Эмиссия горячих электронов, возбужденных в ходе каталитической реакции, из металла в полупроводник

© В.Ф. Харламов[¶], А.В. Костин, М.В. Кубышкина, Ф.В. Харламов

Орловский государственный технический университет, 302020 Орел, Россия

(Получена 12 марта 2007 г. Принята к печати 3 мая 2007 г.)

Установлены свойства структуры металлическая пленка—полупроводник, необходимые для возникновения эффекта хемоэмиссии электронов из металла в полупроводник в ходе каталитической реакции, протекающей на границе пленки и газовой смеси. Обоснована возможность получения электроэнергии с помощью этого эффекта.

PACS: 73.40.Sx, 79.20.Kz, 68.47.Fg, 68.47.De, 68.48.Df, 68.60.-p, 34.50.Dy

1. Введение

При столкновении атома или молекулы газа с поверхностью твердого тела в результате образования химической связи выделяется энергия порядка 1 эВ. Процессы стабилизации возникших химических связей путем рассеяния выделившейся энергии играют важную роль в гетерогенных явлениях (рост нанотрубок, наночастиц и кристаллов, формирование нанокомпозитов, эпитаксия, катализ, плазменная обработка материалов и т.д.). Стабилизация возбужденных химических связей на поверхности обусловлена генерацией фононов или возникновением электронно-возбужденных состояний в твердом теле. Поскольку энерговыделение (~ 1 эВ) значительно превышает энергию даже наиболее высокочастотных фононов ($\sim 10^{-2} \, \mathrm{sB}$) электронная аккомодация может успешно конкурировать с фононной. Например, на поверхности металлов релаксация возникшей (возбужденной) адсорбционной связи [1] и молекул, находящихся на первом колебательном уровне [2,3], происходит посредством преимущественной генерации в металле электронно-дырочных пар, а не фононов. В этом случае электронный канал релаксации колебательной энергии осуществляется за счет взаимодействия электромагнитного поля диполя (квадруполя) возбужденной химической связи с электронами кристалла.

В случае полупроводников при адсорбции молекул и химических превращениях на поверхности электронная аккомодация происходит с участием связанных электронов, находящихся в валентной зоне или на локальных уровнях поверхностных электронных состояний. Возникновение электронно-возбужденных состояний в твердом теле обусловлено неадиабатическими ландау—зинеровскими переходами, адиабатическими переходами, туннелированием ядер [4] и дипольными взаимодействиями. При этом о возбуждении электронной подсистемы поверхности свидетельствуют неравновесная электропроводность [4,5] и люминесценция полупроводников [6,7], а также эмиссия электронов в газовую среду [6,8].

Существование эффекта хемоэмиссии электронов с поверхности металлов и полупроводников в газовую среду [6,8] свидетельствует о том, что энергообмен в ходе экзотермических каталитических реакций сопровождается возникновением в твердых телах возбужденных электронов с избыточной энергией до 2–4 эВ, превышающей работу выхода некоторых материалов. Возможен аналогичный эффект хемоэмиссии горячих электронов из металла в полупроводник [9]. При этом потенциальный барьер для электронов на межфазной

Высокая активность некоторых металлических катализаторов по отношению к гетерогенным химическим реакциям может быть обусловлена участием электронов проводимости в стабилизации молекул промежуточных веществ или продуктов [1-3,7-9]. Однако роль электронной аккомодации в ускорении гетерогенных химических процессов металлами изучена слабо, поскольку методы контроля за электронным возбуждением металлов в ходе гетерогенных процессов не развиты. В качестве такого метода можно использовать эффект прохождения потока горячих электронов, возбужденных в ходе каталитической реакции, через межфазную границу металл-полупроводник [9]. При этом толщина металлической пленки, нанесенной на поверхность полупроводника, не должна превышать длину L релаксации энергии горячих электронов в металле [10]: $L \approx vv^{-1}$, где v — скорость электрона на ферми-поверхности, и — частота столкновений электронов по отношению к обмену энергией. В достаточно чистых металлах основным механизмом установления равновесия в широком диапазоне температур является взаимодействие электронов проводимости с фононами (электрон-электронные столкновения могут стать определяющими лишь при очень низких температурах) [10]. С ростом температуры длина релаксации энергии горячих электронов убывает в связи с ростом частоты электрон-фононных столкновений, которая в случае высоких $(T \gg \theta)$ и низких $(T \ll \theta)$ температур соответственно равна $\nu \sim kTh^{-1}$ и $\nu \sim kT^3h^{-1}\cdot\theta^{-2}$, где θ — дебаевская температура металла, h — постоянная Планка [10]. Используя значения $v = 10^6 \,\mathrm{mc}^{-1}$, $T = 300 \,\mathrm{K}$, получаем оценку $L \approx v v^{-1} \approx 10^{-7} \,\mathrm{m}.$

[¶] E-mail: Kharl@ostu.ru

границе металлическая пленка—полупроводник относительно мал и определяется либо разностью работ выхода контактирующих материалов, либо зарядом поверхности полупроводника, величина которого зависит от плотности поверхностных состояний, типа проводимости и концентрации носителей тока в полупроводнике [11]. Вследствие малой высоты потенциального барьера в контакте токи хемоэмиссии электронов из металла в полупроводник могут быть очень большими.

Цель настоящей работы — исследование условий возникновения эффекта эмиссии горячих электронов, возбужденных в ходе каталитической реакции, через межфазную границу металл—полупроводник, а также теоретическое обоснование возможности практического использования этого эффекта в источниках электрического тока.

Обоснование экспериментального метода

Пусть на поверхности электронного полупроводника имеется тонкая металлическая пленка (образующая обедненный слой в полупроводнике), толщина d которой удовлетворяет условию: $d \ll L$, где L — длина релаксации энергии горячих электронов в металле. При подаче напряжения U между металлической пленкой и полупроводником возникает электрический ток, плотность которого равна [11]:

где

$$j_s = 0.25 \cdot en_0 \vartheta \exp(-au_k);$$

 $j = j_{s} [1 - \exp(aU)],$

е — заряд электрона, n_0 — концентрация электронов проводимости в полупроводнике; ϑ — средняя тепловая скорость электронов в полупроводнике; u_k — контактная разность потенциалов между металлом и полупроводником; $a = e(kT)^{-1}$; k — постоянная Больцмана; T — температура.

Будем осуществлять электронное возбуждение поверхности металлической пленки с помощью каталитической реакции, тогда возникает диффузионный поток горячих электронов, энергия которых в слое металла, толщиной d, уменьшается в $\sim \exp(-d\nu v^{-1}) \approx 1$ раз, т.е. незначительно. Пусть горячие электроны имеют энергию, достаточную для преодоления потенциального барьера на межфазной границе. Тогда, достигнув плоскости контакта, горячие электроны проходят в полупроводник и выталкиваются электрическим полем контакта в объем полупроводника, благодаря изгибу зон вверх на поверхности полупроводника (обусловленному выбором системы металл-полупроводник). При условии $eu_k \gg kT$, если длина экранирования Дебая L_D меньше длины релаксации импульса горячих электронов в полупроводнике L_i и надбарьерным отражением горячих электронов можно пренебречь, тогда значительная часть горячих электронов переходит из металла в полупроводник. В результате этого плотность тока j изменяется на величину j_r и становится равной

$$j^* = j_r + j = e\eta J + j_s [1 - \exp(aU)],$$
 (2)

где $j_r = e\eta J$, J — скорость гетерогенной реакции; $\eta = \beta_1 \beta_2$, β_1 — вероятность образования электронновозбужденного состояния в металле при образовании молекулы продукта, β_2 — вероятность прохождения горячего электрона через металлическую пленку и межфазную границу.

Если электрическая цепь, содержащая полупроводник с пленкой металла на поверхности, разомкнута, то при электронном возбуждении поверхности пленки возникает разность потенциалов V между пленкой и полупроводником. В стационарных условиях величину V определяет условие равенства тока горячих электронов j_r , переходящих из металла в полупроводник, току электронов j_n , переходящих из полупроводника в металл. Ток j_n состоит из тока горячих электронов, испытавших рассеяние в полупроводнике после прохождения контакта, и тока равновесных электронов. Поскольку рассеянные электроны термализованы, вклад горячих электронов в величину j_n можно не учитывать. Используя равенство $j_r = j_n$ и выражение [11]:

$$j_n = j_s \left[\exp(aV) - 1 \right],$$

находим

(1)

$$V = \frac{kT}{e} \ln \left(1 + \frac{e\eta J}{j_s} \right). \tag{3}$$

Если электрическую цепь замкнуть, то напряжение на контакте V_1 будет меньше V и токи j_r и j_n уже не будут компенсировать друг друга. Поэтому в цепи возникает ток, плотность которого равна

$$j_0 = e\eta J - j_s [\exp(aV_1) - 1].$$
 (4)

Таким образом, эмиссия горячих электронов из металла в полупроводник сопровождается эффектами, которые описывают выражения (2), (3) и (4).

Нет принципиальных запретов на выполнение условия $\eta \approx 1$, где $\eta = \beta_1 \beta_2$, $\beta_1 \leq 1$ [1–4], $\beta_2 \approx \exp(-d\nu \nu^{-1}) \leq 1$. Поэтому, согласно выражениям (3) и (4), возможно создание источника тока, использующего энергию гетерогенных химических реакций, протекающих на границе металлического катализатора и газа (в гальванических источниках тока осуществляются электрохимические процессы на поверхности электродов, помещенных в электролит). Мощность, выделяемая во внешней цепи такого источника тока, равна

$$P = j_0 V_1 S = \frac{kT}{e} j_0 S \ln\left(1 + \frac{e\eta J}{j_s} - \frac{j_0}{j_s}\right), \qquad (5)$$

где *S* — площадь поверхности металлической пленки. С целью увеличения мощности источника тока за счет

уменьшения величины j_s (см. выражения (1), (3)–(5)) в качестве подложки для металлической пленки можно использовать плоский p-n-переход (или гетеропереход), электрическое поле которого затягивает горячие электроны в глубь кристалла. При некотором значении плотности отбираемого тока $j_0 = j_m$ мощность максимальна: $P = P_m$. Для нахождения величин j_m и P_m необходимы численные расчеты. Согласно результатам численных вычислений, с ростом величины J максимальная мощность P_m в нагрузке монотонно возрастает. Полагая, что давление газовой смеси принимает разные значения $(10^{-1}-10^5 \Pi a)$ и выполняются равенства T = 300 K, $S = 1 ext{ см}^2, \ j_s = 10^{-6} ext{ Асм}^{-2}, \ \eta = 1, \ ext{c}$ помощью выражений (3)–(5) находим, что при скорости реакции J, равной 10¹⁷, 10¹⁹, 10²¹, 10²³ см⁻² с⁻¹, величины P_m равны соответственно $2.8 \cdot 10^{-3}$, 0.4, 62, $8 \cdot 10^{3}$ Вт, а величины $j_m - 1.4 \cdot 10^{-2}$, 1.5, 150, $1.5 \cdot 10^4 \,\mathrm{Acm^{-2}}$. Мощность источника тока может на порядки превышать мощность электрохимических генераторов, ограниченную процессами диффузии реагирующих веществ в электролите. В качестве примера каталитических реакций, которые, по-видимому, могут быть использованы в источнике тока, можно указать экзотермические гетерогенные процессы $2H_2 + O_2 \rightarrow 2H_2O$, $C_2H_2 + H_2 \rightarrow C_2H_4$, $C_2H_4 + H_2 \to C_2H_6$, протекающие на поверхности платины и палладия при температуре $T = 300 - 350 \,\mathrm{K}$ (две последние реакции имеют важное практическое значение).

Оценим длину релаксации импульса горячих электронов в полупроводнике L_i и длину экранирования Дебая L_D в случае использовавшегося в опытах (см. далее) кремния *n*-типа с удельным сопротивлением $\rho = 100 \, \text{Om} \cdot \text{см}$. Применяя значение подвижности электронов для слабо легированных кристаллов Si при T = 300 K $\mu = 1.3 \cdot 10^3 \text{ см}^2 \text{B}^{-1} \text{c}^{-1}$ [11], находим $n_0 = (e\mu\rho)^{-1} = 5 \cdot 10^{13} \text{ см}^{-3}$. Отметим, что при концентрации примесных атомов $N_t \approx n_0 = 5 \cdot 10^{13} \, {\rm cm}^{-3}$ рассеяние электронов на примесях практически не влияет на величину подвижности электронов [11]. Используем выражение [11] $\mu = e \tau_i m^{-1}$, где τ_i — время релаксации импульса электрона в полупроводнике, т — его масса. Тогда $L_i = \bar{p}_i \tau_i m^{-1} = \bar{p}_i \mu e^{-1}$, где \bar{p}_i — импульс электрона в полупроводнике. При условии $L_{\rm D} < L_i$ имеем $\bar{p}_i \approx p_i$, где p_i — импульс горячего электрона в металле, перешедшего затем в полупроводник. В этом случае получаем оценку: $L_i \approx p_i \mu e^{-1} = (10^{-7} - 10^{-6})$ м (для температуры T = 300 К). При этом $L_{\rm D} = (\varepsilon k T)^{1/2} (4\pi e^2 n_0)^{-1/2}$ $= 2 \cdot 10^{-7}$ м. В случае кремния *p*-типа, используя значения $\rho = 100 \,\mathrm{Om} \cdot \mathrm{cm}, \ \mu_p = 500 \,\mathrm{cm}^2 \mathrm{B}^{-1} \mathrm{c}^{-1}$ [11], аналогичным образом находим $L_{\rm D} = 1 \cdot 10^{-7}$ м. Таким образом, при $T = 300 \,\mathrm{K}$ и $N_t \approx 10^{14} \,\mathrm{cm}^{-3}$ для границы металл-кремний выполняется условие $L_{\rm D} \leq L_i$.

3. Методика эксперимента

В опытах использовали кристаллы кремния *p*-типа (легированные галлием) с удельным сопротивлением 100 Ом · см и кристаллы кремния *n*-типа (легированные мышьяком) с удельным сопротивлением 100 Ом · см. Толщина кристаллов — 0.4 мм, площадь большой грани (далее грань *b*) $S = (2-100) \, \text{мм}^2$. На грань кристалла *b* термическим испарением в вакууме напыляли слой золота или никеля толщиной d, равной 10^{-8} , $3 \cdot 10^{-8}$, 10^{-7} м (пленки толщиной $3 \cdot 10^{-8}$ и 10^{-7} м не удовлетворяют условию $d \ll L$, где $L \approx 10^{-7}$ м при $T = 300 \, \text{K}$). Одновременно металл напыляли на поверхность кварцевого датчика пьезовесов, расположенного возле образцов Si. Толщину d контролировали по уменьшению собственной частоты пьезовесов f, которую измеряли частотомером ЧЗ-54: $d \propto \Delta f$, $\Delta f = f_0 - f$, где f_0 — начальная частота пьезовесов (как известно, изменение толщины кварцевой пластины пьезоэлемента на величину Δx приводит к изменению собственной частоты кварцевого резонатора $\Delta f = f^2 k_f^{-1} \Delta x$, где k_f частотный коэффициент). Относительная погрешность определения величины d составляла 20%.

Кристаллы кремния на поверхности имеют окисную пленку, обусловленную взаимодействием с кислородом воздуха [11]. Эту пленку перед напылением металла удаляли смесью кислот HNO₃ и HF. В опытах использовали также кристаллы без напыленного металла (d = 0). К противоположной грани b, грани кристалла, припаивали или прижимали контакт (площадью S). К напыленному слою металла присоединяли пружинный "точечный" контакт. У кристаллов с площадью грани b $S = 2 \text{ мм}^2$ все грани, за исключением грани b, защищали слоем эпоксидной смолы. У полученных структур металл-полупроводник-металл (МПМ) наблюдались фотоэдс и термоэдс, что соответствует наличию потенциального барьера для электронов или дырок на границе полупроводник-металлическая пленка (его величину определяет заряд поверхности Si [11]). В настоящей работе высота этого барьера не измерялась.

Структуру МПМ включали в измерительную цепь и помещали в проточный реактор. Для электронного возбуждения поверхности металлической пленки использовалась реакция гетерогенной рекомбинации атомов водорода H+H → H₂. Через реактор непрерывно прокачивали спектрально чистый водород при давлении 50 Па. Для получения газа использовали генератор водорода ГВЧ-6; водород чистотой 99.995% предварительно пропустили через колонку с силикагелем. Диссоциацию молекул водорода $(H_2 \rightarrow 2H)$ осуществляли с помощью высокочастотного разряда в газе. Излучение разряда поглощалось рогом Вуда (рис. 1). Отсутствие освещения металлических пленок оптическим излучением газового разряда контролировали по показаниям фотоумножителя. Возникающие в зоне разряда колебательно- и электронно-возбужденные молекулы в процессе диффузии в реактор испытывали не менее 10³ столкновений с молекулами газа, вследствие чего теряли избыток энергии [12]. В отдельных опытах установлено, что электроны и ионы плазмы в процессе диффузии рекомбинировали и не проникали в реактор (при напряжении 100 В, прило-

Рис. 1. Схема опытов: *1* — реактор, *2* — разрядная трубка, *3* — рог Вуда, *4* — образец.

женном к промежутку между пленкой Au и расположенным над ней электродом, электрический ток в газе был меньше $1 \cdot 10^{-13}$ A). Концентрация атомов H в реакторе, измеренная методом термозонда, равнялась $3 \cdot 10^{13}$ см⁻³.

Перед измерениями образцы выдерживались в течение 3 ч в среде атомарного водорода, что приводит к очистке пленки металла от адсорбированных молекул (кислорода, воды и т.д.) в связи с образованием летучих гидридов и распылением в ходе реакции адсорбированного слоя [13,14]. В отдельных опытах образцы приводили в контакт с термопарой. Установлено, что увеличение их температуры вследствие протекания реакции на поверхности пленки золота составляет около 0.2 К.

Обозначим: R_n — сопротивление структуры МПМ при ее включении в цепь минусом источника напряжения к пленке металла, R_n — сопротивление этой структуры при соединении плюса этого же источника тока с пленкой металла. В опытах контролировали изменение во времени сопротивлений R_n и R_p структуры МПМ после включения и выключения источника атомов водорода, разность потенциалов V (хемоэдс), возникшую на контактах структуры МПМ в ходе реакции, и ток короткого замыкания этой структуры на микроамперметр I₀, обусловленный действием хемоэдс. Сопротивления R_n и R_p измеряли с помощью моста постоянного тока УПИП-60М. Величину V измеряли с помошью этого же моста методом компенсации или микровольтметром Ф116. В "холостых" опытах с помощью полупроводникового диода, помещенного в реактор, установлено отсутствие электромагнитных помех (обеспечено экранировкой реактора, разряда и измерительного прибора).

4. Экспериментальные результаты

В среде атомарного водорода эффекты появления разности потенциалов V между пленкой металла (Au, Ni) и полупроводником и изменения сопротивления ΔR структуры МПМ возникают только в случае структур МПМ, содержащих кремний *n*-типа. При тех же условиях в случае образцов МПМ, содержащих кремний *р*-типа, эти эффекты не наблюдаются. Они отсутствуют также, если использовать структуры МПМ с "тонкими" пленками металлов ($d = 1 \cdot 10^{-8}$ м) или кристаллы кремния *n*-типа без напыленного металла (d = 0; верхний "точечный" контакт присоединен непосредственно к грани b кристалла). Указанные выше эффекты наблюдались при толщине пленок $d = 3 \cdot 10^{-8}$ м. Влияние размеров кристаллов Si на величины этих эффектов не обнаружено. Появление атомов водорода в газовой среде влияет на сопротивление структур МПМ только в том случае, если к пленке металла присоединен минус источника тока. После изменения полярности приложенного напряжения эффект не возникает: $\Delta R_p = 0$. С ростом концентрации атомов водорода в газовой среде величины V и ΔR_n увеличиваются. При возрастании температуры (T = 295 - 450 K) величины V и ΔR_n (обратимо) быстро убывают и при *T* ≥ 390 К становятся равными нулю.

В случае протекания реакции $H + H \rightarrow H_2$ на поверхности пленки золота, напыленной на поверхности кремния *n*-типа, получены следующие результаты. После включения источника атомарного водорода сопротивление R_n структур МПМ испытывает скачкообразное уменьшение (на величину ΔR_n), новое значение сопротивления (R_n^*) в среде атомов H не меняется со временем (на интервалах ~ 10^2 с). После выключения источника атомов H это сопротивление скачком приобретает прежнее значение. Если изменить поляр-

Рис. 2. Зависимость сопротивления контакта "пленка золота-кремний *п*-типа" от времени после включения (\uparrow) и выключения (\downarrow) источника атомарного водорода. К пленке золота присоединен: *I* — минус источника тока, *2* — плюс источника тока. *U* = 0.1 B, $d = 3 \cdot 10^{-8}$ м, *T* = 295 K.

Рис. 3. Зависимости сопротивления контакта "пленка золота-кремний *n*-типа" от величины и полярности электрического напряжения на этом контакте в молекулярном (1, 2) и атомарном $(1^*, 2^*)$ водороде (при измерении значений *R* в среде атомарного водорода источник атомов Н включался на 7 с). К пленке золота присоединен: I, I^* — минус источника тока; $2, 2^*$ — плюс источника тока. $d = 3 \cdot 10^{-8}$ м; T = 295 К. Пояснения к вставке см. в тексте.

ность приложенного к структуре МПМ напряжения, то появление атомов H в газовой среде не влияет на величину R_p (рис. 2). Значение приложенного к структуре МПМ электрического напряжения U влияет на величину ΔR_n наблюдаемых скачкообразных изменений величины R_n (рис. 3, кривые 1 и 1^{*}), при этом аналогичная величина ΔR_p остается равной нулю при разных значениях напряжения U (кривые 2 и 2^{*}). Отношения сопротивления структуры МПМ при включенном источнике атомарного водорода R^* к ее сопротивлению при выключенном разряде R зависит от величины и полярности приложенного напряжения U и испытывает скачкообразное изменение при U = 0 (см. вставку на рис. 3).

После включения и выключения источника атомов H величина хемоэдс V, возникающей на контактах структуры МПМ в ходе гетерогенной реакции $H + H \rightarrow H_2$, протекающей на поверхности золотой пленки, и ток короткого замыкания I_0 , обусловленный действием хемоэдс, испытывают скачкообразные изменения; затем не меняются (на интервалах времени $\sim 10^2$ с) (рис. 4). В среде атомарного водорода пленка золота приобретает положительный, а полупроводник отрицательный заряд.

В случае структур МПМ с пленками никеля в тех же условиях величины V и I на 2 порядка меньше, чем в случае структур МПМ с пленками золота. Кроме того, форма кинетических кривых $R_n(t)$, полученных после включения или выключения источника атомов водорода, также иная. После включения источника атомов Н сопротивление R_n структуры МПМ вначале скачком возрастает, а затем медленно убывает. После выключения источника атомов H сопротивление R_n структуры МПМ вначале скачком возрастает, а затем медленно убывает. После выключения источника атомов H сопротивление скачком уменьшается, а затем медленно возвращается к исходному значению (рис. 5, кривая I). Аналогичные

медленные изменения сопротивления этой структуры происходят после включения и выключения подсветки (кривая 1'). При увеличении температуры величина ΔR_n наблюдаемых изменений величины R_n (обратимо) быстро убывает, и для $T \ge 390$ К включение источника атомов Н практически не влияет на сопротивление R_n (кривая 2). Когда плюс источника тока присоединен к пленке никеля, после включения источника атомов Н изменение сопротивления структур МПМ не происходит (кривая 3).

Рис. 4. Зависимость разности потенциалов между пленкой золота и кремнием *n*-типа (*I*) и тока короткого замыкания этой структуры на микроамперметр (*2*) от времени после включения (\uparrow) и выключения (\downarrow) источника атомарного водорода. $d = 3 \cdot 10^{-8}$ м; T = 295 K.

Рис. 5. Зависимости сопротивления структуры "пленка никеля-кремний *n*-типа" от времени после включения (\uparrow) и выключения (\downarrow) источника атомов водорода. *1*, *1'*, *2* — минус источника тока присоединен к пленке никеля; *3* — плюс источника тока присоединен к пленке никеля. *1*, *3* — *T* = 295 K; *2* — *T* = 390 K. *1'* — изменение сопротивления *R_n* во времени после включения и выключения подстветки. *d* = $3 \cdot 10^{-8}$ м; *U* = 1 B.

Физика и техника полупроводников, 2008, том 42, вып. 1

5. Обсуждение результатов

Можно допустить, что в ходе реакции возникает люминесцентное излучение со спектральным составом в ИК-области, лежащим за пределами чувствительности фотоумножителя. Проникновение этого излучения сквозь полупрозрачную пленку металла и его поглощение полупроводником должно сопровождаться возникновением электронно-дырочных пар. Однако эффекты возникновения разности потенциалов V и изменения сопротивления структуры МПМ ΔR под действием атомов Н наблюдаются только в случае структур МПМ с кремнием *n*-типа. При этом величина ΔR отлична от нуля только при одной полярности приложенного напряжения. Эти результаты не могут быть обусловлены воздействием электромагнитного излучения на полупроводник или термоэлектрическими эффектами, связанными с выделением теплоты реакции на поверхности пленки.

"Тонкие" пленки металлов $(d = 1 \cdot 10^{-8} \text{ м})$ имеют мозаичную структуру, поскольку у них отсутствует металлическая поверхностная проводимость. Отсутствие хемоэдс и изменения сопротивления структуры МПМ под действием атомов Н в случае структур МПМ с "тонкими" пленками металлов, а также при отсутствии пленки (d = 0) означает, что для возникновения этих эффектов необходимо наличие сплошной пленки металла, образующей электрический контакт с кремнием, а проникновение атомов Н к поверхности Si не приводит к возникновению изучаемых эффектов. Отсутствие этих эффектов в случае "толстых" пленок ($d = 10^{-7}$ м) обусловлено тем, что условие $d \ll L$ не выполняется, вследствие чего горячие электроны теряют избыточную энергию в толще пленки и не достигают межфазной границы металл-полупроводник. С ростом температуры частота электрон-фононных столкновений возрастает. Поэтому при $T \ge 390 \, \text{K}$ величины V и ΔR_n равны нулю из-за релаксации энергии горячих электронов в толще металлической пленки в связи с нарушением неравенства $d \ll v^{-1}v$.

В условиях опытов после включения источника атомарного водорода скорость гетерогенной реакции $H + H \rightarrow H_2$, протекающей на поверхности металлов (Cu, Pt, Ni), испытывает скачкообразное увеличение, а затем не изменяется. После выключения источника атомов H скорость реакции скачком уменьшается более чем на 2 порядка (эти данные получены посредством регистрации динамического эффекта реакции) [6,7]. Поэтому можно считать, что в случае структур МПМ с пленками золота обнаруженные изменения величин ΔR_n , V и I_0 после включения и выключения разряда происходят синхронно с изменением скорости гетерогенной реакции $H + H \rightarrow H_2$, протекающей на поверхности пленки.

Покажем, что полученные результаты не могут быть объяснены изменением температуры полупроводника вследствие увеличения температуры пленки золота в результате протекания на ее поверхности экзотермиче-

ского процесса $H + H \rightarrow H_2$. После дифференцирования выражения (1) находим:

$$\frac{1}{r} = \frac{dj}{dU} = -aj_s \exp(aU),$$
$$\frac{R_1}{R} = \frac{T_1}{T} \exp\left[a(U - u_k)\left(1 - \frac{T}{T_1}\right)\right],$$
(6)

где r — сопротивление контакта между пленкой золота и полупроводником на единицу его площади; R и R₁ — сопротивление контакта при температурах соответственно T и T₁ (T < T₁). Определенная формулой (6) зависимость величины $R_1 R^{-1}$ от электрического напряжения, приложенного к контакту, — плавная, не содержащая разрывов. Она не соответствует наблюдаемой в опытах зависимости величины R^*R^{-1} от U, содержащей скачкообразное изменение отношения R^*R^{-1} при U = 0(см. вставку на рис. 3). Этот результат свидетельствует о том, что изменение температуры контакта в результате тепловыделения на поверхности пленки Au не оказывает заметного влияния на сопротивление контакта. Следовательно, влияние атомарного водорода на это сопротивление (см. рис. 2 и 3) соответствует неравновесной электропроводности контакта, обусловленной эмиссией из пленки золота в полупроводник неравновесных носителей тока. Этими носителями тока являются электроны, поскольку эффект зависит от полярности приложенного напряжения и возникает только тогда, когда минус источника тока присоединен к пленке золота.

Таким образом, эффект возникновения положительного электрического заряда у пленки Аи и эффект изменения сопротивления R_n структуры МПМ, содержащей кремний п-типа, обусловлены миграцией горячих электронов, возбужденных в ходе гетерогенной реакции, через пленку и межфазную границу металл-полупроводник. Благодаря изгибу зон вверх на поверхности кремния *n*-типа [11] в ходе реакции происходит разделение электрических зарядов на межфазной границе. Отсутствие аналогичных неравновесных эффектов в случае структур МПМ, содержащих кремний р-типа, объясняется тем, что поверхность кремния р-типа захватывает дырки, вследствие чего зоны загнуты вниз [11]. По этой причине отсутствуют условия для разделения зарядов на межфазной границе: горячие электроны, достигнув плоскости контакта, задерживаются электрическим полем контакта и не проходят в полупроводник.

Согласно полученным результатам, эмиссия горячих дырок из пленки золота в кремний *p*- или *n*-типа не наблюдается. Это обусловлено тем, что время жизни горячих дырок в металлах ($\tau_p \leq 10^{-14}$ c [15]) по крайней мере на 2 порядка меньше, чем время жизни горячих электронов, вследствие чего горячие дырки рекомбинируют с электронами внутри пленки, не достигая границы металла с полупроводником. Кроме того, вероятность возникновения горячих дырок в ходе реакции может быть небольшой, если дополнительную энергию получают только те электроны, первоначальная энергия которых близка к энергии Ферми.

Рис. 6. Зависимость коэффициента η от величины и полярности электрического напряжения, приложенного между пленкой золота и кремнием *n*-типа. $d = 3 \cdot 10^{-8}$ м; T = 295 K.

Используем равенства $I = U \cdot R_n^{-1}$, $I^* = U(R_n^*)^{-1}$, где I и I^* — ток через структуру МПМ при выключенном и соответственно включенном источнике атомарного водорода. На основании выражения (2) находим: $\Delta I = I^* - I = e\eta JS$,

$$R_{n}^{*} = \left(R_{n}^{-1} + e\eta JSU^{-1}\right)^{-1},$$

$$\eta = \frac{U}{eJS} \left(\frac{1}{R_{n}^{*}} - \frac{1}{R_{n}}\right).$$
 (7)

Полученная зависимость $R_n^*(U)$ соответствует форме экспериментальных кривых $R_n^*(U)$ (рис. 3, кривая I^*). Используя измеренные в опытах значения $R_n(U)$ и $R_n^*(U)$ (рис. 3), с помощью выражения (7) вычислена величина η и определена ее зависимость от приложенного между пленкой золота и полупроводником напряжения. При этом скорость реакции вычислялась по формуле $J = 0.25 n_a c \gamma$, где n_a — концентрация атомов водорода в газовой среде, с — средняя скорость их теплового движения, у — коэффициент гетерогенной рекомбинации атомов водорода на поверхности золота $(\gamma \approx 0.1 \ [16])$. Наблюдается значительный рост величины η при увеличении приложенного напряжения U (рис. 6). Этот результат означает, что вероятность β_2 прохождения горячего электрона через межфазную границу зависит от U. Эффект может быть обусловлен уменьшением потенциального барьера для электронов, переходящих из металла в полупроводник, при увеличении напряженности приложенного электрического поля [11], вследствие чего возрастает доля горячих электронов, диффундирующих через межфазную границу. Другая возможная причина зависимости $\beta_2(U)$ ограничение тока пространственным зарядом электронов, возможно обусловленным наличием электронных ловушек в приповерхностной области полупроводника.

В случае структуры МПМ с пленкой никеля (рис. 5, кривая *I*), используя значения $S = 2 \text{ мм}^2$, $R_n = 2 \text{ кОм}, R_n^* = 1.8 \text{ кОм}, U = 1 \text{ B}, \gamma = 0.1 [16],$ получаем $\eta = 2.5 \cdot 10^{-2}$.

Медленное изменение сопротивления R_n структур МПМ с пленками никеля после включения и выключения источника атомов Н или подсветки (рис. 5, кривые $1, 1^*$) связано с наличием электронных ловушек на границе Ni и Si и ограничением тока пространственным зарядом электронов в полупроводнике. Ловушки, вероятно, обусловлены диффузией в объем полупроводника атомов никеля, образующих акцепторную примесь в кремнии [11]. Диффузия золота в кремний, сопровождающаяся образованием акцепторных состояний, повидимому, менее значительна из-за относительно больших размеров атомов Аu, вследствие чего кинетические кривые $R_n(t)$ в случае структур МПМ с пленками золота при временном разрешении $\Delta t \approx 1$ с имеют прямоугольную форму (рис. 2, кривая 1). В приповерхностном слое кремния п-типа в связи с захватом электронов поверхностными состояниями возникает инверсионный слой с дырочной электропроводностью [11]. В связи с поступлением в ходе реакции неравновесных электронов из пленки никеля в кремний его удельное сопротивление ρ_0 изменяется на величину $\Delta \rho = \rho - \rho_0$ $=
ho_0[\mu_p(p_0-p)-\mu_e(n-n_0)](\mu_pp+\mu_en)^{-1},$ где n и p концентрации электронов и дырок (на расстоянии х от поверхности в момент времени t); n₀, p₀ — их равновесные значения (при $t \le 0$); μ_e , μ_p — подвижности носителей тока. Поэтому начальное возрастание сопротивления R_n (рис. 5, кривая 1) вызвано рекомбинацией поступающих из металла неравновесных электронов с дырками, из-за чего концентрация носителей тока в контактном запорном слое кратковременно уменьшается. По мере заполнения ловушек концентрация носителей тока (электронов) в запорном слое растет, что приводит к уменьшению R_n во времени.

6. Заключение

Впервые исследовано прохождение горячих электронов, возникающих при каталитической реакции, через межфазную границу металл-полупроводник. Для возникновения эффекта хемоэмиссии электронов из металла в полупроводник должно выполняться условие L > d, где L — длина релаксации энергии горячих электронов в металле, d — толщина металлической пленки, нанесенной на полупроводник. Кроме того, электрическое поле контакта не должно препятствовать проникновению горячих электронов из металла в объем полупроводника. Измерение характеристик эффекта хемоэмиссии ($\eta(U)$, R(t)) дает информацию о несовершенстве межфазной границы металл-полупроводник и о наличии электронных ловушек в приповерхностной области полупроводника.

Для эффективного преобразования с помощью структуры металл-полупроводник выделяющейся в ходе каталитической реакции энергии в энергию электрического тока необходимо в качестве подложки для металлической пленки использовать плоский *p*-*n*-переход (или гетеропереход), электрическое поле которого затягивает горячие электроны в глубь полупроводника.

Авторы благодарят за помощь С.Н. Ромашина, А.А. Яновича и Т.В. Иванова.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 06-08-00079).

Список литературы

- [1] W. Brenig. Z. Phys., **B23** (3), 361 (1976).
- [2] М.А. Кожушнер, В.Г. Кустарев, Б.Р. Шуб. ДАН СССР, 237 (6), 871 (1977).
- [3] B.N. Persson. Sol. St. Commun., 27 (3), 417 (1978).
- [4] В.Ф. Харламов, Ю.И. Тюрин, В.В. Стыров, А.Е. Кабанский. Теорет. и эксперим. химия, 14 (6), 788 (1978).
- [5] В.В. Стыров, А.Е. Кабанский. ЖЭТФ, 76 (12), 1803 (1979).
- [6] В.Ф. Харламов. Рекомбинация атомов на поверхности твердых тел и сопутствующие эффекты (Томск, Изд-во ТГУ, 1994).
- [7] В.Ф. Харламов. Кинетика и катализ, 46 (4), 497 (2005).
- [8] В.Ф. Харламов. Кинетика и катализ, 20 (4), 946 (1979).
- [9] В.Ф. Харламов, А.В. Седов, С.Н. Ромашин. Письма ЖТФ, 30 (17), 48 (2004).
- [10] Е.М. Лифшиц, Л.П. Питаевский. Физическая кинетика (М., Наука, 1979).
- [11] В.Л. Бонч-Бруевич, С.Г. Калашников. *Физика полупровод*ников (М., Наука, 1990).
- [12] А. Каллир, Дж. Ламберт. В кн.: Возбужденные частицы в химической кинетике (М., Мир, 1973).
- [13] Л.Ю. Фроленкова, В.Ф. Харламов, Т.С. Рогожина, К.М. Ануфриев. Конденсир. среды и межфазные границы, 3 (1), 49 (2001).
- [14] В.Ф. Харламов, Л.Ю. Фроленкова, Т.С. Рогожина. ЖТФ, 71 (10), 90 (2001).
- [15] В.И. Векслер. Вторичная ионная эмиссия металлов (М., Наука, 1978).
- [16] В.А. Лавренко. Рекомбинация атомов водорода на поверхности твердых тел (Киев, Наук. думка, 1973).

Редактор Л.В. Беляков

Emission of hot electrons excited in the course of catalytic reaction from metal into semiconductor

V.F. Kharlamov, A.V. Kostin, F.V. Kharlamov

Orel State Technical University, 302020 Orel, Russia

Abstract There are defined properties in the structure "metal film–semiconductor" essential for an effect rise of chemoemission of electrons from metal into a semiconductor. A possibility to generate electricity by means of this effect is substantiated.