08

Локализация ионов гадолиния в кристаллах RbPb₂Cl₅

© В.А. Важенин, А.П. Потапов, А.Н. Ивачев, М.Ю. Артёмов, В.Б. Гусева

Научно-исследовательский институт физики и прикладной математики Уральского федерального университета, Екатеринбург, Россия

E-mail: vladimir.vazhenin@usu.ru

(Поступила в Редакцию 15 ноября 2011 г.)

В монокристаллах хлорида свинца-рубидия исследован спектр парамагнитного резонанса высокоспиновых триклинных центров Gd³⁺. Определены параметры спинового гамильтониана. Сделан вывод о локализации редкоземельного иона в позиции свинца, окружение которой представляет собой "трехшапочную" тригональную призму.

Работа финансировалась в рамках конкурса молодых ученых УрФУ.

1. В результате поиска новых материалов для твердотельных лазеров с накачкой лазерными диодами, работающих в среднем инфракрасном диапазоне при комнатной температуре, было найдено семейство низкосимметричных кристаллов двойных галогенидов щелочного металла и свинца APb_2Cl_5 (где A = K, Rb). Эти кристаллы отличаются химической стойкостью, низкой гигроскопичностью, узким фононным спектром и возможностью активации редкоземельными ионами.

Пространственная группа этих кристаллов P21/c $(P12_1/c1)$; согласно [1,2], в структуре APb₂Cl₅ имеются две неэквивалентные позиции ионов свинца с триклинной симметрией (С1). Ближайшее окружение одной (Рb2 в обозначениях [1]) представляет собой "трехшапочную" тригональную призму с координационным числом (КЧ), равным 9 (рис. 1, а). Другая позиция (Pb1) находится в искаженном октаэдре с раздвоенной вершиной (КЧ равно 7). В работе [3] в результате исследования структуры KPb₂Cl₅ окружение этих двух позиций свинца (Pb2, Pb1) предлагается представлять в виде "двухшапочной" (из-за удаленности одного из лигандов) с КЧ, равным 8, и "одношапочной" (КЧ равно 7) тригональных призм. Авторы [4] относят к ближайшему окружению Pb1 в KPb₂Cl₅ лишь шесть ионов хлора с R < 0.3 nm, а координационное число Pb2 считают равным 7 ("зонтик" из пяти ионов хлора с $R \approx 0.3$ nm и два иона с расстояниями 0.315, 0.321 nm). Учитывая соотношение ионных радиусов, а также зарядовые состояния редкоземельного элемента, свинца и рубидия, следует ожидать замещения редкоземельными ионами именно позиций свинца.

Авторы оптических исследований $KPb_2Cl_5:Nd^{3+}$ [4] и измерений высокочастотного ЭПР ионов Tb^{3+} в KPb_2Cl_5 [5] предполагают, что редкоземельные ионы локализуются преимущественно в позициях Pb1. При этом в работе [5] считалось, что замещение ионом Tb^{3+} свинца в положении Pb1 сопровождается образованием вакансии одного из ближайших ионов K^+ .

Авторами [6] с целью определения локализации редкоземельных ионов и механизмов их зарядовой компенсации с помощью широкополосной ЭПР-спектроскопии был исследован RbPb₂Cl₅ с примесью диспрозия и висмута. Проведенные измерения не позволили сделать окончательный вывод о локализации Dy³⁺ в RbPb₂Cl₅.

2. В этих же образцах (RbPb₂Cl₅: 1.0 mass% DyCl₃) нами обнаружен ЭПР-спектр высокоспинового (S = 7/2)

Рис. 1. Структура окружения иона свинца. a — вид вдоль кристаллографической оси a для позиции Pb2 в RbPb₂Cl₅ (пространственная группа $P12_1/c1$), b — вид вдоль оси c для позиции Pb в PbCl₂ (группа *Pnam*).

редкоземельного иона Gd^{3+} (рис. 2), присутствующего в кристалле в качестве неконтролируемой примеси (концентрация < 0.01%). Исследуемые монокристаллы были выращены методом Бриджмена в кварцевых ампулах [7]. Измерения проводились на спектрометре трехсантиметрового диапазона EMX Plus (Bruker) при комнатной температуре.

Как видно (рис. 2), для спектра центров Gd³⁺ хорошо выполняется приближение сильного магнитного поля. Слабые сателлиты, наблюдаемые вблизи семи разрешенных ($\Delta m = 1, m$ — проекция электронного спина) переходов, могут быть обусловлены как блочностью образца, так и его двойникованием. Аналогичные сател-

Рис. 2. ЭПР-спектр (производная сигналов поглощения) триклинных центров Gd^{3+} в RbPb₂Cl₅ в ориентации **В** || **с** (*B* — индукция магнитного поля, микроволновая частота 9830 MHz).

Рис. 3. Ориентационное поведение резонансных положений переходов двух триклинных центров Gd³⁺ в плоскости *cb*. Точки — эксперимент, кривые — расчет с параметрами из табл. 1.

Рис. 4. Угловая зависимость резонансных положений переходов триклинных центров Gd³⁺ в плоскости *ca*. Точки — эксперимент, кривые — расчет.

Рис. 5. Ориентационное поведение резонансных положений переходов двух триклинных центров Gd³⁺ в плоскости *ab*. Точки — эксперимент, кривые — расчет с параметрами из табл. 1.

литы имеют место и в других ориентациях магнитного поля. Ориентационное поведение положений переходов основного спектра в трех кристаллографических плоскостях приведено на рис. 3–5. Расщепление всех сигналов при отклонении магнитного поля от осей a, b, c на две компоненты обусловлено наличием в структуре кристалла позиций свинца, окружение которых переходит друг в друга при отражении в плоскости ac. При вращении магнитного поля в этой плоскости спектры двух центров совпадают.

В табл. 1 приведены экспериментальные параметры спинового гамильтониана [8] триклинных центров Gd^{3+} в RbPb₂Cl₅, полученные в результате минимизации среднеквадратичного отклонения расчетных положений переходов от 292 экспериментальных резонансных полей в

Таблица 1. Параметры спинового гамильтониана второго и четвертого рангов триклинных центров Gd^{3+} в RbPb₂Cl₅ при комнатной температуре (параметры шестого ранга, имеющие малую величину и большую погрешность, не приводятся; среднеквадратичное отклонение *F*, параметры b_{nm} и c_{nm} приведены в MHz)

Параметр	Величина	
g	1.991(2)	
b_{20}	-850(50)	
b_{21}	25(40)	
b_{22}	-300(100)	
c ₂₁	-1480(200)	
c 22	160(100)	
b_{40}	-10(10)	
b_{41}	5(100)	
b_{42}	-50(100)	
b_{43}	-280(100)	
b_{44}	-140(100)	
C 41	40(50)	
C 42	-30(100)	
C 43	80(100)	
C 44	10(100)	
F	37	

системе координат $\mathbf{z} \parallel \mathbf{c}, \mathbf{x} \parallel \mathbf{a}, \mathbf{y} \parallel \mathbf{b}$. Спиновый гамильтониан центра, связанного с приведенным отражением, содержит параметры c_{nm} с противоположным знаком. Относительно большие погрешности параметров тонкой структуры обусловлены большой шириной линий, наличием сателлитов и сложностью определения ориентации образца в магнитном поле.

Согласно [5,9], при **B** || **с** спектры парамагнитных центров, расположенных в двойниках, идентичны. Тем не менее и в этой ориентации магнитного поля (рис. 2) сателлиты основного спектра наблюдаются. Часть этих сателлитов, в основном в окрестности высокополевых переходов, объясняется существованием в этом образце блока, ось *с* которого повернута в направлении *b* на угол ~ 2.5°. Слабые сигналы (156, 270, 304 mT) могут быть обусловлены запрещенными ($\Delta m = 2$) переходами центра Gd³⁺. Для определения природы остальных сигналов требуются дополнительные исследования.

3. Для решения вопроса о том, в какой из двух неэквивалентных позиций Pb^{2+} локализуется ион Gd^{3+} , мы воспользовались результатами работы [10], в которой предлагается модель суперпозиционного приближения [11], связывающего величины параметров спинового гамильтониана второго ранга центров Gd^{3+} с координатами лигандов (F^- , O^{2-} , Cl^-),

$$b_{2m} = \sum_{d} K_{2m}(\theta_d, \varphi_d) \left[Z_d \bar{b}_{2p}(R_0) (R_0/R_d)^3 + \bar{b}_{2s}(R_0) (R_0/R_d)^n \right],$$
(1)

где $K_{2m}(\theta_d, \varphi_d)$ — угловой структурный фактор, например $K_{20}(\theta) = (1/2)(3\cos^2 \theta - 1), \quad K_{22}(\theta, \varphi) =$ $= (3/2) \sin^2 \theta \cos 2\varphi; R_d, \theta_d, \varphi_d$ — сферические координаты лигандов; $R_0 = 0.289 \text{ nm}$ — сумма ионных радиусов парамагнитного иона и лиганда; $Z_d = -1$ заряд лиганда; $n \approx 10$; для хлорного окружения параметры модели имеют значения $\bar{b}_{2p} = 3428.3 \text{ MHz},$ $\bar{b}_{2s} = 3427.8 \text{ MHz}$ [9]. Следует отметить, что в работах [10,11] данная модель использовалась для сравнительно симметричных парамагнитных центров, при этом учитывались лиганды только первой сферы окружения.

Результаты расчетов в суперпозиционном приближении величины параметра b_{20} , наиболее устойчивого к релаксации окружения, обусловленной заменой матричного иона примесным, для ионов Gd³⁺, находящихся в позициях свинца кристалла RbPb₂Cl₅, в трех системах координат приведены в табл. 2. Зависимость величины параметров b_{2m} и c_{2m} еще и от азимутального угла φ_d делает их менее устойчивыми к релаксации решетки. В связи с этим недиагональные параметры второго ранга не анализировались.

В случае замещения Pb2 расчет проведен с учетом девяти и восьми соседей (см. раздел 1). Расстояние от Pb2 до девятого соседа равно 0.42 nm, тогда как остальные лиганды расположены в диапазоне расстояний 0.30–0.32 nm. В случае Pb1 диапазон расстояний до семи лигандов 0.29–0.304 nm. Поэтому уменьшение координационных чисел Pb1 и Pb2 до 6 и 7 соответственно, как это делают авторы [4] в случае KPb₂Cl₅, для RbPb₂Cl₅ не оправдано.

Значительный вклад столь удаленного (0.42 nm) соседа Gd³⁺, локализованного в позиции Pb2, скорее всего, обусловлен тем, что выражение (1) плохо аппроксимирует радиальную зависимость вклада лиганда в величину b_{20} в столь большом диапазоне расстояний. Это соображение согласуется с утверждением автора [12], развивающего идеи [10–11], о необходимости введения своих параметров модели для каждой из учитываемых координационных сфер.

Как видно (табл. 2), порядок расчетных величин аксиального параметра b_{20} иона Gd³⁺, локализованного в позициях свинца (как Pb1, так и Pb2), совпадает с экспериментальным. Наиболее близка к экспериментальному значению расчетная величина b_{20} для Gd³⁺ в позиции Pb2 при $\mathbf{z} \parallel \mathbf{a}$ и учете восьми соседей. Однако при $\mathbf{z} \parallel \mathbf{b}$ и $\mathbf{z} \parallel \mathbf{c}$ наблюдается заметное отличие расчетных и экспериментальных величин. Таким образом, полученные расчетные величины не позволяют сделать

Таблица 2. Экспериментальные и расчетные значения *b*₂₀ (в MHz) центров Gd³⁺ в двух позициях ионов свинца в RbPb₂Cl₅ при учете различного числа соседей

Кристалл	z a	$z \parallel b$	z c
RbPb ₂ Cl ₅ (эксперимент)	276	575	-850
RbPb ₂ Cl ₅ (Pb1), семь соседей (расчет)	705	-695	-10
RbPb ₂ Cl ₅ (Pb2), девять соседей (расчет)	725	-511	-214
$RbPb_2Cl_5 \ (Pb2)$, восемь соседей (расчет)	238	-481	243

	RbPb ₂ Cl ₅				PbCl ₂
Параметр	z c x a, y b	$\begin{array}{c} \mathbf{z} \parallel \mathbf{b} \\ \mathbf{x} \parallel \mathbf{c}, \mathbf{y} \parallel \mathbf{a} \end{array}$	z a x c, y b	$z \parallel a$, поворот вокруг оси <i>z</i> на 13.7°	$\mathbf{z} \parallel \mathbf{c} \perp \sigma$ в Рпат
1	2	3	4	5	6
b_{20}	-850	575	276	276	297(6)
b_{21}	25	1480	-25	-96	
b_{22}	-300	-1127	-1426	-1606	-1310(6)
C ₂₁	-1480	-312	312	298	
C 22	160	11	739	0	0

Таблица 3. Параметры спинового гамильтониана второго ранга центров Gd³⁺ в PbCl₂ и RbPb₂Cl₅ в различных системах координат (данные эксперимента)

однозначный вывод о преимущественной локализации примесных ионов гадолиния.

Для решения данной задачи воспользуемся информацией о структуре PbCl₂ (пространственная группа *Pnam*) и парамагнитном резонансе Gd³⁺ в этом кристалле. В хлориде свинца ион Pb²⁺ занимает единственную позицию (локальная симметрия C_S), ближайшее окружение которой представляет собой "трехшапочную" призму (рис. 1, *b*) [13], качественно и количественно близкую к полиэдру, содержащему Pb2 в RbPb₂Cl₅ (рис. 1, *a*).

В столбце 6 табл. 3 приведены экспериментальные параметры моноклинного спинового гамильтониана Gd³⁺ в PbCl₂ из работы [14] в системе координат с **z** || **c** $\perp \sigma$ (*Pnam*). Оси *x*, *y* авторами [14] выбраны так, чтобы параметр *c*₂₂ был равен нулю. Параметры *b*₂₁ и *c*₂₁ для моноклинного центра в выбранной системе координат тождественно равны нулю. Столбцы 2–4 табл. 3 содержат параметры второго ранга тонкой структуры Gd³⁺ в RbPb₂Cl₅ в различных системах координат. Для сравнения с результатами [14] в столбце 5 приведены параметры *b*_{2*m*} и *c*_{2*m*} после поворота системы координат вокруг **z** || **a** на 13.7° для обращения в нуль *c*₂₂.

Сравнивая параметры в двух последних столбцах (для обоих кристаллов ось z параллельна квазитригональной оси "трехшапочной" тригональной призмы), замечаем поразительную близость величин b_{20} , b_{22} центров Gd³⁺ в RbPb₂Cl₅ и PbCl₂. Этот факт, на наш взгляд, позволяет утверждать, что Gd³⁺ и, скорее всего, другие редкоземельные ионы замещают в RbPb₂Cl₅ позицию свинца Pb2 с нелокальной компенсацией избыточного положительного заряда.

Авторы искренне благодарны Н.В. Личковой, В.Н. Загородневу и Г.С. Шакурову за предоставление кристаллов, а также И.А. Жирнову за помощь в измерениях.

Список литературы

- K. Nitsch, M. Dusek, M. Nikl, K. Polak, M. Rodova. Progr. Cryst. Growth Charact. 30, 1 (1995).
- [2] H. Monzel, M. Schramm, K. Stöwe, H.P Beck. Z. Anorg. Allgem. Chem. 626, 408 (2000).

- [3] A.A. Merkulov, L.I. Isaenko, V.M. Pashkov, V.G. Mazur, A.V. Virovets, D.Y. Naumov. J. Struct. Chem. 46, 103 (2005).
- [4] А.М. Ткачук, С.Э. Иванова, Л.И. Исаенко, А.П. Елисеев, S. Payne, R. Solarz, R. Page, M. Nostrand. Опт. и спектр. 92, 89 (2002).
- [5] G.S. Shakurov, B.Z. Malkin, A.R. Zakirov, A.G. Okhrimchuk, L.N. Butvina, N.V. Lichkova, V.N. Zagorodnev. Appl. Magn. Reson. 26, 579 (2004).
- [6] Г.С. Шакуров, И.И. Фазлижанов, В.А. Шустов, А.Г. Охримчук, Н.В. Личкова, В.Н. Загороднев. Материалы XVI Всерос. конф. "Оптика и спектроскопия конденсированных сред", Краснодар (2010). С. 22.
- [7] Н.В. Личкова, В.Н. Загороднев, Л.Н. Бутвина, А.Г. Охримчук, А.В. Шестаков. Неорган. материалы 42, 83 (2006).
- [8] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс. М. (1972). С. 121.
- [9] A.V. Virovec, D.U. Naumov, A.A. Merculov, L.I. Isaenko, V.M. Pashkov. Proc. of the 5th Int. Conf. "Crystals: growth, properties, real structure" / Eds A.I. Medovoi, E.V. Poljanskii. VNIISIMS, Aleksandrov, Russia (2001). V. 1. P. 83.
- [10] L.I. Levin. Phys. Status Solidi B 134, 275 (1986).
- [11] D.J. Newman, W. Urban. Adv. Phys. 24, 793 (1975).
- [12] C. Rudovicz. Solid State Commun. 65, 631 (1988).
- [13] M. Lumbreras, J. Protas, S. Jebbari, G.J. Dirksen, J. Schoonman. Solid State Ionics 20, 295 (1986).
- [14] H.C.W. Beijerinck, B. Willemsen. Physica 47, 515 (1970).