Электронный парамагнитный резонанс взаимодействующих спинов в *n*-Ge. I. Спектр и *g*-фактор

© А.И. Вейнгер[¶], А.Г. Забродский, Т.В. Тиснек, С.И. Голощапов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 20 ноября 2006 г. Принята к печати 30 ноября 2006 г.)

Изучено изменение спектра электронного парамагнитного резонанса и g-фактора, обусловленное взаимодействием спинов в изоляторном состоянии n-Ge: As вблизи фазового перехода изолятор-металл. Обнаружено, что в этой области происходит уменьшение g-фактора с ростом уровня легирования, и в непосредственной близости от перехода появляется анизотропия g-фактора. Проанализировано влияние компенсации и возникающего антиферромагнитного упорядочения на величину g-фактора. Показано, что с приближением к точке перехода резко возрастает высокотемпературная граница наблюдения электронного парамагнитного резонанса.

PACS: 71.20.Mq, 71.30.+h, 76.30.Da

1. Введение

Как известно, электронный парамагнитный резонанс (ЭПР) в окрестности фазового перехода изоляторметалл (ИМ) в полупроводниках [1-4] претерпевает ряд изменений, связанных с взаимодействием спинов. Первые измерения ЭПР взаимодействующих спинов были проведены в n-Si: P [1]. В этом материале вблизи фазового перехода в изоляторном состоянии наблюдалось исчезновение сверхтонкой структуры и антиферромагнитный сдвиг резонансной линии. Значительно позже был исследован ЭПР в n-Ge: As главным образом в металлическом состоянии [2]. В этом состоянии резонансные линии имели дайсоновскую форму, что связано с высокой проводимостью образцов. Кроме того, наблюдалось увеличение ширины резонансной линии по мере увеличения степени компенсации образцов. Анализ ЭПР-спектров в 4H-SiC:N и n-Ge:As в изоляторном состоянии [3,4] позволил установить резкое уменьшение концентрации одиночных спинов по мере приближения к критической точке фазового перехода ИМ и существование антиферромагнитного сдвига резонансной линии в области перехода, качественно такого же, как в Si.

Оказалось, что во всех исследованных материалах наиболее заметные изменения ЭПР-спектров наблюдаются в основном в изоляторном состоянии. В связи с этим в настоящей работе нами проведено более глубокое изучение магнитных свойств *n*-Ge: As в этом состоянии вблизи фазового перехода ИМ. При приближении к критической концентрации наряду с исчезновением сверхтонкой структуры и расширением температурного диапазона наблюдения ЭПР были обнаружены существенные изменения *g*-фактора: уменьшение его значения, зависимость от компенсации и температуры, а также появление анизотропии в непосредственной близости от точки фазового перехода. Далее приводится описание и обсуждение этих результатов.

2. Образцы и методика эксперимента

Основная серия экспериментальных образцов изготавливалась по технологии нейтронного трансмутационного легирования. Исходные некомпенсированные образцы Ge:As имели концентрацию приблизительно $3.6 \cdot 10^{17}$ см⁻³. В результате введения трансмутационной акцепторной примеси Ga получена серия образцов, компенсация которых зависела от флюенса тепловых нейтронов, а концентрация основной примеси As оставалась практически постоянной. Параметры образцов представлены в табл. 1. Расчет разностной концентрации доноров и акцепторов производился из эффекта Холла с помощью калибровочных кривых, учитывающих изменение коэффициента Холла в зависимости от магнитного поля, концентрации примесей и температуры [5].

Из таблицы видно, что в полученной серии компенсированных образцов концентрация электронов $n = N_{\rm D} - N_{\rm A}$ уменьшается от $3.58 \cdot 10^{17}$ см⁻³ при компенсации K = 0 до $0.98 \cdot 10^{17}$ см⁻³ при K = 0.8, перекрывая таким образом значительную область изоляторного состояния, примыкающую к точке перехода ИМ $(n_{\rm C} = 3.7 \cdot 10^{17}$ см⁻³ при K = 0). Такой набор образцов позволил с малым шагом проследить за изменением параметров ЭПР взаимодействующих спинов и связать это взаимодействие с изменением основных параметров полупроводника.

Кроме того, измерения производились и на некомпенсированных образцах с разным уровнем легирования (образцы 16–19) для того, чтобы сравнить влияние компенсации на взаимодействие спинов, причем три из таких образцов (17–19) являлись изоляторными, а образец 16 — металлическим.

Все образцы имели форму плоских параллелепипедов, размеры $10 \times 3.5 \times 1$ мм и были ориентированы так, как показано на рис. 1, *а*. Вращение образца при записи спектров происходило вокруг оси [110], так что при повороте его на 90° магнитное поле *H* переходило

[¶] E-mail: anatoly.veinger@mail.ioffe.ru

№ образца	Концентрация электронов $n_{\rm H}$, 10^{17} см ⁻³	Концентрация мышьяка $N_{\rm As}, 10^{17} {\rm cm}^{-3}$	Компенсация $K = N_{ m Ga}/N_{ m As}$
1	3.58	3.58	0
2	3.49	3.63	0.04
3	3.25	3.76	0.14
4	3.00	3.89	0.23
5	2.86	3.97	0.28
6	2.35	4.24	0.44
7	2.13	4.36	0.51
8	1.95	4.46	0.56
9	1.91	4.48	0.57
10	1.89	4.49	0.58
11	1.56	4.67	0.67
12	1.52	4.69	0.68
13	1.44	4.73	0.69
14	1.41	4.75	0.70
15	0.98	4.98	0.80
16	5.75	5.75	0
17(1)	3.58	3.58	0
18	1	1	0
19	0.2	0.2	0

Таблица 1. Параметры образцов

из положения ||[101] в положение ||[100]. Заметим, что главные оси долин зоны проводимости в Ge расположены вдоль направлений [111] и поле *H* ||[100] имеет одинаковые углы со всеми главными направлениями долин.

Для измерения спектров ЭПР в образцах использовался ЭПР-спектрометр E-112 "Varian", работающий на частоте 10 ГГц, с криостатом ESR-9 "Oxford Instruments", что позволяло записывать спектры в широком диапазоне температур от 3.2 до 300 К. Обычно при температурах выше 100 К спектры уширялись и исчезали. С уменьшением уровня легирования в серии некомпенсированных образцов максимальная температура наблюдения ЭПР уменьшалась от приблизительно 100 до 10 К. В серии же компенсированных образцов она практически не изменялась.

При записи сигналов ЭПР возникали особенности, связанные с увеличением проводимости наиболее сильно легированных образцов в области гелиевых температур. Они заключались в изменении добротности резонатора, которая с ростом проводимости сначала уменьшалась из-за увеличения нерезонансного СВЧ-поглощения, затем вновь начинала увеличиваться, когда поглощение падало из-за уменьшения толщины скин-слоя. Для учета этой особенности использовался резонатор с двумя пучностями магнитной компоненты СВЧ-поля. При определении концентрации спинов одновременно с сигналом ЭПР от исследуемого образца записывался сигнал от эталона фирмы "Varian", который имел концентрацию спинов $2.58 \cdot 10^{15} \,\mathrm{cm}^{-1}$ и g = 2.0028 (образец представляет собой длинную цилиндрическую ампулу диаметром 4 мм, на 1 см длины которой приходится указанная концентрация). Вычисление концентрации спинов производилось сравнением с этим эталонным образцом.

3. Экспериментальные результаты

3.1. Изменение спектра ЭПР вблизи фазового перехода ИМ

На рис. 1, *b* показаны спектры ЭПР Ge: As при температуре T = 3.2 K с приведенной амплитудой для образцов с различной концентрацией примесных электронов. Рисунок показывает, что в изоляторном состоянии вдали от критической точки в спектре еще наблюдается сверхтонкая структура, состоящая из четырех линий,

Рис. 1. *а* — геометрия эксперимента, *b* — изменение спектра ЭПР в Ge:As при приближении к фазовому переходу ИМ. Концентрации, 10^{17} см⁻³: *I* — 0.2, *2* — 0.98, *3* — 1, *4* — 2.35, *5* — 3.58, *6* — 3.58, *7* — 5.75; все спектры, кроме *6*, записаны при *H*||[100], спектр *6* записан при *H*||[110], температура записи *T* = 3.2 K.

что соответствует спину ядра As (I = 3/2) (спектр 1). Увеличение концентрации электронов до $10^{17} \, \mathrm{cm}^{-3}$ приводит к тому, что сверхтонкая структура исчезает и спектр ЭПР содержит одиночную линию, площадь под которой определяется количеством свободных спинов (спектр 2). При дальнейшем увеличении концентрации форма спектральной линии становится дайсоновской, что объясняется появлением скин-эффекта в результате увеличения проводимости образцов (спектры 3 и 4). Аналогичный эффект наблюдался нами ранее при исследовании ЭПР азота в 4H-SiC [3]. Однако, в отличие от 4H-SiC, в Ge: As линия ЭПР не уширяется при приближении к критической концентрации, а, наоборот, происходит ее сужение. В непосредственной близости от этой концентрации спектр становится анизотропным и число линий начинает зависеть от кристаллографического направления (спектры 5 и 6). На рисунке спектр 6, записанный для магнитного поля Н [[110], содержит 3 линии (А, В и С). При переходе в металлическое состояние эта анизотропия исчезает и спектр состоит из одной дайсоновской линии (спектр 7).

3.2. Изменение *g*-фактора вблизи фазового перехода ИМ

При увеличении уровня легирования одновременно с изменением числа и формы линий спектра ЭПР происходит уменьшение *g*-фактора (увеличение резонансного магнитного поля). Это видно из рис. 1 по смещению резонансной линии в область более сильных полей. Качественно подобное поведение *g*-фактора есть хорошо известный факт для Si [6]. На рис. 2 показаны зависимости *g*-фактора от электронной концентрации в масштабе критической концентрации для некомпенсированных (черные квадраты) и для компенсированных (черные точки) образцов Ge: As при температуре T = 3.2 K. Там же белыми точками показаны те же

Рис. 2. Зависиммость *g*-фактора в компенсированных (1) и некомпенсированных (2) образцах Ge:As при температуре 3.2 K от концентрации электронов, отнесенной к критической для перехода ИМ ($n_{\rm C}$); 3 — та же зависимость для компенсированных образцов с учетом зависимости $n_{\rm C}$ от компенсации [15].

Рис. 3. Температурные зависимости *g*-фактора для некомпенсированных (*a*) и компенсированных (*b*) образцов Ge; номера образцов соответствуют табл. 1, *a*: 1 - 19, 2 - 18, 3 - 17, 4 - 16; *b*: 1 - 1, 2 - 8, 3 - 11, 4 - 15.

зависимости, но с учетом зависимости критической концентрации от компенсации. Из рисунка видно, что по мере удаления от точки фазового перехода ИМ в сторону изолятора происходит заметное увеличение g-фактора. Оно является линейным для некомпенсированных образцов при уменьшении концентрации от $3.58 \cdot 10^{17}$ до $2 \cdot 10^{16}$ см⁻³. В металлическом состоянии g-фактор также растет с уменьшением концентрации, но гораздо медленнее. Точка излома, как видно из рисунка, совпадает с критической концентрацией. Аналогично поведение g-фактора и для компенсированных образцов в области компенсаций 0.5 > K > 0. Самый быстрый рост g-фактора с компенсацией происходит в области K > 0.5.

Еще более сильное различие наблюдается для температурных зависимостей *g*-фактора компенсированных и некомпенсированных образцов. На рис. 3 показано изменение *g*-фактора для некомпенсированных (рис. 3, *a*) и компенсированных образцов (рис. 3, *b*). Из рисунка видно что в относительно слаболегированном некомпенсированном образце (кривая I) с концентрацией мышьяка $N_{\rm As} = 2 \cdot 10^{16}$ см⁻³ *g*-фактор не зависит от

Рис. 4. Зависимость положения резонансных линий от угла между направлением магнитного поля H и направлением [100] для некомпенсированного образца 17 (1) при температуре T = 3.2 K.

температуры, но ЭПР наблюдается только при температурах ниже 10 К. При увеличении концентрации As до $1 \cdot 10^{17}$ см⁻³ (кривая 2) появляется зависимость g-фактора от температуры, очень слабая ниже 10 К и очень резкая при более высоких температурах. При этом зависимость можно проследить только до температуры 20 К, выше которой сигнал ЭПР исчезает.

В более сильно легированном образце (кривая 3) с $N_{\rm As} = 3.58 \cdot 10^{17} \, {\rm cm}^{-3}$, который находится в изоляторном состоянии, но в непосредственной близости от критической точки, и в металлическом образце (кривая 4) с $N_{\rm As} = 5.75 \cdot 10^{17} \, {\rm cm}^{-3}$ [7] *g*-фактор уменьшается с ростом температуры, но эта зависимость слаба, а сам спектр ЭПР наблюдается вплоть до температуры 100 К. При высоких температурах выше 40 К *g*-факторы для обоих образцов практически совпадают.

В компенсированных образцах по мере увеличения компенсации и уменьшения электронной концентрации происходит увеличение g-фактора (резонансная линия сдвигается в слабые магнитные поля). С ростом температуры происходит уменьшение g-фактора (резонансная линия сдвигается в область сильных полей), причем зависимость от температуры усиливается с ростом компенсации таким образом, что при высокой температуре (80–100 K) g-факторы для всех компенсированных образцов практически совпадают.

Наблюдается явная зависимость температурной области существования ЭПР от компенсации образца. При одной и той же холловской концентрации $1 \cdot 10^{17}$ см⁻³ в некомпенсированном образце 18 (рис. 3, *a*, кривая 2) сигнал ЭПР наблюдается только до 20 K, а в компенсированном до K = 0.8 образце 15 (рис. 3, *b*, кривая 4) сигнал ЭПР наблюдается вплоть до 100 K. Это качественно соответствует поведению верхней границы состояния, когда электроны в основном находятся в примесной зоне, а не в зоне проводимости.

В непосредственной близости от фазового перехода ИМ на изоляторной стороне g-фактор становится анизотропным. Хорошо известно (см., например, [6]), что мелкие примеси и свободные электроны в кубических полупроводниках, к числу которых относится и Ge, дают изотропный спектр ЭПР. Однако на рис. 4 видно, что в некомпенсированном образце с $N_{\rm As} = 3.58 \cdot 10^{17} \, {\rm cm}^{-3}$ при T = 3.2 К спектр ЭПР состоит из одной линии, только когда магнитное поле направлено вдоль оси [100]. Во всех остальных направлениях в плоскости (110), в которой вращался образец, спектр ЭПР содержит три линии. Одна из них (самая слабая А) изотропна, а положение двух других (В и С) зависит от угла между направлением магнитного поля и направлением оси [100]. Максимальное расщепление спектра наблюдается в направлении [110]. Угловая зависимость положения анизотропных резонансных линий хорошо описывается стандартной зависимостью [6] (систематическая ошибка связана с неточностью гониометра):

$$g^2 = g_{\parallel}^2 \cos^2\theta + g_{\perp}^2 \sin^2\theta, \qquad (1)$$

где g_{\parallel} и g_{\perp} — наблюдаемые параллельное (совпадающее с [100]) и перпендикулярное (совпадающее с [110]) значения *g*-фактора; θ — угол, отсчитываемый от направления [100].

На рис. 5 показана температурная зависимость положения резонансных линий в том же образце, когда направление магнитного поля совпадает с направлением оси [110]. Видно, что в низкотемпературной области (T < 20 K) положение линий не зависит от температуры. При более высоких температурах расщепление анизотропных линий начинает уменьшаться, однако его можно проследить вплоть до T = 100 K. Линейная экстраполяция положения линий в область высоких температур показывает, что расщепление спектра должно исчезнуть при температуре порядка 150 K, когда положение всех линий совпадает.

Рис. 5. Температурная зависимость положения резонансных линий в некомпенсированном образце 17 (1) при направлении поля вдоль оси [110].

T	Ъά	лица	2.	Сдвиг	линий	ЭПР
---	----	------	----	-------	-------	-----

№ образца	Расстояние между линиями <i>ΔН</i> , Э
1	229
2	53.5
3	29
4	104

Наиболее сильная анизотропия g-фактора наблюдается в некомпенсированном образце 1. В слабо компенсированных образцах 2, 3 и 4 анизотропия гораздо слабее. Величина наблюдаемого расщепления между линиями при направлении поля вдоль оси [110] для этих четырех образцов представлена в табл. 2. В более сильно компенсированных образцах 5–15 резонансная линия становится изотропной. Изотропны и спектры слабо легированных образцов 18 и 19, а также металлического образца 16.

4. Обсуждение результатов экспериментов

Описанные выше эксперименты показывают, что взаимодействие спинов приводит к ряду коренных изменений в спектрах ЭПР кристаллов Ge, выяснению природы которых посвящен настоящий раздел. Напомним, например, что резкое изменение концентрации спинов вблизи точки перехода ИМ связано как с возникновением антиферромагнетизма, так и с возможным появлением кластеров металлической фазы и обсуждалось нами ранее в [8]. В данной публикации мы обсудим причины изменения *g*-фактора при приближении к критической концентрации для фазового перехода ИМ. Конкретно нас будет интересовать его зависимость от уровня легирования, компенсации, температуры и направления магнитного поля относительно главных осей кристалла.

4.1. Концентрационное изменение g-фактора

Теория *g*-фактора для полупроводников была разработана еще в конце 50-х годов [9]. Согласно этой теории, отклонение величины *g*-фактора от его значения для свободного спина определяется спин-орбитальным взаимодействием через эффективную массу электрона и ширину запрещенной зоны полупроводника:

$$g_{\parallel 0} = 2 - (\delta/E_{13})(m_0/m_t - 1),$$
 (2a)

$$g_{\perp 0} = 2 - (\delta/E_{13})(m_0/m_1 - 1), \qquad (2b)$$

где $g_{\parallel 0}$ и $g_{\perp 0}$ — главные значения g-фактора, которые наблюдаются в том случае, когда все электроны находятся в одной из четырех долин зоны проводимости (например, это реализуется при одноосном сжатии вдоль

оси [111]), δ — параметр спин-орбитального расщепления, E_{13} — энергетическая щель между валентной зоной и зоной проводимости при k = 0 (центр зоны Бриллюэна), m_t и m_1 — значения эффективной массы электрона в направлениях главных осей эллипсоида эффективных масс.

При использовании формул (2) следует учесть, что в результате увеличения концентрации примесей могут изменяться два параметра (ширина запрещенной зоны и эффективная масса носителя), которые влияют на величину *g*-фактора. Экспериментально установлено [10], что ширина запрещенной зоны в Ge действительно меняется при высоких уровнях легирования, больших чем 10¹⁸ см⁻³. Что касается эффективной массы, то нам не известны экспериментальные или теоретические работы, указывающие на ее изменение с уровнем легирования в Ge. Однако в единственной известной нам работе, посвященной теоретическому изучению изменения эффективной массы и g-фактора в Si [11], с помощью численных расчетов показано, что как раз в области фазового перехода ИМ (для Si — при концентрациях примесей порядка 10¹⁸ см⁻³) должно происходить уменьшение как эффективной массы, так и д-фактора на несколько процентов. Такое поведение *g*-фактора качественно согласуется с представленными выше результатами для Ge (рис. 2).

Кроме того, следует учесть и другую возможную причину уменьшения g-фактора вблизи фазового перехода ИМ. В [8] показано, что вблизи фазового перехода ИМ на изоляторной стороне происходит упорядочение спинов и полупроводник переходит в состояние с локальным антиферромагнитным упорядочением. В случае, если связанные антиферромагнитным образом спины пространственно разнесены, из-за неполной компенсации магнитных моментов противоположно направленных спинов в образце возникают локальные магнитные поля. Проявляющийся в ЭПР одиночный спин почти свободно диффундирует по примесной зоне и должен чувствовать эти поля как некоторое переменное поле частоты $\Delta f = v/r_0$, где r_0 — среднее расстояние между магнитными моментами в паре, ν — скорость носителя заряда. Этот эффект может привести к изменению условия возникновения ЭПР, что можно записать следующим образом:

$$h(f + \Delta f) = g\beta(H + \Delta H), \tag{3}$$

где ΔH — дополнительное магнитное поле, которое соответствует добавочной частоте Δf , действующей на спин, во время пролета в зоне действия поля пары, h — постоянная Планка, β — магнетон Бора.

Исходя из этого появление антиферромагнитно связанных пар в образце может быть причиной сдвига ЭПР в сильные поля. С уменьшением концентрации спинов по сравнению с критической для перехода ИМ концентрация пар уменьшается, что должно приводить к уменьшению Δf и добавочного магнитного поля ΔH .

Качественно это согласуется с наблюдаемым при этом увеличением g-фактора. Но подобное увеличение происходит и в описанном выше эффекте изменения зонных параметров, когда работают формулы (2).

Нами было обнаружено [8], что компенсация приводит к исчезновению антиферромагнитной фазы. При условиях работы [8] это происходит при $K \ge 0.5$. Эта особенность позволяет разделить вклад в смещение *g*-фактора от каждого из отмеченных выше эффектов: спин-орбитального взаимодействия и антиферромагнитного сдвига в магнитном поле пар.

Действительно, как отмечалось выше, при компенсациях K < 0.5 показанные на рис. 2 зависимости g-фактора от концентрации электронов близки как для некомпенсированных, так и для компенсированных образцов. При K > 0.5 они существенно различаются: для компенсированных образцов g-фактор имеет большее значение и возрастает гораздо быстрее, чем для некомпенсированных. Можно предполагать, что это различие связано с тем, что некомпенсированные образцы остаются антиферромагнитными, а компенсированные вследствие влияния хаотических электрических полей и низкой электронной концентрации становятся парамагнитными. В таком случае следует считать, что основное смещение *g*-фактора в сильные поля, которое наблюдается для обоих типов кристаллов, происходит в результате изменения зонных параметров, которые входят в соотношение (2), и только та часть, которая определяет различие значений g-факторов в компенсированных и некомпенсированных кристаллах, определяется антиферромагнитным сдвигом.

Эта часть, как видно из рис. 2, увеличивается с уменьшением концентрации электронов, что, на первый взгляд, противоречит соотношению (3). Однако, из-за того, что с уменьшением плотности электронов уменьшается и концентрация металлической фазы, концентрация пар может расти. Действительно, анализ наших экспериментов показал,¹ что с уменьшением концентрации электронов в наших образцах в 2 раза относительная концентрация пар увеличивается в 3 раза, т. е. растет по абсолютной величине.

Увеличение резонансного поля в результате разрушения этого упорядочения оказывается порядка 50 Э, что соответствует добавочной частоте порядка 10^8 Гц. При среднем расстоянии между примесями в паре порядка 10^{-6} см получаем, что скорость диффузии электрона (который двигается прыжками от одного примесного центра к другому) должна быть порядка 10^2 см/с. Это соответствует удельному сопротивлению порядка 1 Ом · см, которое имеют исследованные образцы Ge при гелиевых температурах.²

Физика и техника полупроводников, 2007, том 41, вып. 7

4.2. Изменение g-фактора с температурой

На изоляторной стороне перехода ИМ (рис. 3, а и b) можно выделить две области температур (высоких и низких) с заметно различным поведением *g*-фактора. Эти области температур соответствуют свободным или локализованным спинам с качественно разной температурной зависимостью проводимости [13]. Обратим внимание на то, что различие между указанными областями наиболее сильно проявляется для некомпенсированных образцов. Это мы объясняем тем обстоятельством, что введение компенсирующей примеси приводит в области высоких температур к усилению рассеяния и локализации, а в области низких — к увеличению так называемой прыжковой подвижности, если компенсация не очень велика. В целом компенсация как бы "смазывает" эффект. Увеличение температуры приводит, во-первых, к уменьшению g-фактора, т. е. к сдвигу резонансных линий в сильные поля, а во-вторых, к уменьшению влияния легирования и компенсации.

Изменения *g*-фактора с температурой говорят в пользу того, что при этом происходит соответствующее изменение зонных параметров Ge. С другой стороны, с ростом температуры из-за разрушения антиферромагнитного состояния фононами *g*-фактор должен возрастать, но этот эффект гораздо слабее первого.

Действительно, для Ge известны все параметры, входящие в соотношения (2): параметр спин-орбитального расщепления $\delta = 0.28$ эВ, расстояние между валентной зоной и зоной проводимости в точке k = 0 при гелиевой температуре $E_{13} = 0.898$ эВ, и оно линейно уменьшается с ростом температуры в соответствии с соотношением: $\Delta E_{13}/T = -3.9 \cdot 10^{-4}$ эВ/К. Если считать, что при увеличении температуры эффективная масса электрона заметно не изменяется, то, по оценкам на основании соотношения (2), при росте температуры от 4 до 100 К второе слагаемое должно увеличиться приблизительно на 0.04. Эксперимент же показывает, что g-фактор действительно уменьшается, но максимальное температурное изменение составляет приблизительно 0.02 (рис. 3, b). Эти оценки показывают качественное согласие наших результатов с соотношением (2) теории [9].³

4.3. Возникновение анизотропии спектра ЭПР

Как отмечалось выше, вблизи фазового перехода ИМ возникает новое интересное явление — появление анизотропии *g*-фактора. В ионных кубических кристаллах такая анизотропия, как известно, является следствием

¹ Будет опубликован позже.

² Строго говоря, при построении графика на рис. 2 следовало бы учесть зависимость критической для перехода ИМ концентрации $n_{\rm C}$ от компенсации [12]. Учет ее приводит к смещению абсцисс точек на рис. 2, в результате чего получается зависимость $g(n/n_{\rm C})$, показанная светлыми точками. Как видно, при этом излом в зависимости $g(n/n_{\rm C})$

качественно сохранился, сдвигаясь в область меньших значений $n/n_{\rm C}$. Абсолютная же разница между компенсированными и некомпенсированными образцами при этом заметно уменьшается, т.е. описанная процедура разделения двух вкладов в *g*-фактор становится гораздоменее определенной.

³ Отметим, что лежащая в основе соотношения (2) теория [9] определяет значение g-фактора с точностью не более двух знаков после запятой, так что сравнение с ней не претендует на большую точность.

проявления внутренних кристаллических полей более низкой симметрии от ионов-соседей второго и более далеких порядков, окружающих парамагнитный ион [14]. В валентных полупроводниках такие поля, как правило, отсутствуют, но при высоком уровне легирования примесные центры, как мы полагаем, могут быть причиной их появления. Рассмотрим это подробнее.

Хорошо известно (см., например, [6,15]), что волновая функция донорного электрона в *n*-Ge является четырехкратно вырожденной. Это следствие того, что мелкие донорные примеси в Ge описываются суперпозицией волновых функций всех четырех минимумов зоны, причем действие всех долин усредняется, что и делает функцию, а с ней и спектр ЭПР изотропным. При малых концентрациях примесей сам факт вырождения их электронных состояний не может оказывать заметного влияния на симметрию решетки кристалла. С другой стороны, известно, что в слабо легированном полупроводнике вырождение снимается при деформации кристалла вдоль определенных осей. При этом спектр ЭПР расщепляется на несколько анизотропных линий в соответствии с заселенностью каждой долины и величиной эффективной массы электрона при данном направлении внешнего магнитного поля.

Кстати, именно поэтому в Ge при сильном давлении вдоль направления [111], когда остается заселенной только одна долина, спектр ЭПР состоит всего из одной линии, *g*-фактор которой изменяется от 2.07 до 0.98 в зависимости от кристаллографического направления и угла между направлением давления и магнитным полем.

При сильном давлении вдоль оси [110] заселенными остаются две долины и при повороте образца в плоскости (110) *g*-фактор изменяется в пределах от g_0 до $g_{\perp 0}$, где

$$g_0 = 1/3g_{\parallel 0} + 2/3g_{\perp 0},\tag{4}$$

 $g_{\parallel 0} = 0.98$ и $g_{\perp 0} = 2.07$ — теоретические значения *g*-фактора для одной долины.

Для случая близких к переходу полупроводниковых образцов можно предположить, что уже имеет место заметное обменное взаимодействие носителей заряда (наиболее сильное — вдоль направления [110]), приводящее к частичному снятию долинного вырождения. Чтобы понять происхождение такого взаимодействия, обратимся к более точному описанию волновой функции донорного электрона, следуя [15]. В результате анизотропии эффективной массы волновая функция такого электрона в одной долине описывается функцией

$$F(r) = (\pi a^2 b)^{-1/2} \exp\{-[(x^2 + y^2)/a^2 + z^2/b^2]^{1/2}\}, \quad (5)$$

где z — направление вдоль главной оси долины, x и y — направления, перпендикулярные главной оси, a и b — эффективные боровские радиусы в соответствующих направлениях (a = 64.5 Å, b = 22.7 Å).

Из (5) следует, что волновая функция донорного электрона имеет вид сплюснутого эллипсоида (вид "блина"), так что при приближении к критической концентрации для фазового перехода ИМ взаимодействие электронов в направлениях [110] оказывается гораздо сильнее, чем в [111]. Такое взаимодействие по своему проявлению в ЭПР аналогично некоторому изменению внутреннего давления вдоль [110], что и приводит к частичному снятию вырождения. При этом энергия двух долин, главные оси которых перпендикулярны оси [110], вдоль которой направлено магнитное поле, должна оставаться неизменной, а энергия двух других увеличивается (заселенность падает). В соответствии с этим спектр состоит из двух линий, одна из которых не зависит от направления магнитного поля, а другая зависит. На рис. 4 видно, что при повороте в плоскости (110) изменяется положение обеих линий. Однако сдвиг одной из них оказался слабым. Он, по-видимому, связан с неточным установлением направления оси [110]. Слабая неподвижная линия связана с той частью кристалла, которая уже перешла в металлическое состояние. Ее положение не зависит от направления магнитного поля.

Таким образом, мы считаем, что эффект анизотропии спектра ЭПР в Ge: As связан с анизотропией взаимодействия примесных электронов. Исходя из этого сравним результаты эксперимента с выводами теории [9] и [15].

Для небольших давлений и малых углов θ с направлением [100] зависимость *g*-фактора от угла описывается соотношением

$$g - g_0 = -1/3\sin^2\theta [4\alpha^2 - 1](g_{\parallel 0} - g_{\perp 0}), \qquad (6)$$

где α^2 — вероятность заполнения одной из долин с пониженной энергией по отношению к вероятности заполнения при отсутствии деформации.

Из (6) следует, что большие различия в величинах между g 10 и g 10 приводят к появлению зависимости g-фактора от направления магнитного поля. При этом при больших давлениях, когда заполнены только две низко лежащие долины $\alpha^2 = 0.5$, в направлении [100] $g = g_0$, а в направлении [110] $g = g_{\perp 0}$. В нашем случае давления невелики и заполнены не только низколежащие долины, но и высоколежащие. Однако их заполнение различно, что сказывается на амплитуде линий ЭПР. Оценка заполнения долин из амплитуды сигнала ЭПР (рис. 1, спектры 5 и 6) показывает, что в нижних долинах содержится 66% всех спинов, а верхних — 34%. Отсюда следует, что вероятность заполнения одной из нижних долин $\alpha^2 = 0.33$. Подставляя это значение в (6), получаем при $\sin^2 \theta = 1$, что $g - g_0 = -0.12$, $(g_{\parallel 0} - g_{\perp 0}) = 0.13$. Следует подчеркнуть, что соотношение (6) справедливо только для малых углов и небольших давлений. Из эксперимента (рис. 4) при $\theta = 90^{\circ}$ следует, что значения $g_0 = 1.5418$ и $g_{\perp} = 1.6284$, т.е. $g - g_0 = 0.0866$. Это менее чем в 2 раза отличается от полученного из теории [9]. Учитывая, что (6) имеет малую точность для больших углов и сама теория справедлива только с точностью до двух знаков, согласие с ней следует считать вполне удовлетворительным.

В нашем случае отсутствия внешнего давления какоето одно выделенное направление [110] отсутствует, все оси [110] являются равнозначными и деформация решетки возможна вдоль любой из них. Можно предполагать, что в результате обнаруженного нами взаимодействия примесей образец разбивается на малые, но макроскопические области (домены), деформированные вдоль одной из осей [110], в целом сохраняя кубическую симметрию.

Интересно оценить величину давления, оказываемого на решетку в результате взаимодействия примесей вдоль направления [110]. В [15] приведены зависимости *g*-фактора от угла θ при давлении 1.7 кг/мм². Из него следует, что при $\theta = 20^{\circ} \Delta g = 0.015$. В нашем случае оказывается, что при том же угле $\Delta g = 0.011$. Считая сдвиг пропорциональным давлению, получаем, что в образце имеет место внутреннее давление около 1.2 кг/мм².

Как показано на рис. 5, при повышении температуры выше 20 К расщепление спектра начинает уменьшаться. Естественно рассматривать этот процесс как результат повышения скорости междолинных переходов. При низкой температуре, когда частота таких переходов мала по сравнению с частотой резонансного магнитного поля (10 ГГц), электрон взаимодействует с этим полем как частица с эффективной массой, присущей той долине, в которой он находится. Если же частота междолинных переходов оказывается гораздо выше частоты внешнего СВЧ-поля, то за время взаимодействия с ним электрон много раз изменяет свою эффективную массу. Поэтому в ЭПР он проявляется как частица с некоторой усредненной эффективной массой, а следовательно, и с усредненным g-фактором. Аналогичный эффект наблюдался нами ранее при исследовании эффекта магнитосопротивления в СВЧ-диапазоне [16]. При низких температурах в эффекте проявлялись электроны из каждой долины в отдельности, что приводило к появлению нескольких экстремумов на полевой зависимости производной магнитосопротивления. При повышении температуры в результате междолинных переходов эффект усреднялся и наблюдалась интегральная изотропная полевая зависимость магнитосопротивления.

Таким образом, можно считать, что наблюдаемый эффект понижения симметрии спектра ЭПР вблизи перехода ИМ связан с искажением решетки за счет усиления анизотропного обменного взаимодействия при "блинообразной" волновой функции электрона, ответственной за зависимость величины электрон-электронного взаимодействия от кристаллографического направления. Такая зависимость проявляется только при низких температурах, когда отсутствует усреднение эффективной массы электронов.

5. Заключение

При приближении к критической для фазового перехода ИМ концентрации наблюдается существенное уменьшение *g*-фактора как для компенсированных, так и для некомпенсированных образцов *n*-Ge. Он уменьшается по двум причинам: за счет уменьшения запрещенной зоны при увеличении концентрации мелкой примеси и за счет локального антиферромагнитного упорядочения спинов, которое приводит к появлению внутренних антиферромагнитных полей. Разрушение локального антиферромагнитного порядка хаотическими внутренними полями в сильно компенсированных образцах приводит к более сильной концентрационной зависимости *g*-фактора в компенсированных образцах по сравнению с некомпенсированными.

С повышением температуры g-фактор уменьшается, причем это изменение соответствует изменению проводимости: при низких температурах (прыжковая проводимость по примесным состояниям) изменения малы, а при высоких (зонная проводимость) изменения велики. В далеких от перехода ИМ некомпенсированных образцах за изменениями g-фактора при высоких температурах проследить не удается из-за исчезновения сигнала. Изменение температурных зависимостей *g*-фактора определяется, как это следует из формул (2), в основном температурными изменениями ширины запрещенной зоны. Как установлено, разрушение антиферромагнитного упорядочения при повышении температуры не оказывает заметного влияния на температурные изменения g-фактора. Возможно, оно приводит к некоторому ослаблению его температурной зависимости.

В непосредственной близости к фазовому переходу ИМ обнаружен новый эффект — появление анизотропии *g*-фактора, которая соответствует анизотропии спектра ЭПР одноосно сжатого вдоль оси [110] слабо легированного Ge. Показано, что этот эффект является результатом анизотропии взаимодействия электронов, локализованных на примесных центрах. Поскольку волновая функция донорного электрона в Ge имеет "блинообразную" форму, с большим эффективным боровским радиусом вдоль направления [110] и малым вдоль [111], обменное взаимодействие локализованных электронов вдоль [110] оказывается значительно более сильным, чем в направлении [111]. Это взаимодействие можно представить как избыточное внутреннее давление вдоль оси [110], вызывающее расщепление спектра ЭПР.

Работа поддержана грантами РФФИ (проект № 04-02-16587а), Фондом президента РФ (проект НШ 5920.2006.2), Президиумом и ОФН РАН.

Мы выражаем благодарность участникам семинаров Лаборатории неравновесных процессов в полупроводниках и Школы физических наук Австралийского национального университета и особенно проф. Н.С. Аверкиеву (Физико-технический институт) и докт. Вен Ксю (Wen Xu) (Австралийский национальный университет) за плодотворные дискуссии.

Список литературы

- [1] K. Morigaki, S. Maekawa. J. Phys. Soc. Japan, 32, 462 (1972).
- [2] А.И. Вейнгер, А.Г. Забродский, Т.В. Тиснек. ФТП, 34, 46 (2000).

- [3] А.И. Вейнгер, А.Г. Забродский, Т.В. Тиснек, Е.Н. Мохов. ФТП, 37, 874 (2003).
- [4] A.I. Veinger, A.G. Zabrodskii, T.V. Tisnek, S.I. Goloshchapov. Phys. Status Solidi C, 1, 71 (2004).
- [5] М.В. Алексеенко, А.Г. Забродский, Л.М. Штеренгас. ФТП, 32, 811 (1998).
- [6] Дж. Людвиг, Г. Вудбери. Электронный спиновый резонанс в полупроводниках (М., 1964).
- [7] А.Г. Забродский, К.Н. Зиновьева. ЖЭТФ, 86, 727 (1984).
- [8] A.I. Veinger, A.G. Zabrodskii, T.V. Tisnek, S.I. Goloshchapov. Phys. Status Solidi C, 3, 347 (2006).
- [9] L.M. Roth. Phys. Rev., 118, 1534 (1960).
- [10] C. Haas. Phys. Rev., 125, 1965 (1962).
- [11] T. Ando. Phys. Rev. B, 13, 3468 (1976).
- [12] Н.А. Поклонский, С.А. Вырко, А.Г. Забродский. ФТТ, 46, 1071 (2004).
- [13] А.Г. Забродский. ФТП, 14, 1324 (1980).
- [14] С.А. Альтшуллер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп (М., Наука, 1972).
- [15] D.K. Wilson. Phys. Rev., 134, A265 91964).
- [16] A.I. Veinger, A.G. Zabrodskii, T.V. Tisnek, S.I. Goloshchapov. Sol. St. Commun., 133, 455 (2005).

Редактор Л.В. Беляков

Electron spin resonance of the interacting spins in *n*-Ge. I. Spectrum and *g*-factor

A.I. Veinger, A.G. Zabrodskii, T.V. Tisnek, S.I. Goloshchapov

loffe Physicotechnical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Electron spin resonance (ESR) and g-factor changes based on the spin interaction in the insulating state were investigated in Ge: As near the phase transition insulator-metal. It was found that the g-factor decrease took place in this concentration range with the dope level and the g-factor anisotropy appeared near the transition. Influence of the compensation and appeared antiferromagnetic ordering on the g-factor value was analyzed. It was found that the high temperature boundary of the ESR roughly grew near the transition point.