Электрофизические свойства облученного протонами CdSnAs₂

© В.Н. Брудный[¶], Т.В. Ведерникова

Томский государственный университет, 634050 Томск, Россия

(Получена 25 апреля 2007 г. Принята к печати 14 мая 2007 г.)

Представлены результаты исследования электрофизических свойств и изохронного отжига кристаллов *n*- и *p*-типа CdSnAs₂, облученных ионами H⁺ (5 MэB, $2 \cdot 10^{16} \text{ см}^{-2}$). Определены предельные электрофизические характеристики облученного материала: постоянная Холла $\langle R_{\rm H} \rangle \approx -1.2 \text{ см}^3/\text{Кл}$, проводимость $\langle \sigma \rangle \approx 1350 \text{ Om}^{-1} \cdot \text{сm}^{-1}$, $\langle |R_{\rm H}| \rangle \langle \sigma \rangle \approx 1500 \text{ см}^2/\text{В} \cdot \text{с}$ и положение уровня Ферми $F_{\rm lim} \approx 0.43 - 0.45$ эВ выше потолка валентной зоны. Вычислено энергетическое положение "нейтральной" точки для соединения CdSnAs₂.

PACS: 61.80.Jh, 72.20.Fr, 72.20.My, 72.80.Jc

Халькопиритное соединение CdSnAs₂ — "прямой" аналог бинарного полупроводника InAs — является полупроводником с малой шириной запрещенной зоны, $E_{o} \approx 0.26 - 0.30$ эВ, малой эффективной массой электронов $m_n \approx (0.015 - 0.020) m_0$ и их высокой подвижностью, со значительным барическим коэффициентом ширины запрещенной зоны, $\sim 13 \cdot 10^{-6}$ эВ/бар, что предполагает возможность использования данного материала для изготовления генераторов Холла и датчиков давления. Соединение получают, как правило, путем непосредственного сплавления исходных веществ, взятых в стехиометрическом соотношении, с последующей перекристаллизацией материала. Характерной особенностью данного полупроводника является устойчивый *п*-тип проводимости специально не легированного материала. Так, концентрация электронов в выращиваемых образцах CdSnAs $_2$ составляет $\sim 1 \cdot 10^{17}$ см $^{-3}$ даже после многократной зонной очистки и перекристаллизации. Кристаллы р-типа проводимости получают только путем перекомпенсации добавлением в расплав примесей Sb или Sb + Cu или последующей диффузией примеси Cu в выращенный материал. Эта особенность CdSnAs₂ приписывается преимущественному формированию собственных дефектов решетки донорного типа при выращивании данного полупроводника [1]. Поэтому проблеме исследования собственных дефектов и их влиянию на свойства данного соединения уделяется особое внимание.

Одним из способов формирования собственных дефектов в полупроводнике с целью их последующего изучения является его облучение высокоэнергетическими частицами — электронами, ионами, нейтронами. Первые работы по исследованию влияния радиационных дефектов на электрофизические свойства CdSnAs₂ были выполнены для кристаллов, облученных электронами с энергией $E \approx 2 \text{ МэВ } [2-4]$, и было показано, что такое облучение приводит к формированию вырожденного материала n^+ -типа проводимости.

В настоящей работе представлены результаты исследования электрофизических свойств CdSnAs₂ *n*-и *p*-типа проводимости, облученного ионами H⁺ (5 MэB). Протонное облучение позволяет создавать высокую плотность дефектов решетки и используется в технологии изготовления проводящих дорожек, для элементной изоляции в микросхемах, при создании световодов и т.п. В эксперименте использован материал, полученный методом направленной кристаллизации из слитков, предварительно синтезированных и подвергнутых зонной очистке. Такой материал имел концентрацию свободных электронов в пределах $3 \cdot 10^{17} - 3 \cdot 10^{19} \text{ см}^{-3}$ с подвижностью электронов 1240-15000 см²/В · с при 78 К. Образцы р-типа проводимости с концентрацией дырок $p = 1.75 \cdot 10^{17} - 2.7 \cdot 10^{18} \,\mathrm{cm}^{-3}$ и подвижностью $140-610 \text{ см}^2/\text{B} \cdot \text{с}$ при 78 K были получены путем диффузионного насыщения примесью Си выращенного материала при температурах 400-570°С. Электрофизические параметры исследованных материалов представлены в табл. 1. Облучение образцов толщиной до 100 мкм, что меньше среднего проецированного пробега протонов с энергией 5 МэВ (~ 120 мкм в CdSnAs₂), проводилось при плотности тока $j = 10^{-8} - 10^{-6} \text{ A/cm}^2$ для температур не выше 320 K интегральными потоками ионов H⁺ до $D_{\rm max} = 2 \cdot 10^{16} \, {\rm cm}^{-2}$ (облучение осуществлялось на циклотроне института ядерной физики при Томском политехническом университете). После облучения образцы выдерживались для спада наведенной активности от нескольких недель до 1-2 лет в зависимости от дозы облучения D.

Результаты исследования электрофизических свойств некоторых образцов представлены на рис. 1. Из этих данных следует, что в случае исходных кристаллов n-CdSnAs₂ наблюдается при облучении уменьшение холловской постоянной R_H для исходных образцов с концентрацией свободных электронов $n_0 < 4.5 \cdot 10^{18} \, {\rm cm}^{-3}$ и ее увеличение для $n_0 > 4.5 \cdot 10^{18} \,\mathrm{cm}^{-3}$. Для исходных кристаллов p-CdSnAs₂ в результате облучения имеет место смена типа проводимости $p \rightarrow n$. При длительном протонном облучении во всех исходных материалах постоянная Холла $R_{
m H}
ightarrow R_{
m H(lim)} pprox -1.3\,{
m cm^3/K}$ л при значениях холловской подвижности $|R_{
m H(lim)}|\sigma pprox 1500\,{
m cm^2/B}\cdot{
m c}$ для 78 К. Это соответствует закреплению уровня Ферми в облученном материале вблизи положения $E_v + (0.43 - 0.45)$ эВ при 78 К (рис. 1). Важно при этом отметить, что в исходных кристаллах с $n_0 = 3 \cdot 10^{19} \, {\rm см}^{-3}$ при облучении протонами концентра-

[¶] E-mail: brudnyi@mail.tsu.ru

Номер образца	Исходные образцы				Образцы после облучения D_{\max}			
	Тип проводимости	<i>R</i> _H , см ³ /Кл	σ , Om ⁻¹ · cm ⁻¹	$ R_{ m H} \sigma,$ cm ² /B · c	Тип проводимости	<i>R</i> _H , см ³ /Кл	σ , $\mathrm{Om}^{-1} \cdot \mathrm{cm}^{-1}$	$ R_{\rm H} \sigma,$ cm ² /B·c
1 (36)	п	0.2	6190	1240	п	0.9	1530	1377
2 (157)	п	1.8	3800	6800	n	1.3	1220	1586
3 (67)	n	8.0	1300	10400	n	1.2	1250	1500
4 (41)	n	16	940	15000	n	1.3	1380	1794
5 (15)	п	19	430	8200	п	0.8	1480	1184
6 (132)	р	35.8	17	610	п	1.2	1240	1488
7 (10)	р	7.7	22	170	n	1.1	1320	1452
8 (162)	p	5.4	26	140	n	0.9	1410	1269
9 (5)	p	2.3	62	140	n	1.4	1180	1652

Таблица 1. Значения $R_{\rm H}$, σ и $|R_{\rm H}|\sigma$ для исходных и облученных ионами H⁺ (5 МэВ) максимальными потоками $D_{\rm max} = 2 \cdot 10^{16} \, {\rm cm}^{-2}$ кристаллов CdSnAs₂

Примечание. Температура измерения 78 К.

ция свободных электронов уменьшается, при этом постоянная Холла также стремится к предельному значению $R_{\rm H(lim)} \approx -1.3 \, {\rm cm}^3/{\rm Kn}$, что указывает на формирование дефектов акцепторного типа при облучении сильно легированного n^+ -CdSnAs₂.

Дозовые зависимости изменения энергетического положения уровня Ферми при протонном облучении для двух исходных образцов CdSnAs₂ *n*- и *p*-типа проводимости представлены на рис. 1. Эти данные качественно подобны соответствующим результатам исследования кристаллов InAs, где также всегда наблюдается смещение уровня Ферми в область разрешенных энергий зоны проводимости при введении радиационных де-

Рис. 1. Дозовые зависимости коэффициента Холла $R_{\rm H}$ (1–3) и энергетического положения уровня Ферми (4, 5) в образцах CdSnAs₂, облученных ионами H⁺ (5 MэB): (1, 4) — образец 1, (2, 3, 5) — образец 9. Температура измерения: (1,3–5) — 300 K, 2 — 78 K.

Физика и техника полупроводников, 2008, том 42, вып. 1

фектов [5]. Закрепление уровня Ферми в предельном положении $F_{\rm lim} \approx E_v + (0.43 - 0.45)$ эВ для исходных образцов *n*- и *p*-CdSnAs₂ указывает на то, что в результате облучения происходит самокомпенсация CdSnAs₂ за счет преимущественного введения радиационных доноров для $n_0 < 4.5 \cdot 10^{18}$ см⁻³ и радиационных акцепторов для $n_0 > 4.5 \cdot 10^{18}$ см⁻³. В условиях закрепления уровня Ферми в облученном CdSnAs₂ плотности заряженных радиационных доноров и акцепторов должны быть близки. Это соответствует степени их взаимной компенсации, близкой к 1, как это имеет место и в облученном InAs [6]. Точность взаимной компенсации радиационных доноров и акцепторов будет тем выше, чем ниже исходный уровень легирования материала и выше доза протонного облучения.

Результаты температурных измерений $R_{\rm H}$, представленные на рис. 2, также подтверждают конверсию типа проводимости в исходных кристаллах p-CdSnAs₂ и переход материала в вырожденное n^+ -состояние при протонном облучении. Все это предполагает, что радиационные дефекты в CdSnAs₂ формируют дефектные состояния (глубокие резонансы) выше дна зоны проводимости, как и в его бинарном аналоге InAs [7]. По аналогии с InAs можно предположить, что такими состояниями могут быть вакансии мышьяка. Следует при этом отметить, что в зоне проводимости исходного CdSnAs₂ обнаруживаются состояния [8], которые иногда приписывают ее сложному строению, хотя это может быть обусловлено именно состояниями ростовых дефектов материала. В частности, положение одной из предположительных подзон зоны проводимости CdSnAs₂ соответствует концентрации свободных электронов $\sim 3.5 \cdot 10^{18}$ см $^{-3}$ [9], что близко к $n_{\rm lim} \approx 4.5 \cdot 10^{18} \, {\rm cm}^{-3}$ в облученных кристаллах CdSnAs₂. Возможно, именно с данными дефектными состояниями связан наблюдаемый преимущственно *п*-тип проводимости выращиваемого материала.

Поскольку величина $F_{\rm lim}$ в облученных полупроводниках "проявляется" как энергетическое положение точки ветвления зонной структуры ("нейтральной" точки) кристалла [10], были проведены расчеты ее значения для

Рис. 2. Температурные зависимости коэффициента Холла $R_{\rm H}$ для образца 7, не облученного (*I*) и облученного ионами H⁺ (5 МэВ) интегральными потоками *D*, см⁻²: 2 — 3 · 10¹⁴, 3 — 1 · 10¹⁵, 4 — 2 · 10¹⁵, 5 — 2 · 10¹⁶.

Рис. 3. Кривые изменения $|R_{\rm H}|$ при изохронном отжиге образцов CdSnAs₂ 9 (*1*-3) и 3 (*4*), облученных ионами H⁺ (5 MэB) интегральными потоками *D*, см⁻²: (*1*, 2) — 2 · 10¹⁵, 3 — 2 · 10¹⁶, 4 — 0. Температура измерения: (*1*, 3, 4) — 300 K, 2 — 78 K.

CdSnAs₂ в двух моделях — модели уровня локальной зарядовой нейтральности F_{lnl} и с помощью оценки величины $\langle E_G \rangle / 2$, отождествляемой с точкой ветвления одномерного кристалла [11]. Здесь $\langle E_G \rangle$ — средний энергетический зазор между нижней зоной проводимости

и верхней валентной зоной в пределах первой зоны Бриллюэна полупроводника. Значения E_{lnl} и $\langle E_G \rangle/2$, вычисленные с использованием 10 спецточек в случае InAs и 2 спецточек (1/4, 1/4, 1/4), (3/4, 1/4, 1/4) в случае CdSnAs₂, представлены в табл. 2. Кроме того, в этой таблице также показано оценочное значение F_{lim}^* (CdSnAs₂), полученное в предположении

$$F_{\text{lim}}^*(\text{CdSnAs}_2) \approx F_{\text{lim}}$$
 (InAs),

что предполагает "близость" электронной структуры собственных дефектов, ответственных за закрепление уровня Ферми в тройных и бинарных аналогах, а также "близость" значений ширины запрещенной зоны. Полученные оценочные и расчетные значения предельного положения уровня Ферми и "нейтральной" точки неплохо соответствуют экспериментальному значению $F_{\rm lim}$ в InAs и несколько хуже в случае CdSnAs₂. Это обусловлено более низкой точностью расчетов E_g , F_{lnl} и $\langle E_G \rangle/2$ в последнем случае, сопоставимой с современной точностью расчетов энергетических спектров тройных полупроводников.

Таблица 2. Расчетные значения E_g , E_{lnl} , $\langle E_G/2 \rangle$, оценочное значение F_{lim}^* (CdSnAs₂) и экспериментальные значения F_{lim} для кристаллов CdSnAs₂ и InAs

Соединение	E_g	F _{lim}	$F_{\lim}^{*}(\mathrm{CdSnAs}_{2})$	F _{lnl}	$\langle E_G/2 \rangle$
CdSnAs ₂ InAs	0.26 0.42	$0.43 - 0.45 \\ 0.54$	0.54	0.60 0.57	0.72 0.50

Примечание. Все значения приведены в эВ, отсчет от потолка валентной зоны.

Результаты исследования термической стабильности радиационных дефектов в облученном протонами исходном образце *p*-CdSnAs₂ представлены на рис. 3. Можно отметить несколько стадий изохронного отжига на слабо облученных кристаллах. При температурах $T_{\rm ann} = 60 - 220^{\circ} {\rm C}$ — отжиг дефектов акцепторного типа. При температурах выше ~ 220°С идет преимущественный отжиг радиационных дефектов донорного типа, при этом конверсия $n \to p$ типа проводимости облученного *p*-CdSnAs₂ наблюдается при температурах отжига вблизи 350°С. "Возврат" электрофизических свойств материала к исходному состоянию (до облучения) требует температур отжига вблизи 500°С. При отжиге исходного n-CdSnAs₂ выше ~ 400°С имеет место "переотжиг" материала, предположительно обусловленный формированием термодоноров в области высоких температур, что наблюдается и для исходных кристаллов InAs при отжиге вблизи 450°С [7]. Более того, известно, что с помощью термической обработки удается осуществить конверсию *p* → *n* типа проводимости для исходных кристаллов p-CdSnAs₂ [1]. Таким образом, термодефекты и радиационные дефекты проявляют донорные свойства и качественно одинаково влияют на электрофизические характеристики соединения CdSnAs₂.

В заключение можно отметить, что CdSnAs2 изменяет свои электрофизические свойства при воздействии высокоэнергетической радиации подобно бинарным полупроводникам группы III-V InAs и InN [5,6,11,12], поскольку уровень Ферми в этих соединениях смещается в зону проводимости при введении радиационных дефектов. Более того, для этих соединений также характерен *п*-тип проводимости специально не легированного выращиваемого материала, что указывает на эффективное формирование собственных дефектов донорного типа при кристаллизации соединений CdSnAs₂, InAs и InN. По-видимому, это обусловлено тем, что "нейтральная" точка для этих материалов расположена в области разрешенных энергий зоны проводимости — на 0.12, 0.18 и на 0.7 эВ выше дна зоны проводимости для InAs, CdSnAs₂ и InN соответственно. Это, согласно модели амфотерного собственного дефекта [13], предполагает высокую эффективность формирования донорных дефектов при положении уровня Ферми ниже "нейтральной" точки полупроводника и дефектов акцепторного типа при положении уровня Ферми выше "нейтральной" точки материала, как при радиационном воздействии, так и при пластической деформации или при формировании границ раздела в полупроводниках — барьеров Шоттки, полупроводниковых гетеропар. Это также обусловливает "легкость" формирования собственных дефектов донорного типа при выращивании данных соединений, что обусловливает преимущественно *n*-тип проводимости специально не легированных кристаллов CdSnAs₂, InAs и InN.

Список литературы

- [1] В.Г. Воеводин, О.В. Воеводина. Диарсенид кадмия-олова (Томск, ТомГУ, 1988).
- [2] В.Н. Брудный, О.В. Воеводина, М.А. Кривов. ФТП, 10 (7), 1311 (1976).
- [3] V.N. Brudnyi, V.G. Voevodin, O.V. Voevodina, M.A. Krivov. Phys. Status Solidi A, 62 (1), 155 (1980).
- [4] В.Н. Брудный. Изв. вузов. Физика, 29 (8), 84 (1986).
- [5] В.Н. Брудный, Н.Г. Колин, А.И. Потапов. ФТП, 37 (4), 408 (2003).
- [6] Н.Г. Колин, В.Б. Освенский, Н.С. Рытова, Е.С. Юрова. ФТП, 21 (3), 521 (1987).
- [7] В.Н. Брудный, С.Н. Гриняев, Н.Г. Колин. ФТП, **39** (4), 409 (2005).
- [8] М.И. Даунов, А.Б. Магомедов, А.Э. Рамазанова. Изв. вузов. Физика, 29 (8), 98 (1986).
- [9] J. Nakashima, C. Hamaguchi. J. Phys. Soc. Japan, 56 (9), 3248 (1987).
- [10] V.N. Brudnyi, S.N. Grinyaev, V.E. Stepanov. Physica B: Condens. Matter, 212, 429 (1995).
- [11] В.Н. Брудный. Автореф. докт. дис. (Томск, ТомГУ, 1988).
- [12] W. Walukiewicz, R.E. Jones, S.X. Li, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff. J. Cryst. Growth, 288 (2), 278 (2005).
- [13] W. Walukiewicz. Phys. Rev. B: Condens. Matter, 37 (9), 4760 (1988).

Редактор Л.В. Шаронова

V.N. Brudnyi, T.V. Vedernikova

Tomsk State University, 634050 Tomsk, Russia

Abstract The electrophysical properties and isochronal annealing results for proton irradiated (5 MeV, $2 \cdot 10^{16} \text{ cm}^{-2}$) CdSnAs₂ are presented. The limit electrophysical properties — Hall's constant $\langle R_{\rm H} \rangle \approx -1.3 \text{ cm}^3/\text{C}$, conductivity $\langle \sigma \rangle \approx 1350 \,\Omega^{-1} \cdot \text{cm}^{-1}$, Hall's mobility $\langle |R_{\rm H}| \rangle \langle \sigma \rangle \approx 1500 \,\text{cm}^2/\text{V} \cdot \text{s}$ and Fermi level position $F_{\rm lim} \approx 0.43 - 0.45 \,\text{eV}$ above the top of valence band in the irradiated material have been estimated. The energetic position of the "neutral" point for CdSnAs₂ is calculated.

Физика и техника полупроводников, 2008, том 42, вып. 1