### Рассеяние электронов на захваченных поверхностных полярных оптических фононах в двухбарьерной гетероструктуре

© Ю. Пожела <sup>¶</sup>, К. Пожела, В. Юцене

Институт физики полупроводников, 01108 Вильнюс, Литва

(Получена 6 февраля 2007 г. Принята к печати 7 февраля 2007 г.)

Показано, что в двухбарьерной гетероструктуре наряду с захватом объемных полярных оптических фононов имеет место захват поверхностных (интерфейсных) фононов. Сила взаимодействия электронов с захваченными интерфейсными фононами снижается с уменьшением толщины фононной ямы — полупроводникового слоя, в котором захвачены фононы. Предложен новый подход для снижения рассеяния электронов полярными оптическими фононами в двухбарьерной квантовой яме, основанный на раздельном захвате фононов в узкие фононные ямы. Вычисленная скорость рассеяния с учетом захвата интерфейсных фононов в квантовых ямах GaAs/InAs/GaAs и AlAs/GaAs/AlAs оказывается много ниже, чем полученная в приближении рассеяния захваченных электронов на объемных фононах. Получено многократное снижение скорости электрон-фононного рассеяния в квантовой яме AlAs/GaAs/AlAs путем разделения ее мономолекулярным слоем InAs, прозрачным для электронов, но являющимся отражающим барьером для полярных оптических фононов.

PACS: 72.10.Di, 73.21.Fg, 73.40.Kp

#### 1. Введение

Неупругое рассеяние электронов полярными оптическими (ПО) фононами является основным механизмом, ограничивающим максимально достижимую дрейфовую скорость электронов, которая в основных полупроводниках, используемых в электронике, не превышает  $(2-5)\cdot 10^7\,\mathrm{cm/c}$ . Снижение неупругого электронфононного рассеяния означает увеличение максимально достижимой дрейфовой скорости электронов в каналах транзисторов. Максимальная дрейфовая скорость определяет максимальную частоту усиления тока и коэффициент усиления (крутизну) транзистора.

С целью повышения максимальной дрейфовой скорости электронов во многих работах исследованы возможности ослабления электрон-фононного рассеяния полярными оптическими фононами в двумерных структурах.

Так, в работах [1-3] показано, что скорость рассеяния (CP) захваченных электронов на захваченных в ту же квантовую яму (КЯ) объемных ПО фононах резко снижается с уменьшением толщины КЯ ниже  $L < L_{\rm opt} \simeq 2\pi/k_{\rm opt}$ , где  $k_{\rm opt}$  есть импульс электрона с энергией, равной энергии оптического фонона. Однако этот эффект снижения СР оказывается полностью скомпенсированным ростом СР электронов в узких КЯ на поверхностных (интерфейсных (ИФ)) фононах, возникающих вследствие захвата в КЯ полярных фононов на границах КЯ [4-7]. Экспериментально большое повышение дрейфовой скорости в узких КЯ наблюдалось лишь при условии подавления рассеяния на ИФ фононах путем введения квантовых точек в границу раздела [8].

Более того, в работах [4,9] показано, что вероятность электрон-фононного рассеяния, независимо от того, захвачены или нет фононы в КЯ, может быть описана

в приближении рассеяния захваченных электронов на объемных фононах. Это широко используемое на практике приближение основано на так называемом правиле сумм, по которому сумма формфакторов вероятностей рассеяния электронов на захваченных объемных и ИФ фононах равна формфактору рассеяния на объемных фононах. Если сила электрон-фононного взаимодействия для всех фононных мод одинакова, то, согласно правилу сумм формфакторов, вероятность рассеяния электрона объемными фононами  $W_{\rm BULK}$  оказывается равной сумме вероятностей рассеяния на захваченных объемных фононах  $W_{\rm C}$  и на ИФ фононах  $W_{\rm IF}$ :

$$W_{\rm BULK} = W_{\rm IF} + W_{\rm C}. \tag{1}$$

 $W_{\rm BULK}$ -приближение всегда дает увеличение вероятности рассеяния с уменьшением толщины КЯ, т.е. снижение подвижности и дрейфовой скорости в каналах полевых транзисторов, по сравнению с объемным материалом.

Однако отличие частот ИФ фононов от частоты объемных фононов приводит к существенной разнице в силе электрон-фононнного взаимодействия для различных мод фононов. Это означает, что при сохранении правила сумм для формфакторов сумма вероятности рассеяния электронов на ИФ фононах и захваченных объемных фононах оказывается отличной от вероятности рассеяния на объемных фононах. Таким образом, широко используемое приближение рассеяния электронов на объемных фононах в общем случае может не иметь места.

В данной работе рассмотрены возможности снижения СР в двухбарьерных структурах за счет изменения силы взаимодействия электронов с различными модами ИФ фононов. Тем самым в работе оценивается применимость приближения рассеяния захваченных электронов на объемных фононах.

<sup>¶</sup> E-mail: pozela@pfi.lt

В качестве способа, позволяющего снизить скорость электрон-фононного рассеяния, рассматривается захват в КЯ не только объемных, но и ИФ фононов.

# 2. Скорость электрон-фононного рассеяния на полярных оптических фононах

Определим зависимость скорости рассеяния электронов, захваченных в КЯ, от рассеивающего потенциала различных мод ПО фононов.

Скорость электрон-фононного рассеяния будем характеризовать частотой перехода захваченного в КЯ толщиной  $L_e$  электрона с начальным волновым вектором  $k_i$  и энергией  $E_i$  в финальное состояние  $k_f$ ,  $E_f$  путем эмиссии (знак "+") или абсорбции (знак "-") ПО фонона с энергией  $\hbar\omega_{\nu}$ :

$$W_{k_{i},k_{f},\nu} = \frac{2\pi}{\hbar} \left( N_{q\nu} \pm \frac{1}{2} + \frac{1}{2} \right) F^{2}(q) |G_{\nu}(z)|^{2}$$

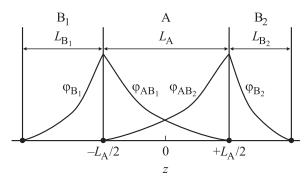
$$\times \delta_{k_{i},k_{f} \mp q} \delta(E_{f} - E_{i} \pm \hbar \omega_{\nu}), \tag{2}$$

где  $N_{qv}=[\exp(\hbar\omega_v/kT)-1]^{-1},\;\delta_{k_i,k_f\mp q}$  — дельта-функция Кронекера,  $E_i=\hbar^2k_i^2/2m$  — энергия электрона. Интеграл  $|G(z)|^2$  — формфактор рассеяния,  $F^2(q)$  — квадрат амплитуды фонона и, следовательно, харатеризует силу электрон-фононного взаимодействия. Вектора электронов k и фононов q лежат в плоскости КЯ (x,y).

После интегрирования по финальным состояниям  $k_f$  получаем

$$W_{k,\nu} = W_0 \left( N_{q\nu} \pm \frac{1}{2} + \frac{1}{2} \right) S \int_0^{2\pi} F^2(q_0) |G_z|^2 d\theta.$$
 (3)

Здесь S — нормировочная площадь в плоскости КЯ,  $W_0 = me^2/\pi\hbar^3$ ,  $q_0$  — волновое число эмиттированного (абсорбированного) фонона,


$$q_0 = \sqrt{k_{\text{opt}}^2 \left[ 2y - (\pm 1) - 2\sqrt{y}\sqrt{y - (\pm 1)}\cos\theta \right]},$$
 (4)

где  $y=E_i/\hbar\omega_{\nu},\ k_{\rm opt}^2=2\hbar\omega_{\nu}m/\hbar^2$  и  $\theta$  — угол между начальным  $k_i$  и конечным  $k_f$  волновыми векторами электрона.

Формфактор электрон-фононного рассеяния

$$|G(z)|^{2} = \left| \int_{-L_{e}/2}^{+L_{e}/2} \varphi_{ei} \varphi_{ef}^{*} \varphi_{v}(z) dz \right|^{2}, \tag{5}$$

где  $\varphi_{ei}$  и  $\varphi_{ef}$  — нормированные волновые функции электронов в начальном и конечном состояниях и  $\varphi_{\nu}(z)$  — огибающая волновой функции фонона.



**Рис. 1.** Схематическое изображение двойной гетероструктуры  $B_1/A/B_2$ . Электроны и фононы захвачены в слое А между двумя барьерами  $B_1$  и  $B_2$ .  $\varphi_{AB}$  — огибающие волновых функций захваченных интерфейсных фононов.

Ввиду трансляционной инвариантности волновую функцию фонона запишем в виде

$$\varphi(q) = F(q)\varphi_{\nu}(z)e^{iqr_{\parallel}}, \tag{6}$$

где  $r_{\parallel}$  — координата фонона в плоскости КЯ. Амплитуда F(q), согласно микроскопической модели ab initio [5,10], равна для ИФ фонона

$$F(q_0) = \sqrt{\frac{\hbar}{S} \frac{1}{\varepsilon_{\rm A}' I_{\rm A} + \varepsilon_{\rm B}' I_{\rm B}}},\tag{7}$$

где  $\varepsilon_{\rm A}'$  и  $\varepsilon_{\rm B}'$  — производные по частоте от диэлектрических функций в материалах A и B (рис. 1), составляющих гетеропереход,

$$I_{A(B)} = \int_{A(B)} \left[ q^2 \left| \varphi_{A(B)\nu}(z) \right|^2 + \left| \frac{d\varphi_{A(B)\nu}(z)}{dz} \right|^2 \right] dz. \quad (8)$$

Для объемных фононов амплитуда

$$F^2(q_0) = \frac{F_0}{Vq_0^2},$$

где

$$F_0 = \left[\varepsilon_{\rm A}'(\omega_{\rm L})\right]^{-1} = \frac{\hbar\omega_{\rm L}}{2} \left(\frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_0}\right),\tag{9}$$

где  $\omega_{\rm L}$  — частота продольного объемного фонона,  $\varepsilon_{\infty}$  и  $\varepsilon_0$  — высокочастотная и статическая диэлектрические постоянные, V — нормировочный объем.

Найдем скорость электрон-фононного рассеяния (3) в конкретной двухбарьерной гетероструктуре, показанной на рис. 1. Для этого определим огибающие функции, частоты и амплитуды ИФ фононных мод в такой гетероструктуре.

### 3. Захват интерфейсных фононов в фононную яму

Согласно модели диэлектрического континуума [4,5,10], частота И $\Phi$  фононов  $\omega_{\nu}$  определяется условием непрерывности индукции поля на границе

гетероперехода:

$$\varepsilon_{\rm A}(\omega_{\nu}) \frac{d\varphi_{\nu}^{\rm A}}{dz} = \varepsilon_{\rm B}(\omega_{\nu}) \frac{d\varphi_{\nu}^{\rm B}}{dz},$$
(10)

где

$$\varepsilon_{\rm A}(\omega_{\nu}) = \varepsilon_{\infty \rm A} \frac{\omega^2 - \omega_{\rm LA}^2}{\omega^2 - \omega_{\rm TA}^2}, \ \varepsilon_{\rm B}(\omega_{\nu}) = \varepsilon_{\infty \rm B} \frac{\omega^2 - \omega_{\rm LB}^2}{\omega^2 - \omega_{\rm TB}^2}$$
 (11)

— диэлектрические функции для бинарных полупроводников A и B, образующих гетеропереход (рис. 1),  $\omega_{\rm LA}$ ,  $\omega_{\rm TA}$  и  $\omega_{\rm LB}$ ,  $\omega_{\rm TB}$  — частоты продольных и поперечных ПО фононов в объеме материалов A и B соответственно.

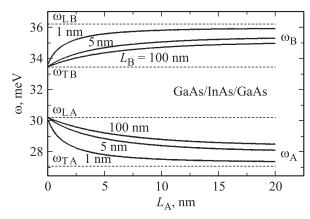
Для единичного гетероперехода дисперсионное уравнение  $\varepsilon_{\rm A}(\omega_{\nu})+\varepsilon_{\rm B}(\omega_{\nu})=0$  имеет решение в виде двух ветвей частот фононов  $\omega_{\rm A}$  и  $\omega_{\rm B}$ , которые лежат в интервалах

$$\omega_{\text{TA}} < \omega_{\text{A}} < \omega_{\text{LA}},$$

$$\omega_{\text{TB}} < \omega_{\text{B}} < \omega_{\text{LB}}.$$
(12)

Частоты  $\omega_A$  и  $\omega_B$  определяются параметрами фононов в материалах A и B соответственно.

Согласно неравенствам (12) и соотношению (11) диэлектрические функции  $\varepsilon_A(\omega_A)$  и  $\varepsilon_B(\omega_B)$  отрицательны. Это значит, что потенциальные волны от ИФ фононов соседних гетеропереходов с частотой  $\omega_A$  и  $\omega_B$  полностью отражаются от границы гетероперехода A/B. Следовательно, в гетероструктуре с двумя барьерами из одинаковых материалов  $B_1/A/B_2$  (рис. 1) затухающий потенциал ИФ фононов левого барьера структуры  $B_1/A$  с частотой в диапазонах  $\omega_A$  и  $\omega_B$  обращается в нуль на границе правого барьера А/B<sub>2</sub>, так же как потенциал ИФ фононов правого барьера обращается в нуль на границе левого барьера.


Следовательно, в слое A между барьерами  $B_1$  и  $B_2$  ИФ фононы оказываются захваченными, так же как и объемные фононы. Такой слой будем называть фононной ямой. Заметим, что подобное обращение в нуль электростатического потенциала от ИФ фонона на гетеропереходе впервые рассматривалось в работе [11].

Огибающие волновых функций ИФ фононов находим из решения уравнения Лапласа

$$\frac{d^2}{dz^2}\varphi_{\nu}(z) = q^2\varphi_{\nu}(z). \tag{13}$$

Огибающие функции захваченных ИФ фононов в фононной яме A можно представить в виде левой и правой функций (рис. 1). Левая огибающая функция соответствует электростатической волне, вызванной колебанием атомов в левой плоскости двойного гетероперехода  $B_1/A$ :

$$\varphi_{AB_{1}} = \frac{\exp(-qz) - \exp(+qz) \exp(-qL_{A})}{\exp(+qL_{A}/2) - \exp(-qL_{A}/2) \exp(-qL_{A})}, 
-\frac{L_{A}}{2} < z < +\frac{L_{A}}{2}.$$
(14)



**Рис. 2.** Частоты переходов захваченных интерфейсных фононов в квантовой яме GaAs/InAs/GaAs в зависимости от ширины фононных ям  $L_{\rm A}$  и  $L_{\rm B}$ .  $\omega_{\rm A}$  и  $\omega_{\rm B}$  — частоты фононных ветвей в InAs и GaAs соответственно. Ширина  $L_{\rm B}$  указана цифрами возле кривых.

Соответственно правая потенциальная функция определяется колебаниями атомов на правой плоскости двойного гетероперехода A/B<sub>2</sub>:

$$\varphi_{AB_{2}} = \frac{\exp(+qz) - \exp(-qz) \exp(-qL_{A})}{\exp(+qL_{A}/2) - \exp(-qL_{A}/2) \exp(-qL_{A})}, 
-\frac{L_{A}}{2} < z < +\frac{L_{A}}{2}.$$
(15)

Частоты колебаний захваченных ИФ фононов определяются, согласно (10), дисперсионными уравнениями:

$$\varepsilon_{\rm A}(\omega_{\nu}) \operatorname{cth} q L_{\rm A} + \varepsilon_{\rm B}(\omega_{\nu}) \operatorname{cth} q L_{\rm B_1} = 0$$
 (16)

для левой волны и

$$\varepsilon_{\rm A}(\omega_{\nu}) \operatorname{cth} q L_{\rm A} + \varepsilon_{\rm B}(\omega_{\nu}) \operatorname{cth} q L_{\rm B_2} = 0$$
 (17)

для правой волны.

Различия в частотах заставляют рассматривать левые и правые И $\Phi$  фононы как самостоятельные не связанные фононные моды.

Захваченные ИФ фононы в отличие от объемных фононов имеют значительную дисперсию в интервале частот (12).

На рис. 2 показаны зависимости от ширины фононной ямы частот  $\omega_{\rm A}$  и  $\omega_{\rm B}$  ИФ фононов в КЯ GaAs/InAs/GaAs шириной  $L_{\rm A}$  с волновым числом

$$q_{\rm opt} = \sqrt{2m\hbar\omega_{\rm LA}}/\hbar, \tag{18}$$

где m и  $\hbar\omega_{\rm LA}$  — масса электрона и частота продольного оптического фонона в InAs соответственно. Частота  $\omega_{\rm B}$ , определяемая материалом барьера (GaAs), с уменьшением ширины фононной ямы  $L_{\rm A}$  снижается вплоть до частоты поперечного фонона в GaAs  $\omega_{\rm TB}=33.4\,{\rm mpB}$  при  $L_{\rm A}\to 0$ , при этом  $\varepsilon_{\rm B}(\omega_{\rm TB})\to\infty$ .

Частота, определяемая параметрами InAs  $\omega_{\rm A}$ , наоборот, с уменьшением ширины  $L_{\rm A}$  растет и при

 $L_{\rm A} \to 0$  достигает частоты продольного фонона в InAs  $\omega_{\rm LA} = 30.2\,{\rm m}_{\rm B}B$ . При этом  $\varepsilon_{\rm A}(\omega_{\rm LA}) \to 0$ . Существенно отметить, что в слое InAs частота  $\omega_{\rm B}$  растет, а частота  $\omega_{\rm A}$  падает с уменьшением ширины фононной ямы барьера GaAs  $L_{\rm B}$ . При малых толщинах барьера  $L_{\rm B}$  частота  $\omega_{\rm A}$  близка к частоте поперечного фонона  $\omega_{\rm TA}$ , что означает рост  $\varepsilon_{\rm A}(\omega_{\rm A})$ .

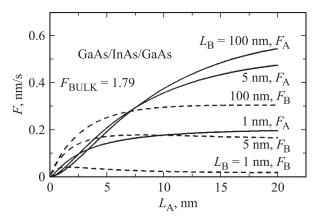
Таким образом, изменяя ширину фононных ям  $L_{\rm A}$  и  $L_{\rm B}$ , можно существенно изменять диэлектрические функции  $\varepsilon_{\rm A}(\omega_{\rm A})$  и  $\varepsilon_{\rm B}(\omega_{\rm B})$ . Причем, регулируя ширину фононной ямы барьера (В), можно изменять частоту ИФ фонона и диэлектрическую функцию в области КЯ (A).

#### 4. Сила электрон-фононного взаимодействия

Дисперсия ИФ фононов существенно изменяет их амплитуду (7) и тем самым силу электрон-фононного взаимодействия  $F^2(q)$ , которую мы будем характеризовать факторами

$$F_{A} = \frac{1}{\varepsilon'_{A}(\omega_{A}) \coth(qL_{A}) + \varepsilon'_{B}(\omega_{A}) \coth(qL_{B})} \frac{1}{q},$$

$$F_{B} = \frac{1}{\varepsilon'_{A}(\omega_{B}) \coth(qL_{A}) + \varepsilon'_{B}(\omega_{B}) \coth(qL_{B})} \frac{1}{q}, \qquad (19)$$


где

$$\begin{split} \varepsilon_{\rm A}'(\omega) &= \frac{2\omega(\omega_{\rm LA}^2 - \omega_{\rm TA}^2)}{(\omega^2 - \omega_{\rm TA}^2)^2}\,\varepsilon_{\infty \rm A}, \\ \varepsilon_{\rm B}'(\omega) &= \frac{2\omega(\omega_{\rm LB}^2 - \omega_{\rm TB}^2)}{(\omega^2 - \omega_{\rm TB}^2)^2}\,\varepsilon_{\infty \rm B}. \end{split}$$

Продемонстрируем на примере двухбарьерной гетероструктуры GaAs/InAs/GaAs широкие возможности инженерии при помощи изменения  $F_{\rm B,A}$ , а тем самым и скорости рассеяния путем подбора параметров КЯ и барьера.

На рис. З показана зависимость силы взаимодействия электрона с фононом с волновым числом  $q_{\rm opt}$  (18) от ширины КЯ и барьера  $L_{\rm B}$ . Примечательны следующие особенности, уменьшающие электрон-фононное взаимодействие с интерфейсными фононами в двухбарьерной гетероструктуре. Прежде всего укажем, что сила связи электрона с объемными фононами  $F_{\rm BULK}=1/\varepsilon_{\rm A}'(\omega_{\rm LA})q_{\rm opt}=1.79$  нм/с оказывается значительно выше, чем  $F_{\rm A}$  и  $F_{\rm B}$ , т.е. амплитуда рассеивающего электроны потенциала захваченных ИФ фононов оказывается много ниже, чем амплитуда потенциала объемного фонона. Более того, величины  $F_{\rm B}$  и  $F_{\rm A}$  уменьшаются с уменьшением ширины КЯ вплоть до полного исчезновения при  $L_{\rm A} \rightarrow 0$ .

Существенным является то, что рассеяние электронов на ИФ фононах в КЯ можно регулировать путем захвата ИФ фононов в области барьера. Как  $F_{\rm A}$ , так и  $F_{\rm B}$  сильно уменьшаются при уменьшении толщины слоя барьера  $L_{\rm B}$ . При малых  $L_{\rm B} \approx 1\,{\rm hm}$  частота  $\omega_{\rm B}$ 

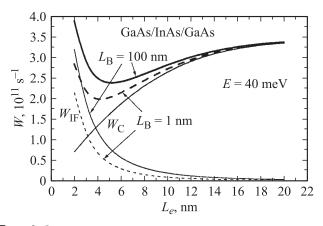


**Рис. 3.** Сила электрон-фононного взаимодействия F в зависимости от ширины фононных ям  $L_{\rm A}$  и  $L_{\rm B}$ . Ширина  $L_{\rm B}$  указана цифрами возле кривых  $F_{\rm A}$  (сплошные кривые) и  $F_{\rm B}$  (штриховые).  $F_{\rm A}$  и  $F_{\rm B}$  — силы взаимодействия с фононами с частотами  $\omega_{\rm A}$  и  $\omega_{\rm B}$  соответственно.

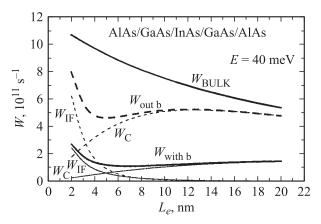
становится близкой к  $\omega_{\text{TB}}$  и электроны почти не взаимодействуют с ИФ фононами с частотой  $\omega_{\text{B}}$ . Фактор  $F_{\text{A}}$  при малых  $L_{\text{B}}$  достигает минимальных значений из-за малой разницы  $\omega_{\text{A}}^2 - \omega_{\text{TA}}^2$  (рис. 3). Отметим, что тонкий слой полупроводника GaAs, будучи помещенным перед широким барьерным слоем AlAs, не только уменьшает величины  $F_{\text{A,B}}$ , но и экранирует электроны в КЯ InAs от взаимодействия с ИФ фононами в AlAs с большой энергией. Такой часто используемый в технологии тонкий интерфейсный слой [12,13], как видим, позволяет уменьшить и электрон-фононное рассеяние на интерфейсных фононах.

#### Рассеяние на захваченных фононах. Фононный барьер

Определим влияние захвата ИФ фононов в фононные ямы на скорость электрон-фононного рассеяния (3) при следующих упрощающих положениях.


Огибающую функцию захваченного объемного фонона положим равной

$$arphi_{\mathrm{C}} = \sum_{n} arphi_{\mathrm{C}n} \; \mathrm{при} \; arphi_{\mathrm{C}n} = egin{cases} \cos(n\pi z/L_{\mathrm{A}}), & n=1,3,\dots \\ \sin(n\pi z/L_{\mathrm{A}}), & n=2,4,\dots \end{cases}$$


Будем рассматривать только внутриподзонные переходы электронов, захваченных в КЯ шириной  $L_e$  с бесконечными барьерами. Их волновую функцию на нижнем уровне положим равной

$$\varphi_e = \sqrt{2/L_e} \cos(\pi z/L_e). \tag{21}$$

Зависимости скорости рассеяния (CP) на оптических фононах электронов с энергией выше энергии ИФ фононов от толщины КЯ  $L_e$  в структуре GaAs/InAs/GaAs



**Рис. 4.** Зависимости скорости рассеяния  $W=W_{\rm C}+W_{\rm IF}$  электронов с энергией 40 мэВ, захваченных объемными  $(W_{\rm C})$  и интерфейсными фононами  $(W_{\rm IF})$  от ширины GaAs/InAs/GaAs-кванатовой ямы  $L_e$  при двух значениях ширины  $L_{\rm B}$  ямы в барьере GaAs, укзанных на рисунке.



**Рис. 5.** Зависимости скорости рассеяния  $W=W_{\rm C}+W_{\rm IF}$  электронов с энергией 40 мэВ от ширины  $L_e$  квантовой ямы AlAs/GaAs/AlAs в отсутствие  $(W_{\rm out\,b})$  и при наличии тонкого  $(1\,{\rm Hm})$  барьера InAs в центре квантовой ямы GaAs  $W_{\rm with\,b}$ . Кривая  $W_{\rm BULK}$  — скорость рассеяния в приближении рассеяния захваченных электронов на объемных фононах.  $L_{\rm B}=100\,{\rm Hm}$ .

показаны на рис. 4. Отдельно выделены СР с эмиссией и абсорбцией ИФ  $W_{\rm IF}$  и объемных  $W_{\rm C}$  фононов. Как видим, сильное понижение силы взаимодействия электронов с ИФ фононами приводит к значительному понижению электрон-фононного рассеяния в узких КЯ. Более того, сильное понижение СР электронов на захваченных объемных фононах  $W_{\rm C}$  с уменьшением  $L_e$ не компенсируется ростом  $W_{\rm IF}$ . В результате полная скорость электрон-фононного рассеяния  $W=W_{\rm C}+W_{
m IF}$ в узкой КЯ толщиной 5 нм оказывается в 1.5 раза ниже, чем в широкой (20 нм). Этот эффект еще усиливается, если барьерные слои GaAs представляют собой тонкие экраны ( $L_{\rm B}=1\,{\rm HM}$ ). В этом случае в соответствии с уменьшением силы электрон-фононной связи рассеяние на ИФ фононах в КЯ еще более снижается, как это показано на рис. 4.

В работах [2,3] было предложено для снижения электрон-фононного рассеяния вводить в КЯ тонкий фононный барьер, неискажающий электронную волновую функцию. В работе [11] было подтверждено, что введение фононного барьера в центр электронной КЯ значительно снижает вероятность рассеяния на захваченных объемных фононах, однако рассеяние на потенциале захваченных ИФ фононов от введенного барьера в точности компенсирует это снижение. В работе [11] не учитывалась дисперсия ИФ фононов. Поэтому такой же вывод следует и из правила сумм для вероятностей рассеяния (1).

Однако дисперсия различных мод ИФ фононов показывает, что сила электрон-фононной связи резко ослабляется с уменьшением ширины КЯ (рис. 3). Поэтому деление КЯ на две с меньшими ширинами ведет к снижению вероятности рассеяния электрона на захваченных ИФ модах фононов боковых поверхностей КЯ. Это означает снижение общей вероятности электрон-фононного рассеяния в КЯ, разделенной фононным барьером.

На рис. 5 показаны зависимости СР электронов на захваченных как ИФ, так и объемных фононах от ширины КЯ GaAs, в структуре AlAs/GaAs/InAs/GaAs/AlAs как в отсутствие, так и при введении в центр квантовой ямы GaAs, тонкого (< 1 нм) слоя InAs, прозрачного для электронов, но являющегося барьером для ПО фононов.

Тонкий фононный барьер InAs в несколько раз уменьшает рассеяние на захваченных объемных фононах, которое не компенсируется ростом рассеяния на ИФ фононах. Несмотря на увеличение в 2 раза числа поверхностей из-за введения барьера в центр КЯ, рассеяние на захваченных ИФ фононах оказывается меньше, чем в случае отсутствия барьера.

Введение фононного барьера в КЯ в условиях захвата как ИФ, так и объемных ПО фононов, является эффективным инструментом, позволяющим снизить электрон-фононное рассеяние и повысить подвижность и дрейфовую скорость электронов. По-видимому, экспериментально наблюдаемый рост подвижности и дрейфовой скорости насыщения в InGaAs/InAlAs-MODFET-структурах при введении в КЯ тонких барьеров InAs [12,13] можно связывать и с изложенным выше явлением снижения электрон-фононного рассеяния на полярных оптических фононах.

Следует отметить, что СР, рассчитанная в приближении рассеяния на объемных фононах ( $W_{\rm BULK}$ ) в узких образцах, где доминирует ИФ рассеяние, значительно превышает СР, рассчитанную с учетом захвата и дисперсии фононов (рис. 5). Это указывает на непригодность  $W_{\rm BULK}$ -приближения для расчета СР в узких КЯ.

#### 6. Заключение

Таким образом, амплитуда потенциала интерфейсных и объемных фононов (а тем самым и сила электронфононного взаимодействия) резко понижается при за-

хвате фононов в фононную яму. Чем уже фононая яма, тем меньше амплитуда фонона. В соответствии с этим сила электрон-фононного взаимодействия при уменьшении ширины фононной ямы уменьшается вплоть до исчезновения при нулевой ширине фононной ямы. Уменьшая ширину фононных ям, в том числе путем введения в квантовую яму фононных барьеров, можно снизить скорость электрон-фононного рассеяния в активной области электронной квантовой ямы.

Снижение скорости электрон-фононного рассеяния в электронной квантовой яме можно также получить путем экранирования боковых барьеров квантовой ямы тонкими барьерными слоями — фононными ямами для интерфейсных фононов.

На примере конкретных структур GaAs/InAs/GaAs и AlAs/GaAs/AlAs показано, что приближение рассеяния электронов на объемных фононах, неучитывающее дисперсии интерфейсных фононов, непригодно для расчетов скорости рассеяния в узких квантовых ямах.

#### Список литературы

- [1] Ю. Пожела, В. Юцене. ФТП, 29, 459 (1995).
- [2] J. Požela, V. Jucienė, K. Požela. Semicond. Sci. Technol., 10, 1555 (1995).
- [3] J. Požela, V. Jucienė, A. Namajūnas, K. Požela. Lithuan. J. Phys., 37, 433 (1997).
- [4] N. Mori, T. Ando. Phys. Rev. B, 40, 6175 (1989).
- [5] I. Lee, S.M. Goodnick, M. Gulia, E. Molinari, P. Lugli. Phys. Rev. B, 51, 7046 (1995).
- [6] C.R. Bennett, M.A. Amato, N.A. Zakhleniuk, B.K. Ridley, M. Babiker. J. Appl. Phys., 45, 1499 (1998).
- [7] J. Požela, A. Namajūnas, K. Požela, V. Jucienė. Physica E, 5, 108 (1999).
- [8] Ю.К. Пожела, В.Г. Мокеров. ФТП, 40, 362 (2006).
- [9] L.F. Register. Phys. Rev. B, 45, 8756 (1992).
- [10] H. Rücker, E. Molinari, P. Lugli. Phys. Rev. B, **45**, 6747 (1992)
- [11] B.K. Ridley, M. Babiker, N.A. Zakhleniuk, C.R. Bennett. In: *Proc. 23rd Int. Conf. "The Physics of Semiconductors"* (Berlin, 1996) (Singapore, World Scientific, 1996) p. 1807.
- [12] Dong Xu, H.G. Hei
  ß, S.A. Kraus, M. Sexl, G. Böhm, G. Tränkle, G. Weimann. IEEE Trans. Electron. Dev., 45, 21 (1998).
- [13] D. Xu, J. Osaka, Y. Umeda, T. Suemitsu, Y. Yamane, Y. Ishii. IEEE Electron. Dev. Lett., **20**, 109 (1999).

Редактор Т.А. Полянская

## Electron scattering by confined interface polar optical phonons in a double heterostructure

J. Požela, K. Požela, V. Jucienė

Semiconductor Physics Institute, 01108 Vilnius, Lithuania

**Abstract** It is shown that in double heterostructures, interface polar optical phonons are confined in a quantum well as well as bulk phonons. The electron-confined interface phonon interaction strength decreases with a decrease of the width of the phonon well — the semiconductor layer in which the phonons are confined. A new approach for the reduction of the scattering rate of electrons by polar optical phonons in two-dimensional quantum well is based on a separate confinement of the phonons into narrow phonon wells. The calculated scattering rate taking into account the confinement of interface phonons in GaAs/InAs/GaAs and AlAs/GaAs/AlAs quantum wells is found to be more lower than the calculated scattering rate within the bulk phonon approximation. The multifold decrease of the electron-phonon scattering rate is obtained in the AlAs/GaAs/AlAs quantum well when a thin one monomolecular InAs layer (reflective to polar optical phonons and transparent for electrons) is incorporated into the quantum well.