Неустойчивость тока и *N*-образная вольт-амперная характеристика в кремниевом *p*-*i*-*n*-диоде в магнитном поле

© И.К. Камилов, К.М. Алиев, Б.Г. Алиев, Х.О. Ибрагимов[¶], Н.С. Абакарова

Институт физики Дагестанского научного центра Российской академии наук, 367003 Махачкала, Россия

(Получена 28 августа 2006 г. Принята к печати 30 октября 2006 г.)

Приведены экспериментальные результаты исследования p-i-n-структур на основе электронного кремния с удельным сопротивлением $\rho = 120 \text{ OM} \cdot \text{см.}$ Исследовались динамические S-образные вольт-амперные характеристики при различных значениях приложенного магнитного поля. Обнаружено возникновение колебаний тока и напряжения большой амплитуды при 2 кЭ. Дальнейший рост величины магнитного поля приводит к нарастанию амплитуды колебаний и появлению высокочастотной моды колебаний с частотой ~ 3 МГц, которая модулирует низкочастотную. Магнитное поле выше 5 кЭ уменьшает амплитуду обеих мод колебаний тока и полностью подавляет колебания в цепи, S-образность исчезает. В соответствии с теорией на экспериментальных вольт-амперных характеристиках впервые обнаружены участки отрицательной дифференциальной проводимости N-типа при выполнении условия сильного магнитного поля, выбранной геометрии образца и соответствующих значениях электрического поля.

PACS: 73.40.Lg

S-образные вольт-амперные характеристики (BAX) и автоколебательные процессы в компенсированых кремниевых p-i-n-структурах, содержащих глубокие уровни Au, Ni, Co, In, Mn, S, достаточно подробно исследованы [1-5] с целью создания генераторов инфранизких частот, датчиков давления и температуры с частотным выходом сигнала. Низкочастотные колебания тока (пульсации) в кремниевых *p*-*i*-*n*-структурах наблюдались в том числе на положительной ветви ВАХ, где отрицательная дифференциальная проводимость S-типа не наблюдается [6]. Мультистабильные ВАХ S-типа и колебания в кремниевых p-i-n-структурах как результат шнурования тока и неоднородного распределения плотности носителей заряда по сечению образца исследованы в [7]. Образование, движение и перестройка пространственно-временных структур в кремниевых *p*-*i*-*n*-диодах с ростом электрического поля продемонстрированы в работах [8-10], в которых наблюдалось и исследовано поглощение в инфракрасной области, рекомбинационное излучение из образца и распределение потенциала по длине структуры.

Результаты экспериментального исследования автосолитонов с самопроизводством носителей заряда при ударной ионизации глубоких акцепторных уровней индия в кремнии при 77 К в сильных электрических полях приведены в работе [10].

Итоги многочисленных работ по изучению влияния магнитного поля на процессы переноса тока в структурах с двойной инжекцией, направленных на разработку приборов с высокой магниточувствительностью и хорошими переключающими характеристиками, обобщены в монографии [11].

В теоретической работе [12] рассматриваются электрические свойства полупроводников с *S*-образной ВАХ в скрещенных магнитном и электрическом полях. Показано, что в этих условиях в образце формируется уединенная волна плотности тока (шнур тока), движущаяся с постоянной скоростью в направлении, перпендикулярном электрическому (E) и магнитному (H) полям. Это явление приводит к колебаниям электрического поля во внешней цепи, изменению ВАХ образца, а в сильных магнитных полях *S*-образность может исчезнуть и даже перейти в *N*-образность, то должно привести к исчезновению шнура тока.

Ранее в работе [13] экспериментально было показано, что неустойчивость тока в кремниевой p-i-n-структуре с *S*-образной BAX возникает в определенном интер-

Рис. 1. Семейство восходящих ветвей ВАХ для структуры с L = 0.45 мм при различных значениях поперечного магнитного поля *H*, кЭ: 1 - 0, 2 - 2, 3 - 3, 4 - 4.5.

[¶] E-mail: khmurat@iwt.ru

Рис. 2. Динамика развития неустойчивости тока при заданном магнитном поле $H = 3 \, \text{к} \Im$ с ростом электрического поля $(a \to f)$. Напряжение — верхний импульс, ток — нижний.

вале напряженности магнитного поля, ее особенности связаны с влиянием магнитного поля на неравновесные процессы в базовой части *p*-*i*-*n*-структуры и обусловленными ими изменениями инжекционного тока.

В настоящем сообщении приведены экспериментальные результаты исследования кремниевых p-i-n-структур на основе электронного кремния с удельным сопротивлением $\rho = 120 \text{ См} \cdot \text{см}$ в импульсном электрическом поле и постоянном поперечном магнитном поле до 12 к при температуре 77 К. Типичные размеры структур (0.3–0.5) $\times 3 \times 3 \text{ мм}$ (размер 0.3–0.5 соответствует длине диода L). Структуры были изготовлены

методом диффузии при 1300°С с глубиной залегания p-n-перехода 40 мкм. Методом высокочастотного вплавления на один торец образца наносился токовый контакт из золота с 0.4% сурьмы, на другой — из алюминия. Во избежание джоулева разогрева структуры измерения проводились в импульсном режиме генератора напряжения. Восходящие (при увеличении напряжения) и нисходящие (при уменьшении) ветви ВАХ записывались на треугольных импульсах длительностью $\tau_p = 300$ мкс. Динамика переходных процессов изучалась на прямоугольных импульсах напряжения длительностью $\tau_p = 50-500$ мкс. Для введения в компьютер

Рис. 3. Динамика развития неустойчивости тока с ростом электрического поля: $(a \rightarrow e)$. Угол между **E** и **H** 45°, H = 3.5 кЭ.

временны́х реализаций колебаний напряжения U и тока I использовался двухканальный аналогово-цифровой преобразователь с частотой выборки 200 мГц. На их основе строились ВАХ, фазовые портреты, бифуркационные диаграммы, мощностные спектральные характеристики.

На рис. 1 показано семейство прямых восходящих ветвей ВАХ для структуры с L = 0.45 мм при различных значениях поперечного магнитного поля. Общее поведение этого семейства ВАХ типично для объемных кремниевых магнитодиодов: ВАХ до *S*-срыва практически не зависит от магнитного поля. Магнитное поле до 5 кЭ приводит к полному исчезновению области отрицательного дифференциального сопротивления, а вольтовая магниточувствительность равна 10 мВ/Э, что соответствует значениям лучших кремниевых магнитодиодов.

Как видно из рис. 1, на S-участке в магнитном поле 2кЭ (кривая 2) возникают колебания тока и напряжения большой амплитуды, а с дальнейшим ростом величины магнитного поля протяженность S-области распространяется на большую часть ВАХ, амплитуда колебаний нарастает и появляется более высокочастотная мода колебаний (~ 3 МГц), которая модулирует низкочастотную. Магнитное поле выше 5кЭ сначала уменьшает амплитуды обеих мод колебаний тока, а затем полностью подавляет колебания в цепи структуры, S-образность ВАХ исчезает. На восходящих и нисходящих ветвях динамических ВАХ всегда наблюдается гистерезис, связанный с изменением концентрации носителей тока при увеличении уровня инжекции с ростом величины приложенного к образцу напряжения и тем, что времена измерения совпадают по порядку величины с временами жизни неравновесных носителей,

Рис. 4. ВАХ p-i-n-структуры (a, b), а также динамика переключения и осцилляции на импульсах тока и напряжения (c, d) в поперечных магнитных полях $H = 10 \, \text{к} \Im (a, c)$ и 12 к $\Im (b, d)$.

участвующих в процессах переноса тока. Исследование динамики шнура тока в магнитном поле на прямоугольных импульсах напряжения в двухпараметрическом пространстве (H-E) показывает (рис. 2, *a*), что при малых значениях приложенного напряжения магнитное поле полностью подавляет образование шнура тока: от импульса тока, проходящего по структуре, остается соответствующий по амплитуде току без магнитного поля пик с длительностью ~ 10 мкс, и по структуре ток практически не проходит. Дальнейшее увеличение электрического поля приводит к переносу тока в колебательном режиме определенное время, величина которого обусловлена полями Н и Е. Ток в образце снова уменьшается до нуля, так как шнур тока разрушается магнитным полем за счет уменьшения числа носителей в шнуре вследствие магнитоконцентрационного эффекта и недостаточности электрического напряжения для поддержания заданного тока в шнуре (рис. 2, b). При дальнейшем увеличении электрического поля структура

Физика и техника полупроводников, 2007, том 41, вып. 8

переходит в режим автоколебаний, когда в образце имеют место обе моды колебаний. Интересно отметить, что в двухпараметрическом пространстве (H-E) существуют области, где увеличение электрического и магнитного полей приводит к процессам хаотизации (через каскад удвоения периода или перемежаемость) (рис. 2, c-f).

Колебания тока и напряжения в структуре наблюдаются в широком интервале углов между электрическим и магнитным полями. При отклонениях от положения $\mathbf{E} \perp \mathbf{H}$ вплоть до 45° картина осцилляционных явлений становится богаче и разнообразнее. Так, на рис. 3, *a*, *b* приведены осциллограммы колебаний тока и напряжения, снятые с экрана осциллографа, и тока на рис. 3, *c*-*e* (сигнал в АЦП) по мере роста величины приложенного электрического поля, когда угол между **E** и **H** составляет ~ 45°. Хорошо видны для низкочастотных колебаний циклы периодов 1, 2, 4 и редко проявляющийся в эксперимете цикл периода 8. Дальнейший рост

электрического поля при заданном значении магнитного поля приводит к подавлению низкочастотной моды, и система при этом не проявляет процессов хаотизации, которые можно было бы ожидать по сценарию Фейгенбаума (субгармонический каскад), проявляется только высокочастотная мода (рис. 3, e).

Как следует из теории [12], при токах, соответствующих участку отрицательного дифференциального сопротивления, однородное распределение становится неустойчивым, что приводит к образованию шнура тока, который является устойчивым, если задан полный ток через образец. При включении магнитного поля шнур тока (область повышенной температуры) начинает перемещаться по образцу в направлении действия силы Лоренца. За счет отклонения носителей тока в магнитном поле возникает дополнительный поток $\delta(T)E$, соответствующий потоку Эттингсгаузена при закороченной цепи в поперечном направлении, что приводит к разности потоков на границах шнура. Если коэффициент δ увеличивается с ростом температуры T, то это приводит к дополнительному прогреванию материала на переднем фронте, а на заднем — к охлаждению, что вызывает движение шнура тока. Решение уравнения, описывающего движение шнура тока в магнитном поле [12], было найдено в виде уединенной стационарной волны T(x - vt), движущейся с постояной скоростью v. В случае сильных магнитных полей ($\Omega \tau \gg 1$, где Ω — ларморовская частота, τ — время релаксации импульса), как показывает теория [12], перекрестные термомагнитные коэффициенты не зависят от механизма рассеяния импульса, а значит, и от температуры. При этом скорость движения шнура совпадает с дрейфовой скоростью электронов в магнитном поле v = cE/H, и в режиме с закороченным холловским током S-характеристика может исчезнуть и даже перейти в *N*-образную, что приведет к исчезновению шнура тока.

Подбором соответствующей геометрии образца с межконтактным расстоянием L = 0.3 мм мы изучали ВАХ наших структур в поперечных магнитных полях до 12 кЭ, что достаточно для выполнения условия сильного магнитного поля ($\Omega \tau \gg 1$) при 77 К в кремнии. На рис. 4, *а* приведены ВАХ такой структуры в момент подавления *S*-образности, на рис. 4, *b* — в момент зарождения *N*-образности на ВАХ.

На рис. 4, *c*, *d* на прямоугольных импульсах показана динамика переключения тока в области ВАХ, соответствующей *N*-переключению при двух близких значених магнитного поля H = 10 и 12 кЭ. При соответствующем подборе нагрузочного сопротивления при *N*-переключении на токовом импульсе проявляются колебания тока, соответствующие этому падающему участку ВАХ. Что касается выбросов тока, которые наблюдаются на ВАХ до *S*- и *N*-переключения в сильных электрических полях, по-видимому, они аналогичны результатам, полученным в [10]. Однако в изученных нами образцах, как показали оптические и температурные исследования, глубокие уровни отсутствуют.

Работа выполнена при финансовой поддержке грантов РФФИ № 05-02-16609, № 06-02-96613 и гранта № НШ-2253.03.2 на базе приборного парка аналитического центра ДНЦ РАН.

Список литературы

- [1] N. Holonyak, S.F. Bevacgua. Appl. Phys. Lett., 2, 71 (1963).
- [2] K. Shonhno. Jap. J. Appl. Phys., 4, 699 (1965).
- [3] Э.И. Каракушан, В.Я. Коварский, К.Ф. Комаровских, Е.И. Гамолин, В.И. Стафеев. ФТП, 3, 1724 (1969).
- [4] Э.И. Каракушан, В.Я. Коварский, К.Ф. Комаровских, Ю.В. Кружанов, В.И. Стафеев. ФТП, 4, 628 (1970).
- [5] Е.И. Гамолин, Э.И. Каракушан, В.Я. Коварский, В.И. Стафеев. ФТП, 9, 1465 (1975).
- [6] T. Hayashi, T. Morita, M. Fukaya, A. Hasegawa. Jap. J. Appl. Phys., 13, 1667 (1974).
- [7] R. Symanchyk, E. Pieper, D. Jäger. Phys. Lett. A, 143, 337 (1990).
- [8] R. Symanchyk, D. Jäger, E. Schöll. Appl. Phys. Lett., 59, 105 (1991).
- [9] R. Symanchyk, S. Gaelings, D. Jäger. Phys. Lett. A, 160, 397 (1991).
- [10] А.М. Мусаев. ФТП, 38, 1030 (2004).
- [11] В.И. Стафеев, Э.И. Каракушан. *Магнитодиоды* (М., Наука, 1975).
- [12] А.К. Звездин, В.В. Осипов. ЖЭТФ, 58, 160 (1970).
- [13] Х.И. Амирханов, Р.И. Баширов, М.Р. Исаев, Б.Г. Алиев. ФТП, 9, 2198 (1975).

Редактор Л.В. Шаронова

Instability of current and *N*-shaped current–voltage characteristic in silicon p-i-n-diode under magnetic field

I.K. Kamilov, K.M. Aliev, B.G. Aliev, Kh.O. Ibragimov, N.S. Abakarova

Institute of Physics, Dagestan Scientific Centre, Russian Academy of Sciences, 307003 Makhachkala, Russia

Abstract Results of experimental investigation of n-Sip-i-n-structures with resistivity $\rho = 120 \,\Omega \cdot \text{cm}$ are presented. S-type dynamical current-voltage characteristics under different values of applied magnetic fields have been investigated. The arising of current and voltage oscillations with large amplitude have been found at 2 kOe. Further rise of magnetic field leads to increase of oscillation amplitude and appearance of high-frequency mode of oscillation with frequency $\sim 3 \, \text{MHz}$, which modulates the low-freguency one. Magnetic field above 5kOe decreases the amplitude of both current oscillation modes and completely quenches the oscillation in the circuit, and the S-behaviour of current-voltage characteristic disappears. Accordingly to the theory, for the first time the negative differential conductivity regions of N-type have been found experimentally on the current-voltage characteristic under high magnetic field at the given geometry of the sample and the corresponding electric field.