11,09

Фазовые переходы и процессы разупорядочения в кристаллах твердых растворов Cu₆PS₅I_{1-x}CI_x

© И.П. Студеняк¹, В.Е. Пономарев¹, М. Kranjčec², В.Ю. Изай¹, Л.М. Сусликов¹

 Ужгородский национальный университет, Ужгород, Украина
 Загребский университет, Вараждин, Хорватия
 E-mail: studenyak@dr.com

(Поступила в Редакцию 18 октября 2011 г.)

С помощью изоабсорбционных и поляризационно-оптических измерений определены температуры фазовых переходов в кристаллах твердых растворов $Cu_6PS_5I_{1-x}Cl_x$ и построена фазовая *x*, *T*-диаграмма. Проведены исследования края поглощения кристаллов $Cu_6PS_5I_{1-x}Cl_x$ в интервале температур 77–320 К и при высоких уровнях поглощения. Определены параметры урбаховского края поглощения и экситонфононного взаимодействия в кристаллах $Cu_6PS_5I_{1-x}Cl_x$, а также изучено влияние на них композиционного разупорядочения.

1. Введение

Суперионные кристаллы Cu₆PS₅I(Cl) являются представителями большого класса соединений со структурой аргиродита, объединенных общей формулой $A_{(12-n-x)/m}^{m+}B^{n+}X_{6-x}^{2-}Y_x^{1-}$ (0 $\leq x \leq$ 1), где *n* и *m* — соответственно валентности катионов A (Cu⁺, Ag⁺, Cd²⁺, ${
m Hg}^{2+})$ и $B~({
m Ga}^{3+},~{
m Si}^{4+},~{
m Ge}^{4+},~{
m P}^{5+},~{
m As}^{5+}),$ тогда как анионами служат Х (S²⁻, Se²⁻, Te²⁻) и У (Cl⁻, Br⁻, I⁻) [1]. Для них характерно наличие высокой ионной проводимости, благодаря которой они являются перспективными материалами для создания твердоэлектролитических источников энергии, конденсаторов большой емкости и электрохимических сенсоров [2,3]. Кроме суперионных свойств они обладают сегнетоэластическими и нелинейно-оптическими свойствами, что предполагает возможность их практического применения в качестве оптических датчиков температуры и давления [2,3].

При комнатной температуре кристаллы Cu₆PS₅I(Cl) относятся к кубической сингонии (пространственная группа $F\bar{4}3m$), а с понижением температуры они претерпевают фазовые переходы (ФП) [1,3,4]. Суперионный ФП первого рода, который является одновременно и сегнетоэластическим, в кристалле Cu₆PS₅I происходит при температуре $T_{\rm I} = 144 - 169 \, {\rm K}$, тогда как при $T_{\rm II} = 269 \pm 2 \, {\rm K}$ имеет место структурный ФП второго рода [3]. При $T = T_{II}$ с понижением температуры происходит изменение симметрии $F43m \rightarrow F43c$, тогда как при $T = T_{\rm I} - F\bar{4}3c \rightarrow Cc$ [4]. В кристалле Cu₆PS₅Cl имеет место только суперионный $\Phi\Pi$ при T = 160 K, который также является сегнетоэластическим и сопровождается изменением симметрии $F\bar{4}3m \rightarrow Cc$ [5]. В области ФП кристаллов Cu₆PS₅I(Cl) обнаружено аномальное поведение электрических, термодинамических, акустических и оптических свойств [2,3,6-9].

Следует отметить, что ФП в суперионных проводниках сопровождаются процессами структурного разупорядочения кристаллической решетки, которые вызваны несоответствием между количеством подвижных ионов и позиций, которые они занимают. Ранее для кристаллов $Cu_6PS_5I(Cl)$ было показано, что структурное разупорядочение в суперионной фазе состоит из двух компонент: динамической и статической [2]. При этом статическое структурное разупорядочение возникает благодаря наличию структурных неоднородностей, обусловленных высокой концентрацией неупорядоченных вакансий меди, тогда как динамическое структурное разупорядоченных вакансий меди, которые обеспечивают высокую ионную проводимость [2].

Несмотря на то что $\Phi\Pi$ и оптические свойства монокристаллов $Cu_6PS_5I(Cl)$ изучены достаточно широко [2–6], детальные исследования твердых растворов на их основе $Cu_6PS_5I_{1-x}Cl_x$ только начинаются. В связи с этим целью настоящей работы являются концентрационные исследования $\Phi\Pi$, изучение влияния композиционного разупорядочения на процессы оптического поглощения и экситон-фононное взаимодействие (ЭФВ) при анионном замещении атомов I атомами Cl в кристаллах $Cu_6PS_5I_{1-x}Cl_x$.

2. Экспериментальная часть

Монокристаллы твердых растворов $Cu_6PS_5I_{1-x}Cl_x$ были получены методом химических транспортных реакций [2]. Измерения пропускания и отражательной способности проводились на образцах, ориентированных при комнатной температуре в кубической фазе, причем падающее излучение распространялось вдоль кристаллографического направления [100]. Исследования края оптического поглощения проводились в интервале температур 77–320 К с помощью спектрального комплекса КСВУ-23 по методике, описанной в [2]. Для низкотемпературных исследований применялся криостат типа УТРЕКС. Для измерений использовались образцы различной толщины, а погрешность в определении коэффициента поглощения составляла $\Delta \alpha / \alpha < 10\%$. При изоабсорбционных исследованиях края оптического поглощения определялось его энергетическое положение $E_g^{\alpha}(T)$ при фиксированных значениях коэффициента поглощения α и температуры T. Поляризационно-оптические исследования заключались в измерении интенсивности проходящего света через кристалл, размещенный между скрещенными поляризатором и анализатором.

3. Результаты и их обсуждение

3.1. Фазовая х, Т-диаграмма кристаллов твердых растворов Си₆PS₅I_{1-x}Cl_x. Изоабсорбционные исследования показали, что характерная для кристаллов Cu₆PS₅I аномалия в области ФП первого рода при $T = T_{\rm I}$ проявляется только в кристаллах твердых растворов с x = 0.1 и 0.2. Рассмотрим температурное поведение псевдозапрещенной зоны E_g^{α} (E_g^{α} — энергетическое положение края поглощения при некотором фиксированном значении коэффициента поглощения α) на примере кристалла Cu₆PS₅I_{0.8}Cl_{0.2} (рис. 1). В интервале температур 77–130 К спектральное положение края поглощения остается практически неизменным, при T > 130 К край поглощения сдвигается в длинноволновую область, а при $T_{\rm I} = 184 \pm 1$ К наблюдается аномальное поведение E_g^{α} , причем $dE_g^{\alpha}/dT > 0$ (рис. 1). Скачкообразное поведение E_g^{α} и температурный гистерезис свидетельствуют о том, что $\Phi\Pi$ при $T = T_{\rm I}$ является $\Phi\Pi$ первого рода. При *T* > *T*_I наблюдается длинноволновое смещение края поглощения, а в области ФП второго

Рис. 1. Температурные зависимости энергетического положения края поглощения E_g^{α} при $\alpha = 250 \,\mathrm{cm}^{-1}$ для кристалла $\mathrm{Cu}_6\mathrm{PS}_5\mathrm{I}_{0.8}\mathrm{Cl}_{0.2}$, полученные в режимах охлаждения и нагревания. На вставке — фазовая *x*, *T*-диаграмма для кристаллов твердых растворов $\mathrm{Cu}_6\mathrm{PS}_5\mathrm{I}_{1-x}\mathrm{Cl}_x$.

рода при $T_{\rm II} = 256 + 5 \,\mathrm{K}$ имеет место характерное изменение наклона $E_g^{\alpha}(T)$.

При анионном замещении атомов I атомами Cl скачкообразная аномалия в области ФП первого рода при $T = T_1$ размывается вследствие композиционного разупорядочения кристаллической решетки твердых растворов Cu₆PS₅I_{1-x}Cl_x и полностью исчезает при x > 0.2 (рис. 1). Аналогичное концентрационное поведение наблюдается для ФП второго рода при $T = T_{II}$, т.е. характерное изменение наклона на зависимости $E_g \alpha(T)$ при $T = T_{II}$ отсутствует в кристаллах твердых растворов с x > 0.2 вследствие его размытия.

С целью определения температур ФП проводились поляризационно-оптические исследования. Известно, что переход из изотропной (кубической) фазы в анизотропную (моноклинную) в кристаллах Cu₆PS₅I сопровождается возникновением пропускания света в системе поляризатор-кристалл-анализатор. Таким образом, нами было подтверждено наличие ФП первого рода при $T = T_{\rm I}$, при котором кубическая симметрия меняется на моноклинную, в кристаллах твердых растворов $Cu_6PS_5I_{1-x}Cl_x$ с $x \le 0.2$. Заметим, что с увеличением содержания атомов Cl при *x* > 0.2 температурный гистерезис при низкотемпературном $\Phi\Pi$ при $T = T_{\rm I}$ изчезает, что свидетельствует о том, что род ФП изменяется. Кроме того, было установлено существенное влияние анионного замещения на ширину температурного интервала ФП: при увеличении содержания атомов хлора наблюдается значительное размытие ФП.

По результатам изоабсорбционных и поляризационнооптических измерений (см. таблицу) была построена фазовая x, T-диаграмма для кристаллов твердых растворов Cu₆PS₅I_{1-x}Cl_x (вставка к рис. 1). Учитывая тот факт, что в кристаллах Cu₆PS₅I наблюдаются два ФП, а в кристаллах Cu₆PS₅Cl — только один ФП, можно предположить существование тройной точки на фазовой x, T-диаграмме. В указанной выше тройной точке сходятся три линии ФП: 1) линия ФП второго рода ($T = T_{II}$) при x < 0.4, сопровождающаяся изменением симметрии $F\bar{4}3m \rightarrow F\bar{4}3c$; 2) линия ФП первого рода ($T = T_{I}$) при x < 0.4, сопровождающаяся изменением симметрии $F\bar{4}3c \rightarrow Cc$; 3) линия ФП второго рода ($T = T_{II}$) при $x \ge 0.4$, сопровождающаяся изменением симметрии $F\bar{4}3m \rightarrow Cc$.

3.2. Урбаховское поведение края оптического поглощения в кристаллах твердых растворов $Cu_6PS_5I_{1-x}Cl_x$. Известно, что при высоких уровнях поглощения и низких температурах $(T < T_I)$ в кристаллах Cu_6PS_5I наблюдаются экситонные полосы [10,11]. При переходе в суперионное состояние $(T > T_I)$ кроме изменения экситонной структуры на краю поглощения появляются экспоненциальные участки, температурное поведение которых описывается эмпирическим правилом Урбаха [10,11]. В кристаллах Cu_6PS_5Cl при T < 160 К наблюдается параллельное смещение края оптического поглощения в длинноволновую область, а при T > 160 К его температурное

Параметр	x = 0	x = 0.1	x = 0.2	x = 0.4	x = 0.6	x = 0.8	x = 0.9	x = 1
$\alpha_0, \mathrm{cm}^{-1}$	$2.96\cdot 10^6$	$3.18\cdot 10^5$	$4.04\cdot 10^5$	$3.12\cdot 10^5$	$5.62\cdot 10^5$	$6.65\cdot 10^5$	$6.94\cdot 10^5$	$4.26\cdot 10^4$
E_0, eV	2.230	2.216	2.229	2.282	2.377	2.465	2.552	2.776
σ_0	1.55	1.31	1.34	1.06	0.83	0.68	0.60	0.27
$\hbar\omega_p$, meV	32.0	24.2	22.0	44.3	48.6	44.2	42.1	57.0
θ_E, K	371	281	252	514	564	513	489	662
$(E_U)_0, \mathrm{meV}$	9.6	9.2	8.2	20.8	29.3	33.7	35.4	105.5
$(E_U)_1$, meV	23.2	18.5	16.2	41.7	28.6	66.4	69.9	191.8
$E_{g}^{*}(0), eV$	2.152	2.170	2.173	2.165	2.182	2.258	2.301	2.384
S_g^*	5.6	4.9	6.1	5.4	6.9	8.6	9.0	12.0
$T_{\rm I},{\rm K}$	165 ± 1	192 ± 1	184 ± 1	—	—	—	—	—
$T_{\rm II},{ m K}$	269 ± 2	256 ± 5	245 ± 5	233 ± 1	177 ± 1	167 ± 1	181 ± 1	160

Параметры урабаховского края поглощения, параметры ЭФВ и значения температур $\Phi\Pi$ для кристаллов твердых растворов $Cu_6PS_5I_{1-x}Cl_x$

Рис. 2. Спектральные зависимости логарифма коэффициента поглощения для кристалла Cu₆PS₅I_{0.4}Cl_{0.6} при температурах 77 (1), 150 (2), 210 (3), 250 (4), 280 (5), 300 (6) и 320 К (7). На вставке — температурная зависимость параметра наклона края поглощения σ .

поведение имеет урбаховский характер [11]. Эффект температурной неизменности урбаховской энергии при T < 160 K объясняется наличием динамического структурного разупорядочения кристаллической решетки, которое связывается с процессами туннелирования ионов меди при низких температурах [11].

Исследования края оптического поглощения кристаллов твердых растворов $Cu_6PS_5I_{1-x}Cl_x$ показали, что в исследуемом интервале температур он имеет экспоненциальную форму, причем в кубической фазе его температурное поведение описывается правилом Урбаха [12]

$$\alpha(h\nu, T) = \alpha_0 \exp\left[\frac{h\nu - E_0}{E_U(T)}\right],\tag{1}$$

где $E_U(T) = kT/\sigma(T)$ — урбаховская энергия, являющаяся энергетической шириной экспоненциального края поглощения и величиной, обратной к наклону края поглощения; α_0 , E_0 , $\sigma(T)$ — эмпирические параметры, которые определяются по экспериментальным данным. На рис. 2 на примере кристалла Cu₆PS₅I_{0.4}Cl_{0.6} показан характерный урбаховский "веер", наблюдаемый на краю оптического поглощения. Координаты точки сходимости урбаховского "веера" α_0 и E_0 имеют значения, приведенные в таблице.

Хорошо известно, что основным механизмом, приводящим к образованию урбаховского "веера", является ЭФВ [13]. По температурной зависимости параметра наклона края поглощения с помощью формулы Мара были получены параметры ЭФВ σ_0 и $\hbar\omega_p$

$$\sigma(T) = \sigma_0 \left(\frac{2kT}{\hbar\omega_p}\right) \operatorname{th}\left(\frac{\hbar\omega_p}{2kT}\right),\tag{2}$$

где $\hbar\omega_p$ — энергия эффективного фонона в одноосцилляторной модели, что описывает ЭФВ; σ_0 — параметр, связанный с постоянной ЭФВ *g* соотношением $\sigma_0 = 2/3g$ [13]. Зависимость $\sigma(T)$ для кристалла Cu₆PS₅I_{0.4}Cl_{0.6} приведена на вставке к рис. 2, а значения параметров $\hbar\omega_p$ и σ_0 , полученных при описании

80 1.5 60 meV ₀ 1.0 $\hbar \omega_{n}$, 20 0.5 0 1.0 0 0.2 0.40.6 0.8 x

Рис. 3. Концентрационные зависимости параметра σ_0 , связанного с постоянной ЭФВ (1), и энергии эффективного фонона $\hbar\omega_p$ (2) для кристаллов твердых растворов Cu₆PS₅I_{1-x}Cl_x.

Рис. 4. Температурные зависимости ширины оптической псевдощели E_g^* (*I*) и урбаховской энергии E_U (*2*) для кристалла $Cu_6PS_5I_{0.4}Cl_{0.6}$.

зависимостей $\sigma(T)$ с помощью соотношения (2), для всех исследуемых кристаллов представлены в таблице и на рис. 3. Заметим, что при анионном замещении I — Cl наблюдается существенное уменьшение параметра σ_0 более чем в 5 раз (см. таблицу и рис. 3).

В кристаллах твердых растворов Cu₆PS₅I_{1-x}Cl_x при $x \le 0.4$ параметр $\sigma_0 > 1$, что свидетельствует о слабом ЭФВ, а при $x \ge 0.6$ параметр $\sigma_0 < 1$, что указывает на сильное ЭФВ. Таким образом, при увеличении содержания атомов хлора в кристаллах Cu₆PS₅I_{1-x}Cl_x наблюдается существенное усиление ЭФВ (уменьшение величины σ_0), тогда как энергия эффективного фонона имеет тенденцию к увеличению (см. таблицу и рис. 3).

На рис. 4 для кристалла Cu₆PS₅I_{0.4}Cl_{0.6} приведены температурные зависимости таких параметров урбаховского края поглощения, как оптическая псевдощель E_g^* $(E_g^*$ — энергетическое положение края поглощения при фиксированном значении коэффициента поглощения $\alpha = 103 \text{ cm}^{-1}$) и урбаховская энергия E_U . Экспериментальные зависимости $E_g^*(T)$ и $E_U(T)$ для интервала температур, где наблюдается урбаховское поведение края поглощения, описываются в рамках модели Эйнштейна с помощью соотношений [14,15]

$$E_{g}^{*}(T) = E_{g}^{*}(0) - S_{g}^{*}k\theta_{E}\left[\frac{1}{\exp(\theta_{E}/T) - 1}\right],$$
 (3)

$$E_U = (E_U)_0 + (E_U)_1 \left[\frac{1}{\exp(\theta_E/T) - 1} \right],$$
 (4)

где $E_g^*(0)$ — ширина оптической псевдощели при 0 К; S_g^* — безразмерная постоянная; θ_E — температура Эйнштейна, которая отвечает усредненной частоте фононных возбуждений системы невзаимодействующих осцилляторов; $(E_U)_0$ и $(E_U)_1$ — некоторые постоянные. Параметры $E_g^*(0)$, S_g^* , θ_E , $(E_U)_0$ и $(E_U)_1$, полученные при описании экспериментальных кривых, приведены в таблице.

3.3. Оптическое поглощение и процессы разупорядочения кристаллической решетки в кристаллах твердых растворов $Cu_6PS_5I_{1-x}Cl_x$. При анионном замещении I \rightarrow Cl в кристаллах твердых растворов Cu₆PS₅I_{1-x}Cl_x обнаружено нелинейное увеличение как E_g^* , так и E_U (см. таблицу). Анализ концентрационной зависимости урбаховской энергии Е_U показывает, что увеличение содержания атомов хлора в кристаллах твердых растворов Си₆PS₅I_{1-x}Cl_x приводит к увеличению протяженности урбаховского "хвоста" более чем в 6 раз. Это свидетельствует о существенном возрастании степени разупорядочения кристаллической решетки в исследуемых твердых растворах.

Урбаховская энергия, как известно, характеризует степень разупорядочения края поглощения, вызванного особенностями структуры, а также внешними факторами [16]. В кристаллах твердых растворов $Cu_6PS_5I_{1-x}Cl_x$ кроме температурного (за счет тепловых колебаний решетки) и структурного (статического и динамического) разупорядочений, характерных для чистых кристаллов $Cu_6PS_5I(Cl)$, дополнительно проявляется композиционное разупорядочение. В соответствии с [17], эффект влияния различных типов разупорядочения на урбаховскую энергию в кристаллах твердых растворов описывается соотношением

$$E_U = (E_U)_X + (E_U)_T + (E_U)_C = (E_U)_{X,C} + (E_U)_T, \quad (5)$$

где $(E_U)_X$ и $(E_U)_C$ — вклады структурного и композиционного разупорядочения соответственно, $(E_U)_T$ вклад температурно-зависимых типов разупорядочения в урбаховскую энергию. Из сравнения формул (4) и (5) следует, что $(E_U)_{X,C} \equiv (E_U)_0$ и $(E_U)_T \equiv (E_U)_1 / (\exp(\theta_E/T) - 1)$. Таким образом, были разделены вклады температурно-независимых (структурного и композиционного) $(E_U)_{X,C}$ и температурно-

Рис. 5. Концентрационные зависимости вкладов температурно-независимых $(E_U)_{X,C}$ (1) и температурно-зависимых $(E_U)_T$ (2) типов разупорядочения в урбаховскую энергию E_U для кристаллов твердых растворов $Cu_6PS_5I_{1-x}Cl_x$.

зависимых $(E_U)_T$ типов разупорядочения, концентрационные зависимости которых приведены на рис. 5. Оказалось, что с увеличением содержания атомов хлора размытие края поглощения при T = 300 К в основном осуществляется за счет температурно-независимых типов разупорядочения, т.е. определяется вкладами структурного и композиционного разупорядочения (рис. 5).

4. Заключение

Проведены изоабсорбционные и спектральные исследования края оптического поглощения, а также поляризационно-оптические измерения пропускания оптического излучения в системе поляризатор-кристалланализатор в интервале температур 77–320 К для кристаллов твердых растворов $Cu_6PS_5I_{1-x}Cl_x$. Определены температуры ФП и построена фазовая x, T-диаграмма, на которой предполагается существование тройной точки, в которой сходятся три линии ФП: 1) линия ФП второго рода ($T = T_{II}$) при x < 0.4, сопровождающаяся изменением симметрии $F\bar{4}3m \rightarrow F\bar{4}3c$; 2) линия ФП второго рода ($T = T_{II}$) при x < 0.4, сопровождающаяся изменением симметрии $F\bar{4}3c \rightarrow Cc$; 3) линия ФП второго рода ($T = T_{II}$) при $x \ge 0.4$, сопровождающаяся изменением симметрии $F\bar{4}3m \rightarrow Cc$.

Показано, что в суперионном состоянии в кубической фазе край поглощения имеет экспоненциальную урбаховскую форму. Определены параметры урбаховского края поглощения и ЭФВ, а также изучено влияние на них различных типов разупорядочения кристаллической решетки. При увеличении содержания атомов хлора в кристаллах твердых растворов $Cu_6PS_5I_{1-x}Cl_x$ обнаружено существенное усиление ЭФВ. Установлено, что экспериментальные зависимости ширины оптической псевдощели и урбаховской энергии хорошо описываются в рамках модели Эйнштейна. Обнаружено, что при анионном замещении атомов I атомами Cl размытие края поглощения при T = 300 K в основном осуществляется за счет структурного и композиционного разупорядочения.

Список литературы

- W.F. Kuhs, R. Nitsche, K. Scheunemann. Mater. Res. Bull. 11, 1115 (1976).
- [2] I.P. Studenyak, M. Kranjčec, M.V. Kurik. J. Phys. Chem. Solids 67, 807 (2006).
- [3] И.П. Студеняк, М. Краньчец. Эффекты разупорядочения в суперионных проводниках со структурой аргиродита. Говерла, Ужгород (2007). 200 с.
- [4] A. Gagor, A. Pietraszko, D. Kaynts. J. Solid State Chem. 178, 3366 (2005).
- [5] A. Gagor, A. Pietraszko, D. Kaynts. J. Solid State Chem. 181, 777 (2008).
- [6] R.B. Beeken, J.J. Garbe, N.R. Petersen. J. Phys. Chem. Solids 64, 1261 (2003).
- [7] S. Fiechter, E. Gmelin. Thermochim. Acta 85, 155 (1985).

- [8] V. Samulionis, J. Banys, Y. Vysochanskii, I. Studenyak. Ferroelectrics **336**, 29 (2006).
- [9] I.P. Studenyak, V.O. Stefanovich, M. Kranjcec, D.I. Desnica, Yu.M. Azhnyuk, Gy.Sh. Kovacs, V.V. Panko. Solid State Ionics 95, 221 (1997).
- [10] И.П. Студеняк, Д.Ш. Ковач, В.В. Панько, Е.Т. Ковач, А.Н. Борец. ФТТ 26, 2598 (1984).
- [11] I.P. Studenyak, M. Kranjčec, Gy.Sh. Kovacs, V.V. Panko, I.D. Desnica, A.G. Slivka, P.P. Guranich. J. Phys. Chem. Solids 60, 1897 (1999).
- [12] F. Urbach. Phys. Rev. 92, 1324 (1953).
- [13] M.V. Kurik. Phys. Status Solidi A 8, 9 (1971).
- [14] M. Beaudoin, A.J.G. DeVries, S.R. Johnson, H. Laman, T. Tiedje. Appl. Phys. Lett. 70, 3540 (1997).
- [15] Z. Yang, K.P. Homewood, M.S. Finney, M.A. Harry, K.J. Reeson. J. Appl. Phys. 78, 1958 (1995).
- [16] G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein. Phys. Rev. Lett. 47, 1480 (1981).
- [17] A. Skumanich, A. Frova, N.M. Amer. Solid State Commun. 54, 597 (1985).