Кремниевые светодиоды с большой мощностью излучения краевой люминесценции

© А.М. Емельянов[¶], Н.А. Соболев^{¶¶}

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 17 мая 2007 г. Принята к печати 28 мая 2007 г.)

При комнатной температуре исследована электролюминесценция в области межзонных переходов кремниевых светодиодов, полученных путем резки солнечного элемента площадью 21 см² и имевшего внешнюю квантовую эффективность электролюминесценции η_{ext} до 0.85%. Несмотря на значительное уменьшение η_{ext} вследствие резки и оже-рекомбинации, при импульсных токах до 10 A и площадях структур из диапазона S = 0.1-0.9 см² достигнуты рекордные значения общей излучаемой диодом мощности до W = 8 мВт, а также мощности, излучаемой с единицы площади, до $P_0 = 65$ мВт/см². Для светодиодов различной площади измерена кинетика спада электролюминесценции. Определены диаграмма направленности излучения в Si-светодиоде с текстурированной поверхностью и распределение интенсивности по различным направлениям излучающей площади светодиода.

PACS: 78.60.Fi, 78.60.-b, 78.55.Ap.

1. Введение

Монокристаллический кремний (c-Si) относится к непрямозонным полупроводникам и поэтому ранее считался неэффективным источником люминесценции. Эти представления были убедительно опровергнуты только в последние годы, когда было показано [1-3], что внешняя квантовая эффективность (η_{ext}) люминесценции в области межзонных переходов в c-Si при комнатной температуре может быть сопоставима с η_{ext} в светоизлучающих структурах на основе прямозонных полупроводников. Например, при комнатной температуре были достигнуты $\eta_{\rm ext} \approx 1\%$ для электролюминесценции (ЭЛ) [1] и $\eta_{\text{ext}} \approx 6\%$ для фотолюминесценции (ФЛ)c-Si [2]. Получение столь высоких для непрямозонных полупроводников величин η_{ext} обеспечивалось за счет использования высококачественных пластин *c*-Si с большими временами жизни неосновных носителей заряда, сохранения этих высоких значений в готовом приборе, пассивации поверхности кремния и специальной конструкции диода для минимизации рекомбинации на границах раздела. Кроме того, использовалось текстурирование поверхности для значительного (примерно на порядок) увеличения отношения внешнего квантового выхода к внутреннему.

В литературе был предложен способ формирования высокоэффективных ($\eta_{ext} \approx 0.1\%$) Si-светодиодов путем ионной имплантации бора в *n*-Si и последующего отжига при 1000°С [3]. Введенные при этом дислокационные петли, как предположили авторы [3], образуют пространственный конфайнмент для неосновных носителей заряда, предотвращая их уход к центрам безызлучательной рекомбинации, и тем самым значительно увеличивают квантовую эффективность межзонной ЭЛ. Однако последовавшие затем исследования влияния темпера-

туры постимплантационного отжига на квантовую эффективность и спектр протяженных структурных дефектов [4–6] показали, что предложенная модель неверна. Таким образом, только описанная в [1] технология в настоящее время позволяет воспроизводимо изготавливать Si-светодиоды с высокой, сопоставимой с η_{ext} в светодиодах на основе прямозонных полупроводников внешней квантовой эффективностью ЭЛ.

Работы [1-3] инициировали и ряд исследований, направленных на изучение основных закономерностей и механизма межзонной ЭЛ [7–11]. Например, было показано [7], что наблюдаемое в экспериментах в условиях высокого уровня инжекции (когда концентрация неосновных носителей существенно выше концентрации легирующей примеси в излучающем объеме образца) отсутствие зависимости η_{ext} от тока через прямосмещенный кремниевый *p*-*n*-переход может быть объяснено, если: 1) скорость излучательной рекомбинации в этой области прямо пропорциональна концентрации инжектированных в базу диода неосновных носителей заряда (а не квадрату концентрации, как в теории излучательной рекомбинации Ван Русбрека и Шокли [12]), или 2) время жизни неосновных носителей заряда обратно пропорционально концентрации неосновных носителей заряда. В дальнейшем было показано [9], что вторая причина не может служить объяснением экспериментальных результатов, так как не согласуется с экспоненциальной кинетикой спада ЭЛ. В работе [9] основные закономерности межзонной ЭЛ при комнатной температуре в c-Si были объяснены в рамках модели, которая предполагает, что излучательная рекомбинация происходит в основном через свободные экситоны. Наиболее наглядно это видно из анализа длинноволновой части спектра ЭЛ [9]. Полученные на значительно менее эффективных, чем в [1,2], структурах результаты работ [4-11] тем не менее позволяют упростить интерпретацию результатов исследования высокоэффективных структур.

[¶] E-mail: Emelyanov@mail.ioffe.ru

^{¶¶} E-mail: nick@sobolev.ioffe.rssi.ru

Межзонная ЭЛ в солнечных элементах и структурах, используемых для их изготовления, исследовалась при разработке метода определения эффективного времени жизни носителей заряда в *c*-Si и его зависимости от концентрации носителей заряда из измерений интенсивности межзонной ЭЛ (см., например, [13–15]). Однако, поскольку исследования, как правило, проводились при низких уровнях инжекции, высоких мощностей излучения не достигалось.

Анализ литературы показывает, что наиболее эффективный и мощный *с*-Si-светодиод был описан в [1]. Он имел большую излучающую площадь $\sim 4 \, \mathrm{cm}^2$ (по сути использовался высокоэффективный солнечный элемент, на который подавалось прямое напряжение). При максимальных исследованных в этой работе токах ($\sim 0.2 \, \text{A}$) он, по нашим оценкам, позволял получить до ~ 1.8 мВт мощности (W), излучаемой всей площадью поверхности диода, и соответственно до $\sim 0.45 \,\mathrm{MBt/cm^2}$ средней мощности, излучаемой с единицы площади (P₀). В настоящей работе исследованы Si-светодиоды, при создании которых использовалась описанная в [1] технология, но исследования проводились вплоть до токов, при которых существенным становится уменьшение времени жизни неосновных носителей заряда из-за эффекта ожерекомбинации. Уменьшение площади структур путем резки солнечного элемента большой площади позволило значительно увеличить величину Ро и приблизить размеры излучающей площади к обычным размерам промышленных светодиодов других типов, излучение которых (в отличие от больших солнечных элементов) не сложно сфокусировть на облучаемом объекте относительно малого размера (фотоприемной площадке). В результате увеличения рабочего тока удалось добиться и значительного увеличения W.

2. Методика эксперимента

Для создания светодиодов использовался кремниевый солнечный элемент размерами 3.5 × 6 см², изготовленный на монокристаллической пластине p-Si. Его конструкция и технология описаны в работе [1]. Они обеспечивали сочетание малой плотности центров безызлучательной рекомбинации и специальное текстурирование поверхности для значительного (примерно на порядок величины) увеличения отношения внешнего квантового выхода ЭЛ к внутреннему [1]. Помимо текстурирования и антиотражающего покрытия лицевая сторона Si-пластины содержала сформированные с шагом около 1 мм параллельно меньшей стороне солнечного элемента тонкие (шириной менее 0.1 мм) сильно легированные n^+ -полосы. Сверху эти полосы были металлизированы и по краю пластины соединены между собой металлической шиной. Исследованные Si-светодиоды были изготовлены путем резки солнечного элемента. Основные исследования выполнены на двух структурах прямоугольной формы, с гранями, параллельными или перпендикулярными длинным сторонам металлизированных n^+ -слоев. Структура площадью $S_1 \approx 0.9 \times 0.95 = 0.85 \text{ см}^2$ содержала 9, в отличие от описанной в [1], не соединенных между собой металлической шиной металлизированных полос n^+-p -переходов, длиной 9 мм. Структура площадью $S_2 \approx 0.4 \times 0.25 = 0.1 \text{ см}^2$ соответствовала по конструкции изображенной на рис. 1 работы [1] и содержала 2 металлизированные полосы n^+-p -переходов, соединенные металлической шиной. Площадь излучающей (не металлизированной) поверхности этого светодиода составляла $s \approx 0.055 \text{ см}^2$.

При измерениях спектров ЭЛ излучение с текстурированной поверхности фокусировалось линзовой системой на входную щель монохроматора и на его выходе регистрировалось InGaAs неохлаждаемым диодом (с разрешением 7 нм). Использовались селективный вольтметр и компьютерная обработка выходного сигнала. Спектры были скорректированы с учетом спектральной характеристики фотоприемника и всего оптического тракта. Кинетика ЭЛ измерялась с применением работающего при комнатной температуре Ge-фотоприемника, обеспечивающего постоянную времени реакции на прямоугольный световой импульс ~ 1 мкс. Для возбуждения ЭЛ к диоду прикладывалось импульсное напряжение с частотой 32 Гц. Импульсы имели прямоугольную форму при длительности 0.5-5 мс и временах нарастания и спада < 1 мкс. Максимальная величина импульсного прямого тока достигала 10 А.

При определении η_{ext} использовалась идея метода, предложенная Кведером [16]. Для измерения мощности излучения диода применялся Ge-фотодиод (Нататаtsu B5170-50), имеющий в исследованной области спектра чувствительность *K* и площадь фотоприемной площадки S_{ph} . Он помещался на расстоянии $L = 25 \text{ см} \ (L \gg S_{\text{ph}}^{0.5})$ от излучающей поверхности светодиода в направлении, проходящем через излучающую поверхность и перпендикулярном плоскости образца. Измерялся фототок Y_{ph} Ge-фотодиода, и *W* определялась по формуле

$$W = 2\pi L^2 Y_{\rm ph} / KS_{\rm ph} M. \tag{1}$$

Коэффициент M = 1.7 учитывает неизотропное распределение излучения в полусфере на расстоянии L от светодиода. Для его определения нами были проведены исследования зависимости $Y_{\rm ph}$ от величины угла (α) между нормалью к плоской поверхности образца площадью S_2 и направлением на фотоприемную площадку Ge-фотодиодов. Результаты представлены на рис. 1. Величина $\eta_{\rm ext}$ вычислялась как отношение количества квантов (N_w), излучаемых диодом в единицу времени ($N_w = W/hv$, где hv — энергия квантов в максимуме их распределения по энергиям) к количеству ($N_{\rm inj}$) инжектируемых в единицу времени в базу неосновных носителей заряда ($N_{\rm inj} = Y/q$, где Y — величина прямого тока, а q — элементарный заряд). Все экспериментальные результаты получены при 300 К. При измерениях

Рис. 1. Зависимость нормированного фототока Ge-фотодиода от величины угла (α) между нормалью к плоской поверхности образца и направлением на фотоприемную площадку диода.

распределения интенсивности излучения по площади образцы помещались в поле зрения микроскопа. Диаметр поля зрения микроскопа на излучающей площади составлял 0.5 мм. Германиевый фотодиод помещался перед окуляром микроскопа.

3. Экспериментальные результаты и их обсуждение

На рис. 2 приведены измеренные при различных прямых токах и нормированные на максимальную интенсивность спектры ЭЛ диода площадью S_2 . Вплоть до $Y \approx 6.5$ А изменения в спектре при росте тока малы. Анализ длинноволновой части спектра ЭЛ, подобный описанному в [9,17,18] при $Y \le 6.5$ А указывает на доминирующую роль излучательной рекомбинации через экситоны с участием ТО-фотонов. Искажение спектра при Y = 10 А возможно обусловлено разогревом образца протекающим током. Кроме того, при достаточно высоких концентрациях свободных носителей заряда возможно изменение механизма излучательной рекомбинации: доминирующей может стать излучательная рекомбинация электронно-дырочной плазмы.

Зависимость излучаемой мощности от тока для структур с площадями S_1 и S_2 представлены на рис. 3. После небольшого начального нелинейного участка, как и в [7,9], зависимости линейные. При дальнейшем увеличении тока они становятся сублинейными. При достаточно больших токах в структурах достигается высокая для непрямозонных полупроводников мощность излучения. Максимальная величина $P_0 = W/s$ в структуре с площадью S_2 составляла около 65 мВт/см², а максимальная величина W, излучаемая структурой с площадью S_1 , — 8 мВт. При токе 1 А величина P_0 и W для этих светодиодов составляли соответственно ~ 26 мВт/см² и ~ 2.8 мВт, а при токе 0.2 А — 8.6 мВт/см² и 0.8 мВт. Таким образом при токе 0.2 А величина P_0 при площади структуры 0.1 см² в 19 раз больше, чем для светодиода большой площади, исследованного в работе [1]. Такие величины W и P_0 могут найти практическое применение. Зависимости внешней квантовой эффективности от тока для двух структур представлены на рис. 4. Отметим, что максимальная $\eta_{\text{ехt}}$ для исходного (до резки) солнечного элемента достигала ~ 0.85%. На зависимостях можно выделить 3 участка: 1) начального роста $\eta_{\text{ехt}}$, 2) участок,

Рис. 2. Измеренные при различных токах и нормированные на максимальную интенсивность спектры ЭЛ структуры площадью $S_2 = 0.1 \text{ см}^2$.

Рис. 3. Зависимость мощности излучения от тока для структур с различной площадью: $I - S_1 = 0.85 \text{ см}^2$, $2 - S_2 = 0.1 \text{ см}^2$.

Физика и техника полупроводников, 2008, том 42, вып. 3

Рис. 4. Зависимость внешней квантовой эффективности ЭЛ от тока для структур с различной площадью: $I - S_1 = 0.85 \text{ см}^2$, $2 - S_2 = 0.1 \text{ см}^2$.

где η_{ext} практически не зависит от тока, и 3) уменьшения η_{ext} . Как видно из рис. 2 и 4, уменьшение η_{ext} с ростом тока не связано с изменением механизма ЭЛ, так как не приводит к изменению формы спектра. В работах [10,17] было показано, что сублинейная зависимость интенсивности ЭЛ от тока и соответствующее уменьшение η_{ext} могут быть объяснены действием механизма ожерекомбинации в добавление к механизму Шокли–Рида–Холла. Отметим, что, несмотря на включение механизма оже-рекомбинации, величины η_{ext} в исследованном интервале токов достаточно велики ($\geq 0.05\%$), см. рис. 4.

Поскольку в структуре с площадью S₁ напряжение подавалось только на один, центральный $n^+ - p$ -переход, распределение интенсивности излучения по направлению, перпендикулярному длинной стороне этого перехода, было значительно неоднородным. Для структуры S_1 это распределение представлено на рис. 5 (кривая 1). На вид кривой 1 оказала влияние диффузия носителей заряда. Уменьшение интенсивности ЭЛ вдоль длинной стороны $n^+ - p$ -переходов вблизи краев (см. кривую 2 на рис. 5) может быть связано с образованием дополнительных центров безызлучательной рекомбинации при резке пластины вблизи линий разреза. Отметим, что это уменьшение относительно невелико. Из представленных на рис. 5 результатов можно заключить, что основная часть излучения образца S₁ сосредоточена в полосе шириной ~ 6 мм и длиной 9 мм.

На рис. 6 приведена кинетика спада ЭЛ после выключения тока для двух структур S_1 и S_2 , а также для исходного солнечного элемента. Измерения зависимостей 1–3 проводились на участках, соответствующих практически максимальным величинам квантовой эффективности. Из рис. 6 видно, что при этих токах и изменении интенсивности ЭЛ на порядок кинетика спада хорошо описывается экспонентой с постоянной времени τ_d , величина которой зависит от топологии вырезанного образца. Величина τ_d уменьшается по мере умень-

Рис. 5. Относительное распределение интенсивности излучения для структуры с размерами $0.9 \times 0.95 \text{ см}^2$ при пропускании тока 0.4 А через $n^+ - p$ -переход, проходящий вблизи центра структуры. 1 — по направлению О–X, проходящему через центр структуры и перпендикулярному длинной (9 мм) стороне $n^+ - p$ -перехода. 2 — по направлению О–Z вдоль длинной стороны $n^+ - p$ -перехода, на который было подано напряжение. Верикальными линиями отмечены геометрические границы структуры: 3 и 4 — перпендикулярно длинной стороне $n^+ - p$ -перехода, 3 и 5 — по длине $n^+ - p$ -перехода.

Рис. 6. Кинетика спада интенсивности ЭЛ после выключения тока для трех структур различной площади: $1 - S = 21 \text{ cm}^2$ $(Y = 0.5 \text{ A}, \tau_d = 0.39 \text{ mc}); 2 - S_1 = 0.85 \text{ cm}^2$ $(Y = 0.12 \text{ A}, \tau_d = 0.27 \text{ mc}); 3, 4 - S_2 = 0.1 \text{ cm}^2$ $(3 - Y = 0.12 \text{ A}, \tau_d = 0.09 \text{ mc}, 4 - Y = 1 \text{ A}, \tau_d = 0.09 \text{ mc}$ при t = 0.1-0.2 mc).

шения размеров образца. Из результатов работ [7,9] следует, что при доминирующей роли безызлучательной рекомбинаци свободных носителей заряда τ_d определяется временем жизни неосновных носителей заряда. Уменьшением этой величины и объясняется уменьшение максимальной величины квантовой эффективности при уменьшении площади структуры в результате резки солнечного элемента. При существенно больших токах (когда величина квантовой эффективности уменьшается) кинетика спада начинала описываться экспонентой с постоянной времени т_d только после начального, неэкспоненциального и более быстрого спада (см. кривую 4 на рис. 6). Наличие начального быстрого спада ЭЛ и снижение величины η_{ext} мы объясняем включением механизма оже-рекомбинации в добавление к механизму Шокли-Рида-Холла [10,17].

4. Заключение

В работе описаны результаты исследований ЭЛ в структурах Si-светодиодов различной площади, полученных при разрезании высокоэффективного солнечного элемента большой площади. При импульсном токе 10 A достигнуты рекордные значения $W = 8 \,\mathrm{MBT}$ при $\eta_{\text{ext}} \approx 0.11\%$ и $P_0 = 65 \,\text{мBt/cm}^2$ при $\eta_{\text{ext}} \approx 0.05\%$. Значение W более чем в ~ 4.4 раза, а P_0 — более чем в 140 раз превышают соответствующие максимальные величины, описанные в литературе ранее [1]. При этом значительно уменьшена излучающая площадь светодиодов. При различных токах проведены исследования W, η_{ext} , спектров ЭЛ и кинетики спада ЭЛ в светодиодах различной площади. Получено распределение интенсивности излучения по площади для одного из Si-светодиодов. Измерена диаграмма направленности излучения светодиода с текстурированной поверхностью.

Авторы благодарят М.А. Грина за предоставление солнечного элемента большой площади и Е.Г. Гук за помощь при подготовке структур для измерений.

Работа частично поддержана РФФИ (гранты 04-02-16935 и 07-02-01462).

Список литературы

- M.A. Green, J. Zhao, A. Wang, P.J. Reece, M. Gal. Nature, 412, 805 (2001).
- [2] Th. Trupke, J. Zhao, A. Wang, R. Corkish, M.A. Green. Appl. Phys. Lett., 82, 2996 (2003).
- [3] Wai Lek Ng, M.A. Lourenco, R.M. Gwilliam. S. Ledain, G. Shao, K.P. Homewood. Nature, 410, 192 (2001).
- [4] Н.А. Соболев, А.М. Емельянов, Е.И. Шек, В.И. Вдовин. ФТТ, 46, 39 (2004).
- [5] N.A. Sobolev, A.M. Emel'yanov, E.I. Shek, V.I. Vdovin. Sol. St. Phenomena, **95–96**, 283 (2004).
- [6] N.A. Sobolev, A.M. Emel'yanov, E.I. Shek, V.I. Vdovin. Physica B, 340–342, 1031 (2003).

- [7] А.М. Емельянов, Н.А. Соболев, Е.И. Шек. ФТТ, 46, 44 (2004).
- [8] А.М. Емельянов, Н.А. Соболев, Т.М. Мельникова, S. Pizzini. ФТП, 37, 756 (2003).
- [9] А.М. Емельянов. Письма ЖТФ, 30 (22), 75 (2004).
- [10] А.М. Емельянов, В.В. Забродский, Н.В. Забродская, Н.А. Соболев, В.Л. Суханов. ФТП, 40, 882 (2006).
- [11] А.М. Емельянов, Ю.А. Николаев, Н.А. Соболев, Т.М. Мельникова. ФТП, 38, 634 (2004).
- [12] W. Van Roosbroeck, W. Shockley. Phys. Rev., 94, 1558 (1954).
- [13] R.A. Bardos, T. Trupke, M.C. Schubert, T. Roth. Appl. Phys. Lett., 88, 053 504 (2006).
- [14] M.D. Abbott, J.E. Cotter, F.W. Chen, T. Trupke, R.A. Bardos, K.C. Fisher. J. Appl. Phys., 100, 114 514 (2006).
- [15] M.D. Abbott, J.E. Cotter, T. Trupke, R.A. Bardos. Appl. Phys. Lett., 88, 114105 (2006).
- [16] В.В. Кведер частное сообщение.
- [17] A.M. Emel'yanov, N.A. Sobolev, T.M. Mel'nikova, N.A. Abrosimov. Sol. St. Phenomena, **108–109**, 761 (2005).
- [18] А.М. Емельянов, Н.А. Соболев, Т.М. Мельникова, Н.А. Абросимов. ФТП, **39**, 1170 (2005).

Редактор Л.В. Беляков

Silicon light-emitting diodes with strong near-band-edge luminescence

A.M. Emel'yanov, N.A. Sobolev

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Electroluminescence (EL) in the region of interband transitions was studied in silicon light-emitting diodes, prepared by cutting a solar cell with an external quantum EL efficiency, η_{ext} , up to 0.85% and the area of 21 cm², at room temperature. In spite of a significant η_{ext} decrease due to cutting and Auger recombination, the record values of a total power radiated by a diode equal to 8 mW and a specific power radiated per the unit area equal to 65 mW/cm² have been achieved at pulsed currents up to 10 A and structure areas varied in the range of 0.1–0.9 cm². The kinetics of EL decay was measured in the light-emitting diodes with various areas. A radiation pattern of a silicon light-emitting diode with a textured surface and an intensity distribution for various directions of a diode radiating area were measured.