсорбции); k — постоянная Больцмана, T — абсолютная температура. При записи выражения (5) учтено, что концентрация атомов водорода $n_{\rm H} \sim n_{\rm H_2}$. Из выражений (4) и (5) получим

$$\Delta |U_c| = \mu_d N_{01} \eta_1 n_{\rm H_2} / [\varepsilon_0 (1 + \eta_1 n_{\rm H_2})].$$
(6)

Зависимость $\Delta |U_c|$ от n_{H_2} , полученная экспериментально, хорошо описывается выражением (6) при $\mu_d N_{01}/\varepsilon_0 = 0.686$ В и $\eta_1 = 9.56 \cdot 10^{-5}$ ppm⁻¹ (рис. 1, кривая 1). Используя значение $N_{01} = 6 \cdot 10^{13}$ см⁻², приведенное в работе [1], получим $\mu_d = 10^{-27}$ Кл · см. Такой величине μ_d соответствует $\Delta r = 6.25 \cdot 10^{-9}$ см, что сравнимо с радиусом орбиты электрона в атоме водорода ($r_0 = 5.29 \cdot 10^{-9}$ см). Этот результат позволяет предположить, что N_{01} примерно на порядок превышает указанное выше значение. При $N_{01} = 6 \cdot 10^{14}$ см⁻² $\mu_d = 10^{-28}$ Кл · см и $\Delta r = 6.25 \cdot 10^{-10}$ см $\ll r_0$. Это значение μ_d примерно соответствует оценке его величины в работе [1].

Зависимость напряжения плоских зон МОП диода от концентрации водорода

В МОП диоде время диффузии атомов водорода до второй границы при d = 4 нм равно 84 с. Время установления стационарных значений емкости МОП диода и ΔU_{fb} в зависимости от величины $n_{\rm H_2}$ составляет $\sim (120-300)$ с. Отсюда следует, что в МОП диоде отклик на воздействие водорода формируется за счет адсорбции атомов H_a на обеих границах раздела (Pd-SiO₂ и SiO₂-*n*-Si.) Следовательно, оба члена в правой части выражения (3) могут играть заметную роль в определении концентрационной зависимости ΔU_{fb} .

Так как материалы полевого электрода и подложки в МОП структуре и МОП диоде идентичны, значения $\Delta |U_c|$ для этих приборов должны совпадать и иметь одинаковую зависимость от $n_{\rm H_2}$. С учетом этого задача сводится к анализу концентрационной зависимости $\Delta U_{fb}^* = \Delta U_{fb} - \Delta |U_c| = \Delta Q/C_d$. На рис. 1 показаны экспериментальные зависимости ΔU_{fb} (кривая 2) и ΔU_{fb}^* (кривая 3) от $n_{\rm H_2}$. Будем считать, что все атомы водорода, адсорбированные на границе раздела SiO₂-*n*-Si, дают вклад в изменение U_{fb} . Тогда

$$\Delta U_{fb}^* = e N_{a2} / C_d, \tag{7}$$

где N_{a2} — плотность атомов, адсорбированных на второй границе. Для описания N_{a2} воспользуется выражением (5), заменив индекс 1 на 2. После подстановки выражения для N_{a2} в (7) получим

$$\Delta U_{fb}^* = \frac{eN_{02}\eta_2 n_{\rm H_2}}{C_d (1 + \eta_2 n_{\rm H_2})},\tag{8}$$

где N_{02} — плотность центров адсорбции на второй границе; η_2 и ΔE_2 имеют тот же смысл, что η_1

Рис. 1. Зависимость изменения напряжения плоских зон от концентрации водорода: $1 - \Delta U_{fb} = \Delta |U_c|$ МОП структуры (точки — эксперимент, линия — расчет); $2 - \Delta U_{fb}$ МОП диода (эксперимент); $3 - \Delta U_{fb}^* = \Delta U_{fb} - \Delta |U_c|$ (точки — результат вычитания их кривой 2 кривой 1, линия – расчет).

и ΔE_1 , но для второй границы. В результате численного моделирования установлено, что при $n_{\rm H_2} \leq 4 \cdot 10^3$ ppm зависимость ΔU_{fb}^* от $n_{\rm H_2}$ описывается формулой (8) при $eN_{02}/C_d = 0.66$ В и $\eta_2 = 1.03 \cdot 10^{-3}$ ppm⁻¹. При $n_{\rm H_2} \geq 4 \cdot 10^3$ ppm $\eta_2 n_{\rm H_2}$ становится величиной постоянной: $\eta_2 n_{\rm H_2} = 4$.

На рис. 1 приведены данные для МОП диода с $d \approx 3.7$ нм и $C_d = 9.3 \cdot 10^{-7} \, \Phi/\text{см}^2$. С учетом этого из равенства $eN_{02}/C_d = 0.66$ В следует $N_{02} = 3.8 \cdot 10^{12} \text{ см}^{-2}$. Таким образом, плотность центров адсорбции на границе раздела SiO₂-*n*-Si примерно на 2 порядка меньше, чем на границе Pd-SiO₂.

Выход ΔU_{fb}^* на насыщение при $n_{\rm H_2} \ge 4 \cdot 10^3$ ppm, вероятно, обусловлен тем, что в области таких концентраций водорода становится заметным уменьшение E_{d2} по мере увеличения степени заполнения центров адсорбции $\theta = N_{a2}/N_{02}$ [1]. При этом E_{d2} снижается с увеличением θ таким образом, что произведение $[\exp(-\Delta E_2/kT)] n_{\rm H_2}$ остается постоянной величиной. Из полученных экспериментальных данных следует, что при $n_{\rm H_2} \ge 4 \cdot 10^3$ ppm $\theta = \eta_2 n_{\rm H_2}/[1 + \eta_2 n_{\rm H_2}] = 0.8$. На границе раздела Pd-SiO₂ рассмотренный эффект не проявился. Зависимость $\Delta |U_c|$ от $n_{\rm H_2}$ не выходит на насыщение вплоть до $n_{\rm H_2} = 12 \cdot 10^3$ ppm. Это объясняется тем, что $N_{01} \gg N_{02}$ и при $n_{\rm H_2} = 12 \cdot 10^3$ ppm $N_{a1}/N_{01} \approx 0.5$.

Временная зависимость емкости МОП диода при воздействии водорода

При быстрой подаче водорода в измерительную камеру наблюдается переходный процесс установления стационарных значений $U_{fbg}(t)$ и емкости области пространственного заряда (ОПЗ) МОП диода $C_g(t)$. Для МОП диода, находящегося в режиме обеднения, зависимость емкости ОПЗ от $U_{fbg}(t)$ описывается выражением, приведенным в работе [3]. Если учесть сравнительно слабую зависимость от времени *t* производной $d(C_g^{-2})/dU$, то это выражение можно записать в следующем виде:

$$C_g^{-2}(t) - C_{gst}^{-2} = 2[U_{fbg}(t) - U_{fbg}^0] / [K_0 S^2 \varepsilon_r \varepsilon_0 N_d b], \quad (9)$$

где $C_g(t)$ и C_{gst} — емкости ОПЗ в газовой смеси в момент времени t и при $t \to \infty$, U_{fbg}^0 — стационарное значение U_{fbg} , K_0 — некоторая константа, S — площадь Pd-электрода, ε_r — относительная диэлектрическая проницаемость кремния, N_d — концентрация донорной примеси в Si, $b = 1 + e^2 N_t/C_d$, N_t — энергетическая плотность акцепторных отрицательно заряженных ПС. Подставляя в выражения (4) и (7) вместо N_{a1} и N_{a2} результат решения нестационарного кинетического уравнения для адсорбции [9], получим временну́ю зависимость изменения U_{fb} при воздействии газовой смеси:

$$\Delta U_{fb}(t) = U_{fb} - U_{fbg}(t) = \Delta |U_c| [1 - \exp(-t/\tau_{a1})] + \Delta U_{fb}^* [1 - \exp(-t/\tau_{a2})], \qquad (10)$$

где

$$\tau_{a1} = \frac{\exp(E_{d1}/kT)}{\nu(1+\eta_1 n_{\rm H_2})},\tag{11}$$

$$\tau_{a2} = \frac{\exp(E_{d2}/kT)}{\nu(1+\eta_2 n_{\rm H_2})},$$
(12)

— времена релаксации адсорбции атомов H_a на первой и второй границах раздела, ν — частота тепловых колебаний адсорбированных атомов. Из выражения (10) следует

$$U_{fbg}(t) - U_{fbg}^{0} = \Delta |U_c| \exp(-t/\tau_{a1}) + \Delta U_{fb}^* \exp(-t/\tau_{a2}).$$
(13)

После подстановки выражения (13) в (9) будем иметь

$$C_g^{-2}(t) - C_{gst}^{-2} = M[\Delta |U_c| \exp(-t/\tau_{a1}) + \Delta U_{fb}^* \exp(-t/\tau_{a2})],$$
(14)

где

$$M = 2[K_0 S^2 \varepsilon_r \varepsilon_0 e N_d b]^{-1}.$$
 (15)

Для МОП структуры $\Delta U_{fb}^* = 0$ и

$$\ln[C_g^{-2}(t) - C_{gst}^{-2}] = \ln(M\Delta|U_c|) - t/\tau_{a1}.$$
 (16)

Экспериментальные данные, полученные при $n_{\rm H_2} = 10^3$ ppm и T = 297 K, подтверждают линейную зависимость $\ln[C_g^{-2}(t) - C_{gst}^{-2}]$ от t. При этом $\tau_{a1} = 7.4$ с. Полагая в выражении (11) $\nu = 10^{13}$ с⁻¹, при T = 297 K получим $E_{d1} = 0.82$ эВ, что практически совпадает с величиной теплоты адсорбции при $\theta \ll 1$ для границы раздела Pd-SiO₂, приведенной в работе [1].

Более сложным является анализ экспериментальных данных для МОП диода. При записи выражения (14) не учтен процесс диффузии атомов водорода через слой

Рис. 2. Зависимости $\ln[C_g^{-2}(t) - C_{gst}^{-2}]$ от времени при концентрациях водорода $n_{\rm H_2}$, ppm: $I = 900, 2 = 9 \cdot 10^3$. Точки — эксперимент, прямые — расчет.

Рис. 3. Зависимости времен релаксации емкости ОПЗ МОП диода τ_1 (*I*) и τ_2 (*2*) от концентрации водорода $n_{\rm H_2}$.

SiO₂. Концентрация атомов водорода на границе раздела SiO₂-n-Si увеличивается при $t \ge 10$ с после начала действия газовой смеси в соответствии с выражением [3]

$$n_{\rm H}(d,t) \approx n_{\rm H}(0)[1 - \exp(-t/\tau_d)],$$
 (17)

где $n_{\rm H}(0)$ — концентрация атомов на границе Pd-SiO₂,

$$\tau_d = 4d^2 / (\pi^2 D_{\rm H}). \tag{18}$$

Для МОП диода, для которого зависимость ΔU_{fb} от $n_{\rm H_2}$ представлена на рис. 1, расчетное значение $\tau_d \approx 33$ с.

Из экспериментальных данных для МОП диода следует, что в интервале значений $n_{\rm H_2}$ от 450 до $3 \cdot 10^3$ ppm разность $C_g^{-2}(t) - C_{gst}^{-2}$ имеет экспоненциальную зависимость от времени t (рис. 2, кривая I). Однако при $n_{\rm H_2} = 450$ ppm время релаксации $C_g(t)$ в 4 раза превышает τ_d . Этот факт свидетельсвует о том, что временная зависимость C_g в области малых значений $n_{\rm H_2}$ определяется не диффузией атомов водорода через слой SiO₂, а процессом их адсорбции (захвата) на границе раздела SiO₂—*n*-Si и время релаксации равно τ_{a2} . Зависимость τ_{a2} от концентрации водорода при $n_{\rm H_2} < 10^3$ ppm можно описать выражением (12), если учесть, что

$$E_{d2}(\theta) = E_{d2}(0) - \varkappa \theta, \qquad (19)$$

где $E_{d2}(0)$ — энергия активации при $\theta \ll 1$, $\varkappa = dE_{d2}/d\theta$. Экспериментальным данным для τ_{a2} при 450 и 900 ppm соответствуют следующие значения параметров выражения (19): $E_{d2}(0) = 0.91$ эВ, $\varkappa = 0.0368$ эВ.

 $n_{\rm H_2} > 3 \cdot 10^3 \, \rm ppm$ При на зависимости $\ln[C_g^{-2}(t) - C_{gst}^{-2}]$ от *t* наблюдаются два линейных участка (см. рис. 2, кривая 2). Время релаксации τ_1 , соответствующее первому участку кривой, уменьшается примерно до 10-11 с при $n_{\rm H_2} = 7500 \, \rm ppm$ и остается величиной постоянной вплоть до 22 500 ppm (рис. 3, кривая 1). Время релаксации τ_2 , соответствующее второму участку кривой, от $n_{\rm H_2}$ не зависит и в среднем составляет 33 с (см. рис. 3, кривая 2), что совпадает с τ_d . Можно было бы предположить, что $\tau_1 = \tau_{a2}$. Однако как раз при малых t адсорбция атомов водорода на границе раздела SiO₂-*n*-Si должна лимитироваться процессом диффузии через слой SiO₂.

Адекватное описание экспериментальной кривой 2 на рис. 2 можно получить, предполагая, что при $n_{\rm H_2} \ge 7.5 \cdot 10^3$ ppm процесс адсорбции полностью контролируется диффузией атомов H_a через слой SiO₂, так как τ_{a1} и τ_{a2} в несколько раз меньше τ_d . С учетом этого можно считать, что адсорбция протекает квазистационарно. В любой момент времени сохраняется равенство между количествами H_a, адсорбированных и десорбированных на границе раздела SiO₂–*n*-Si. Записывая это равенство с учетом выражения (17), получим

$$\Delta U_{fb}^*(t) = \frac{eN_{02}\eta_2 n_{\mathrm{H}_2}[1 - \exp(-t/\tau_d)]}{C_d\{1 + \eta_2 n_{\mathrm{H}_2}[1 - \exp(-t/\tau_d)]\}}$$
(20)

И

$$C_g^{-2}(t) - C_{gst}^{-2} = M\Delta U_{fb}^* \frac{\exp(-t/\tau_d)}{1 + \eta_2 n_{\rm H_2} [1 - \exp(-t/\tau_d)]}, \quad (21)$$

где ΔU_{fb}^* описывается формулой (8).

Результаты расчета с использованием выражения (21) при $n_{\rm H_2} \ge 9 \cdot 10^3$ ррт хорошо описывают эксперименальную кривую, начиная с $t \approx 5$ с (см. рис. 2, кривая 2). В интервале значений $n_{\rm H_2}$ от 10^3 до 7500 ррт по мере уменьшения τ_{a2} совершается переход от главной роли адсорбции в определении зависимости $C_g(t)$ к преобладанию процесса диффузии атомов водорода через слой SiO₂.

5. Заключение

В результате выполненных исследований установлено, что при воздействии водорода на МОП струкуры с толстым слоем SiO₂ (369 нм) уменьшение напряжения плоских зон U_{fb} можно объяснить (в соответствии с широко распространенной в литературе гипотезой) образованием дипольного слоя на границе раздела Pd–SiO₂ за счет поляризации атомов водорода. При этом поверхностная плотность поляризованных атомов H_a должна быть ~ $6 \cdot 10^{14}$ см⁻², а электрический момент диполя равен 10^{-28} Кл · см. Скорость установления стационарного значения емкости МОП структуры в газовой смеси H₂/воздух характеризуется временем релаксации процесса адсорбции атомов H_a на границе Pd–SiO₂ и составляет 7 с.

В МОП структурах с тонким слоем SiO₂ ($d \le 4$ нм) или МОП диодах изменение U_{fb} в основном обусловлено процессом пассивации атомами водорода центров, ответственных за наличие на границе раздела SiO₂-*n*-Si быстрых ПС акцепторного типа. Поверхностная плотность таких центров составляет $3.8 \cdot 10^{12}$ см⁻². Временная зависимость емкости МОП диода при концентрациях водорода $n_{\rm H_2} \ge 4 \cdot 10^3$ ррт определяется процессом диффузии атомов водорода от Pd-электрода до границы раздела SiO₂-*n*-Si. В области малых концентраций водорода установление стационарных значений емкости затягивается за счет больших значений времени релаксации процесса адсорбции (захвата) атомов водорода на границе раздела SiO₂-*n*-Si.

Работа поддержана грантом Российского фонда фундаментальных исследований (грант № 05-08-33555-А).

Список литературы

- J. Fogelberg, M. Eriksson, H. Dannetun, L.-G. Peterson. J. Appl. Phys., 78 (2), 988 (1995).
- [2] A. Diligenti, M. Stagi, V. Ciuti. Sol. St. Commun., 45, 347 (1983).
- [3] В.И. Гаман, В.М. Калыгина. Изв. вузов. Физика, 46 (4), 3 (2003).
- [4] В.С. Вавилов, В.Ф. Киселев, Б.Н. Мукашев. Дефекты в кремнии и на его поверхности (М., Наука, 1990).
- [5] J. Chevallier, M. Auconturier. Ann. Rev. Mater. Sci., 18, 219 (1988).
- [6] Э.М. Омельяновский, Ф.Я. Полякова. Высокочистые вещества, № 5, 5 (1988).
- [7] В.И. Гаман, М.О. Дученко, В.М. Калыгина. Изв. вузов. Физика, 42 (9), 3 (1999).
- [8] L.-G. Peterson, H.M. Dannetun, J. Fogelberg, I. Lundström. J. Appl. Phys., 58 (1), 404 (1985).
- [9] И.Ф. Мясников, В.Я. Сухарев, Л.Ю. Куприянов. Полупроводниковые сенсоры в физико-химических исследованиях (М., Наука, 1991).

Редактор Л.В. Шаронова

Mechanism of formation of Si-based MOS diode gas sensor response to hydrogen

V.I. Gaman, V.I. Baljuba*, V.Y. Grisyk, T.A. Davidova*, V.M. Kalygina

Siberian Physicotecnical Institute at Tomsk State University, 634034 Tomsk, Russia

Abstract Experimental data on dependences of flat-band voltage and space charge region capacitance relaxation time of MOS diode (Pd-SiO₂-n-Si) on hydrogen concentration in gas mixture hydrogen/air are descussed. It is supposed that decrease of flat-band voltage of MOS structure with 369 nm SiO₂ layer during exposition in gas mixture can be explained by dipole formation due to polarization of hydrogen atoms (H_a) in the gap Pd-SiO₂. An analytical relation which describes the dependence of flat-band voltage change ΔU_{fb} on hydrogen concentration $n_{\rm H_2}$ was received. In MOS diodes with SiO₂ layer thickness $d \leq 4 \text{ nm } \Delta U_{fb}$ is caused by hydrogen passivation of sites which are responsible for acceptor surface state at the $SiO_2 - n$ -Si interface. Analytical relations were received describing dependence of ΔU_{fb} and relaxation time of space charge region capacitance on hydrogen concentration. The values of adsorption centers density and adsorption heat of hydrogen atoms at the interfaces Pd-SiO₂ and SiO₂-n-Si are presented.